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The electronic band structures of SnS~ and SnSe2 are calculated by using the empirical pseudopotential
method. The potentials were obtained by scaling those used in other energy-band calculations. The sym-

metry properties of the crystals are treated in detail, and the optical constants are calculated. Comparison
with experiment is also made.

I. INTRODUCTION

HE concept of associating a pseudopotential with
each ion core independent of its chemical state

has been successfully exploited recently to yield elec-
tronic states of semiconductors both in elemental' and
in compound forms."In the 6rst case, the elemental
pseudopotential is extracted from semiconductors con-
taining that element, e.g., Se from ZnSe. ' In the second
case, the pseudopotential form factors in a compound
are derived from the known pseudopotentials of the
constituent elements, e.g., Mg and Si, to give Mg2Si. '
In these calculations, the empirical pseudopotential
method' (EPM) is used. The combination of assigning
a 6xed pseudopotential to each ion and the use of the
EPM, then, essentially involves the variation of pseudo-
potential form factors to Gt optical data and the existing
information on the pseudopotentials.

The success we have had in the Mg2X calculations'
and the availability of good optical data have stimulated
us to attempt calculations of the electronic structure of
SnS2 and SnSe&. The similarity of these two classes of
compounds, MgmX and SnX~, lies in the shape of the
unit molecule: A dumbbell formed from the two identical
atoms weighted at the center by the third, different
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atom. This structure preserves the inversion symmetry
of the lattice. This yields a Hamiltonian with real
matrix elements which is easier to diagonalize than one
with complex matrix elements. In addition to calculating
the electronic structure of SnS2 and SnSe2, we have also
determined the optical constants for these materials.

The properties of SnS2 and SnSe2 have only been
sporadically investigated experimentally and, to our
knowledge, no band-structure calculations exist. The
direct and indirect energy gaps of SnS2 have been
measured optically, "and those of SnSe2 have been
measured both optically' and electrically. "The com-
bined data seem to have 6xed the energy gaps to within
a small range of values. ReQectivity data in the range
of 1 to 12 eV have also been obtained for SnS2, for light
with polarization perpendicular to the c axis of the
crystal '

The pseudopotentials of the constituent ions in the
calculation, i.e., those of Sn, Se, and S, are not available
to a high degree of accuracy as are those of the group-IV
elements, Si and Ge. The pseudopotential for Sn, for
example, difters greatly between grey tin' and white
tin, ' especially for large

~
6

~
values. We have based our

calculations on the Sn, Se pseudopotentials of Animalu
and Heine, ' and the S pseudopotential as extracted
from ZnS. 4
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This paper is divided into three sections. In Sec. II
the group theory of the CdI2 structure is treated in

detail, and the Hamiltonian is derived. The resulting

Schrodinger equation is solved, and the optical con-

stants are calculated. In Sec. III we present the results

and the comparison with experiment.

II. CALCULATIONS

The tin chalcogenides, SnS2 and SnSe2, crystallize in

the CdI2 structure. The lattice is simple hexagonal with

one molecule per primitive cell. If one chooses the

position of a Cd atom at the origin of the cell, then the

positions of the I atoms can be chosen to be at the
symmetric points &u, where u=(—„-'„4).(In writing

the vector we have assumed the usual hexagonal

coordinate system of two ~a~ vectors on the x,y plane

placed 120' apart and a c vector in the z direction,
where a and c are the usual lattice constants. ) The sym-

metry of the lattice is D~„' however, because of the basis,

only 4 of the 24 symmetry operations in D6& leave the
structure invariant. These are the identity, a two-fold

rotation about a corner of the hexagon in the x-y plane,

inversion, and finally a reRection in the plane perpen-
dicular to the two-fold axis. LSee Fig. 1(a).j

The first Brillouin zone of the hexagonal unit cell is

again a hexagonal prism; however, as a consequence of

the basis atoms in the CdI2 structure, the six sides of

TABLE I. Characters of the small representations of r, A, M, L,
P, Z, and R, where P is a general point on a symmetry plane. z and
x,y rows show the characters for the photons with polarizations
perpendicular and parallel to the c axis.

r,A,M,L

ri
rg
r, '
r2'

1—1—1
1

0—1

1
1—1—1

—2—1

1—1
1—1

0
1

the hexagon are no longer equivalent. In fact, the direc-
tion of the two-fold axis in real space is the particular
direction in the reciprocal space. It passes through the
center of the zone and the midpoint of one side of the
hexagon on the x-y plane (and also that of the opposite
side). [See Fig. 1(b).]These two points, called M points
in the usual notation, are the only M points which are
invariant under C2 in the CdI2 structure. The other M
points are only invariant under inversion. We, therefore,
call the M points with lower symmetry M' points.

It is easily seen from Fig. 1(b) that except for the M'

points, all other points of symmetry are on three sym-

metry lines and three symmetry planes. The symmetry
lines are the Cq axis (Z line) and the two lines parallel to
it and displaced by &7r/c in the c direction (R lines).
The symmetry planes are perpendicular to the C2 axis;
they include two planes which contain the two pre-

Pi
P2
xyf

1—1
0

(a)
Z,R

Zg

xy
z

1—1
0—1

(b)

FIG. 1. (a} Projection on the x-y plane of the CdI2 structure in
real space. The triangles denote the positions of the Cd atoms, and
the circles denote those of the I atoms. The triangles are on the
x-y plane; the open and the closed circles are on the planes z = &pc,
respectively, where c is the usual lattice constant. (b} Section of
the first Brillouin zone of the simple hexagonal lattice on the x-y
plane. The symmetry lines for the CdI2 structure are labelled and
they are drawn in heavy lines. The twofold axis and the reflection
planes are indicated by Cm and o in both 6gures.

viously mentioned special M points, and the third plane
passes through the origin, the I' point. The intersection
of these planes and the x-y plane are the T and T' lines.
The symmetry at Z and R is the group C&, and that at
T,T' is the group C,. The intersection of these lines and
planes are the F, A, I, and M points. These points,
therefore, have the highest symmetry in the structure,
the group CIRC, .

From the above discussion we see that the group
theoretical treatment of the CdI2 structure is quite
simple. There are only three important types of sym-
metry points, and the compatibility relations between
them are trivial since we only have four symmetry
operations. In Table I, the characters are given for the
symmetry operations of the three groups and the
irreducible representations are defined. The symmetry
points M' are not considered because they have a low
symmetry and are not joined by other symmetry points.
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To calculate the optical properties of the CdI2 struc-
ture, we need to have the selection rules for optical
transitions with the electric field vector both in the
directions parallel and perpendicular to the c axis. In
Table I, the characters for photons with both types of
polarizations are given. From these characters, it is easy
to compute the selection rules given in Table II.

This completes our discussion of the group theoretical
aspects of the problem; next, we derive the Hamiltonian
and solve the Schrodinger equation.

We use an energy-independent pseudopotential and
neglect the spin-orbit interaction; the pseudo-
Hamiltonian then becomes

K= —(Pi'/2m)7'+ V(r). (1)

Expanding the potential in the reciprocal lattice, we
have

(2)

and so

V(G) = V(r)c—io r

~cell cell

[fled V (G)+20r V'(G) cos(G n)j, (3)
~cell

where the 0's with subscripts denote the volumes per
molecule or atom in CdI2, Cd, and I and the t"s with
superscripts denote the pseudopotentials of the con-
stituent ions Cd and I. [For the actual case of CdI2, in
which I2is a gas, we can define I '(G) without the 1/Qr
factor, thus getting rid of the ambiguous quantity Qr.j
The factor cos(G n) includes all the sects of the basis
atoms and accounts for the destruction of most of the
symmetries of the lattice.

The Schrodinger equation with this Hamiltonian
Eq. (1) is solved by expanding the periodic part of the
Bloch state in plane waves. For SnS2 and SnSe2, the
calculations present a convergence problem if we use
the full pseudopotential curves of the constituent ions.
The reason is that the hexagonal lattice contains many
plane waves with small values of

~
G ~, and therefore the

pseudopotential curves must be cut off for some
maximum

~
G~ value, determined by the accuracy of

the computer available for the diagonalization of the
Hamiltonian. The value we chose was G ~2= (59/4)
X(2w'/a'). (This is for (c/a)'=8/3, which is approxi-
mately valid in both SnS2 and SnSe2. ) This value of6, gives 16 nonvanishing pseudopotential form
factors for Sn.

The Hamiltonian is diagonalized on a mesh of k
points 4 the size of the Brillouin zone. The band
structure thus obtained is used to calculate the optical
constants of these materials. "The first optical constant

"T.K. Bergstresser and M. L. Cohen, Phys. Rev. 164, 1069
(1967).

T~LE II. Selection rules for direct optical transitions. For
points of the same symmetry, only one point is shown (i.e., r
represents r, b, , M, and I).

PerPeodicular Polarizatioe

r„r, r, ',r, '

~1 ~2 ~ ~1 ~2
ParaIle/ Polarization

r; r

Z, +-+Z,:
where ig j and i=1,2

to be calculated is the imaginary part of the dielectric
functions ~2(ro). The computation uses the equation

g2h2

8(E.(k)—E.(k) —h(o)
8~m'(g2 c,e, s

d 2

ul „—Nl. .. d'k) 4
dx'

where c,u denotes the conduction and valence bands,
and ul, , is the periodic part of the nth-band wave
function. 8= 2, i = 1,2 for light with polarization
perpendicular to the c axis, and 8= 1,i =3 for light with
parallel polarization. We shall approximate the wave
functions u&, „by the eigenstates of the pseudo-
Hamiltonian, Eq. (1).

Before we discuss the results of the calculation, we
would like to emphasize that, because of several diK-
culties, the calculations should be regarded as being
preliminary. In terms of accuracy they cannot be com-
pared with the calculations performed on the Mg2X
compounds, for example. The difhculties with SnS2 and
SnSe2 calculations are as follows:

(a) The low symmetry of the CdI2 structure neces-
sitates the computation of the band structure in 4 the
Brillouin zone which is six times as large as the amount
of k space required for the wurtzite compounds. ' The
unusually large matrices to be diagonalized in the
hexagonal lattice makes an accurate calculation im-
practical at this stage.

(b) Although reflectivity data on SnS2 are available,
an e2(id) curve is not yet available. The lack of this curve
makes it quite dificult to correlate the results of theory
with experiment. In addition, no spectrum for SnSe2 is
available.

(c) There are eight valence bands, six of which are
important for optical transitions under 12 ev. In addi-
tion, we have to take into account ten conduction bands
for our final states in the optical transitions. The large
number of bands contributing to e2(co) makes the
identification of the theoretical eq(a&) in terms of critical
points quite dificult.



i282 M. Y. AU —YANG AND M. L. COHEN

K)

I P +)
Kp

Kt

8—
Kp

K,

M,

M,

6—
K,

Kp M)

M

Kt
-2—

M,

4— M

Kp

1

M)

SnSz

r, ~4~

r,

r,
'

Lp

CONVERGENCE
ACCURACY

--4,

At

Ai

L)
Lp
Lt

L)

Lp

r, W A)~
L,

Hp

H)

HZ

H)

Hp

Hp

Hi

H)

Hp

Hl

Hp

H)

H

IO—

K~

8 .
K)

Kl
Pp

Kp

Kl

0
4J P

LLI

Kp
K

Kt

Kl

SnSe&

r ~4l
Ip~

Ap

r,

rp
ri

A)
Ap

Al

Li

A)
I
1

r, I CONvERGENCE
Lg ACCURSE, CY

Ll—
Al

At Ll
L1

Hg

H)

Hl

Hp

Hi

H)
Hp

H)

Hp

HI

FzG. 2. Calculated band structure of SnS~. The first two bands
are not shown; they are lower than the third band by at least
4.5 eV.

In view of these di6iculties, little attempt has been
made to adjust the potentials. The agreement between
theory and experiment is therefore not expected to be
better than 0.5 to 1.0 eV.

(oo1)
(1oo)
(oo2)
(1o1)
(102)
(oo3)
(21o)
(211)
(1o3)
(2oo)
(212)
(2o1)
(004)
(202)
(104)
(213)

SnSg.'Sn

—0.312
—0.09
—0.06
—0.036

0.06
0.074
0.075
0.074
0.073
0.068
0.066
0.065
0.06
0.048
0.036
0.036

—0.31
—0.27
—0.21
—0.08
—0.042
—0.012

0.004
0.032
0.082
0.088
0.096
0.102
0.074
0.054
0.05

SnSeg.' Sn

—0.36
—0.06
—0.036
—0.024

0.072
0.074
0.073
0.071
0.069
0.057
0.054
0.05
0.048
0.035
0.029
0.029

—0.24
—0.205
—0.17
—0.012

0.03
0.08
0.10
0.12
0.14
0.14
0.13
D.11
0.08
0.05
0.05

TAsr, E III. Pseudopotential form factors in Ry used in the
calculations of the SnS~ and SnSe~ band structures. The Sn po-
tentials for both compounds are identical. The differences in the
table arise because of lattice-constant differences.

Fro. 3. Calculated band structure of SnSeg. As in Fig. 2,
the first two bands are not shown.

TmzE IV. Comparison between theory and experiment for the
direct and indirect threshold energy gaps (given in eV).

Direct
Calculated Measured

Indirect
Calculated Measured

SnS2.' 2.48
(Mg'~ Mg')

SnSeg. 1.78
gr&' ~ sr&')

2.88

1.62.

SnS2..2.11
{I'g'-+ Lg')

SnSeg. 0.81
{Fg'~I-)')

2.07
2.21b

0.97~

1.0O

1.P
& Reference 5.
h Reference 6.
& Reference f.
a Reference 8

III. RESULTS AND DISCUSSION
The band structures of SnS2 and SnSe~ are shown in

Figs. 2 and 3 along certain symmetry directions of the
hexagonal lattice. The pseudopotential form factors
used in the calculations are shown in Table III. As
previously mentioned, some of the special labels (for
example, E) in the hexagonal lattice have no particular
importance here. They are shown mainly to illustrate
how the bands appear along selected general directions.

For both SnS~ and SnSeg, the direct and indirect
energy gaps are 6tted to experiment. In addition, for
SnS~, the optical spectrum was used to 6x some of the
high-energy splittings. Ke again remark that in both
cases the potentials chosen were constrained to match
those derived from analysis of other crystals.
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TAaLE V. Some dominant optical transitions for perpendicular
polarization in SnS2 and comparison anth experiment. The sub-
scripts in the optical transition labels indicate the band indices for
the transition. The peak labels for the measured re6ectivity curves
are from Ref. 6.

30

SnS2

Energy value of structure
In the In the

measured re- calculated
Qectivity (eV) e&(co) (eV)

4.0 (A) 4.03
4.8 (8) 5.35
5.7 (C) 5.83
7.0 (D) 7.72
7.8 (E) 8.67

Identi6cation of Type
main transition of

in calculated e2(cu) cp

Mp

M]
M]
Mp
3f]

V'~ 20
UII
a
0
L
0

10.
L0
C

Ql0
E

PERPEND

PARALLEl. ~
r

The direct energy gaps for both SnS2 and SnSe2 are
the results of transitions near the M point between the
eighth and the ninth bands; the calculated values are
2.48 eV (SnS2) and ].78 eV (SnSe2). The calculated
transition at the M point itself is forbidden by parity.
Experimentally, the threshold for direct transition for
both compounds is forbidden as is suggested by the
absorption data of Domingo et c/. ' They obtained direct
energy gaps (forbidden in first order) of 2.88 eV and
1.62 eV for SnS2 and SnSem, respectively.

The calculated fundamental energy gaps of both com-
pounds are indirect. The maximum of the valence band
is at F, and the minimum of the conduction band is at L.
This fact seems to be well supported by experiment. "
The calculated values are 2.1j. and 0.81 eV for SnS~
and SnSe~, which compare fairly well with the average
experimental values of 2.14 and 0.99 eV ~' (see Table
IV).

The imaginary part of the dielectric function e2(co)
calculated from the band structure of SnS2 is shown in
Fig. 4 for light polarization both parallel and perpen-
dicular to the c axis. In Table V some prominent peaks
in the reQectivity data of Greenaway and Nitsche' are
compared with the results of the calculation. Because of
the difhculties encountered in calculations, as mentioned
in Sec. II, not much eGort has been made to fit the

0-
0 4 6 8

Energy, eV
10 12

Fro. 4. Calculated imaginary part of the dielectric function for
light polarizations perpendicular and parallel to the c axis, for
SnSg.

theory to the experiment to better than 1.0 eV, and only
the most important critical points (cp) are identified
for each peak. We remark, also, that because of the low
symmetry of the structure, a great deal of contribution
to the e2(ra) comes from "volume effects, "i.e., contribu-
tions which are not related to a cp. We note that all
transitions which are allowed in parallel polarization
are also allowed in perpendicular polarization. If in the
experiments' on SnS2 the light were not completely
polarized perpendicular to the c axis, then the peak
labelled C in Ref. 6 would be larger than expected for
purely perpendicularly polarized light. This would make
the comparison between theory and experiment much
better.
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