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Effects of Resonant Phonon Interactions on Shapes of IrnyuritJJ Absorption Lines*
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A study is made of the interaction of an electron bound to an impurity center in a semiconductor with the
phonon field of the material. In particular we study the shift and shape of optical absorption lines of donor
impurities in semiconductors when the excitation energy lies close to the energy of an optical phonon branch
pf the vibrational spectrum of the crystal. The results exhibit a variety of phenomena. The optical absorp-
tion lines may be split or broadened either symmetrically or asymmetrically. The different possibilities de-
pend primarily on the dispersion of the phonon bands in the vicinity of the electronic excitation energy. If
the phonon energy is approximately independent of the wave number, a splitting of the line arises. Particular
emphasis is given to the case of bismuth donors in silicon interacting with transverse optical phonons.

I. INTRODUCTION
' 'N a recent publication Onton et a/. ' have reported,
~ - among other experimental results, a remarkable
broadening of an excitation line of bismuth donor in
silicon. They find that the optical transition lines from
the ground state of Bi in Si $1s(Ar)j' to the excited
states 2p~, 3po, 3p~ are sharp. However, the 1s(A r) ~
2po transition line is anomalously broad and asym-
metric. The energy of this excitation is 59.51 meV. The
authors of Ref. 1 attribute this broadening to an interac-
tion between the electron excitation and transverse
optical modes To (100) of Si which have energies around
58.7~1.2 meV at the Brillouin zone edge. They also
notice that the 1s(Al) ~ 2p+ transition has an energy
of 64.57 meV, which is very close to the Raman energy
of Si, 64.8 meV. However, this line is not anomalously
broad.

That the 1s(A~) ~ 2p, line is broadened by the reso-
nant interaction of the bound electron with an optical
mode is demonstrated by the behavior of this line when
the material is subjected to uniaxial strain. By applying
a uniaxial stress along either a (100) or a (110) crystal-
lographic direction, ' the lines 1s(Ar) —+np split into
two components called np(&), where the & refer to the
high-energy and the low-energy components, respec-
tively. Figure 1 of Ref. 1 shows the excitation spectra
of Bi donors in Si. It is seen that under uniaxial compres-
sion along (110) the 2po(+) component is much sharper
than the 2po( —) component, both being sharper than
the zero stress line. The sharpening of the 2po(&) lines
arises because the energy shifts are suSciently large to
take these excitation lines out of resonance with the
strongly coupled optical modes; the 2po(+) line is
sharper than the 2po( —) line because the former is

* Work supported in part by the Advanced Research Projects
Agency.

t Permanent address: Department of Physics, Purdue Univer-
sity, Lafayette, Ind. John Simon Guggenheim Memorial Fellow.

' A. Onton, P. Fisher, and A. K. Ramdas, Phys. Rev. Letters
19, 781 (1967).' We use the notation employed by, for example, W. Kohn, in
Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1957), Vol. 5, p. 257.

3 R. L. Aggarwal and A. K. Ramdas, Phys. Rev. 137, A602
(1965).

178

shifted twice as much from the zero stress position as
compared to the latter, which apparently takes it farther
out of resonance. The pronounced resonance eGect is
clearly seen in Fig. 2 of Ref. 1. Onton et al. ' also draw
attention to the anomalous width of line 2 of the gallium
acceptor in silicon'; for this case, the energy of the tran-
sition is indeed close to the Raman energy of silicon.
These results appear to suggest strongly that the nature
of the impurity wave functions determine the nature of
the phonons involved in the resonant broadening. It is
indeed interesting that such a pronounced electron-
phonon interaction occurs even in a covalent crystal
like Si, given the resonance conditions. The recent ex-
perimental endings of Dickey and I.arsen' and of
Summers et al. ' are further examples of line broadening
under resonant conditions. The eBect of uniaxial stress
on line 1 of tellurium donors in aluminum antimonide'
is yet another example of a similar phenomenon.

The object of the present paper is to discuss a theory
of the phenomenon described in Ref. 1 with special
reference to bismuth donors in silicon.

Section II deals first with the general theory of the
broadening of an optical absorption line due to the inter-
action of the electronic system with a phonon field. We
then discuss the particular problem under consideration
and analyze the diferent forms which the line shape can
take.

II. THEORY

A. General Formglatton

We are concerned here with an optical transition from
the electronic ground state of an impurity to some ex-
cited state whose excitation energy e (we shall take units
such that It = 1) is approximately equal to the energy of
the phonons that are most strongly coupled to this
electronic transition.

4 A. Onton, P. Fisher, and A. K. Ramdas, Phys. Rev. 163, 686
(1967).

'D. H. Dickey and D. M. Larsen, Phys. Rev. Letters 20, 65
(1968).

C. J. Summers, R. B. Dennis, B. S. Wherrett, P. G. Harper,
and S. D. Smith, Phys. Rev. 170, 755 (1968).' B.T. Ahlburn and A. K. Ramdas, Phys. Rev. j67, 717 (1968).
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Thus we first consider a simple model in which we cal-
culate the transition rate from the initial state to each
of the "exact" eigenstates in the space spanned by the
unperturbed states (of an excited impurity and a de-
excited impurity plus any phonon). ' We denote the
states by

If we define

I
x„)= (v H—+ig) 'I -I)

and expand in our subspace

I x„&=B(v)
I I&+2 D..(v) I qp&,

(7)

(8)

IN)=impurity excited, no phonons and
and no photons,

lqp&—= impurity in the ground state, one phonon
in state qp and no photons.

then

P(v) = —2 ImB(v).

To obtain B(v) we combine Eqs. (7) and (8), obtaining
the set of linear equations

(v «+irl—)B(v) QP—,„D«„(v)= 1,

P«vB(v)+ (v %«v+$'S)D«u(v) = 0.

These equations are simply solved:

D,„(v)= [P,„/(v (u,„+i—rl) jB(v) (12)

(2)
and

H =H p+Hg

We enumerate all lattice modes by the labels q and p, ,
where q is the wave vector of the phonon and p, the par-
ticular branch to which it belongs. If the crystal con-
tains E primitive cells and zo atoms per primitive cell
there are 3zpX phonon modes. Thus the label p, indicates
whether the phonons are longitudinal or transverse,
optical or acoustical. We assume that the Hamiltonian
can be decomposed into a diagonal and a nondiagonal
part

in the representation given by Eq. (1). We will have B(u) = v —«+ig
q& v Mql, +tg

(13)

H«IN) = «I I), Hp
I qp) =«0,„Iqp),

Hrll&=Z P,.le)

Hoyle

&=P*«.l««&

(3) In the limit in which X approaches infinity, the summa-
tion over q can be replaced by an integral. We define

H~ is the electron-phonon interaction in the concrete
example that we analyze later.

Thus H is represented by a (3zp1V+1)X(3zpN+1)
matrix whose diagonal components are e and ~,„for all

qp. The nondiagonal matrix elements are (qpt I
H q I u&

=p,„, (««IH&l qp&= p~, „while all other matrix elements
vanish.

The rate at which photons of energy v are absorbed is
proportional to

P(v)=2z g l(NI7)l'h(v —Eg),
(4)

where the
I X& are the exact eigenstates of H with eigen-

values Eq. Using the well-known relation

b(v —E),) = —(1/s) Im(v E)+iq—)
where g is a positive infinitesimal, we have

P(v)= —2 Im g (Nl X)(v—I'.„+irl) '(ll ««&

0
p(~) I p(~) I

'= 2
(2z) '

ds fp« I'

Iv~, „l
' (14)

I
Ip(~)l'p(~)d~

B(v) = 'iv «(P

+«I g+s'I p(v) I
'p(v) j . (15)

Thus, for v such that P(v)&0,

where 0 is the volume of the crystal and the integral
over dS„ is to be taken over the surface in q space for
which coq„=co. It might appear at first sight that
p(««) I p(««)

I

' is proportional to the volume of the crystal.
However, we shall see that Pq„ is proportional to 0 '~'

so that
I
p(ru) I

'p(««) is independent of 0; p(««) is the den-
sity of phonon states of energy ««. The quantity I p(co) I

'
is thus the average of Ip,„l' over all phonon modes
having energy««. We can now rewrite Eq. (13) asfollows:

= —2 Im(N
I (v H+i y)

'
I
I)— —

(6)
P(v) =2~

I p(v) I
'p(v)

'A simpler model for this broadening was developed concur-
rently with the present work by Harris and Prohofsky, Phys. Rev.
170, 749 (1968). In their model, the transition is coupled to only
one phonon mode, which in turn is mixed with all other phonon
modes by a constant matrix element. This model also gives a line
broadening with structure. Since the model corresponds to a par-
ticular and rather unrealistic specialization of the model presented
here, the structure should not be considered so comparable with
experiment. The Harris and Prohofsky model is discussed in some
detail in Appendix A. Some necessary mathematical results are
derived in Appendix B.

Ip(~)I'p(~)d - '
+L~ I p(v) I

'p(v) j'
(16)

Here 6' before an integral signifies that the principal
value of the integral is to be taken.
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B. Incj.usion of the Natural Width

We have a.ssumed that the only states to which Iu)
is connected by the Hamiltonian are the states Iqu&.
To include the natural width, we must also allow

I u) to
decay to states with the impurity in its ground state and
a photon p present, states which we denote by I p). If
v„=c

I p I
is the energy of such a photon, the Hamiltonian

has the following structure:

&pl+Ip&=v, &ul BI u&= e &qzz[H[qu&=~

(qu[H lu&= p„, &p[II lu&=y„.
(17)

Notice that we have not specified the photon polariza-
tions explicitly but they are to be considered as implicit
in all sums over p. Equation (8) must now be replaced by

l&,&=K A.(v) I p&+B(v) lu&+2 D,.(v) lqu&. (18)

The system of Eqs. (10) and (11) is now enlarged to

states of the donor electron are of the form F,(r) p, (r),
where

v, (r) = exp(ik, "r)u, (r) (25)

is the Bloch function for a conduction electron at k; in
the FBZ and F,(r) is an envelope function satisfying the
equation

(E,( i V) —e'/d'or—)F,(r) =EF,(r) . (26)

Here Kp is the static dielectric constant of Si and E,(k)
is the energy eigenvalue of a conduction electron near
the minimum at k, . If we take the minimum at (0,0,k,),
we have

E(k) = (k '+k„')/2m, + (k, ko—)'/2m(, (27)

for values of k in the vicinity of k3. The Cartesian axes
are parallel to the cubic axes of the crystal. The longi-
tudinal and transverse effective masses are m~ ——0.98
and m&=0. 19 in units of the free-electron mass. ' Using
the trial wave function'

(v vv+—ig)A, (v) yvB—(v) =0, (19)
F&"(r) = (ao'k) '' e-xp( $(x'+y'—)/a'+z'&O'J' '), (28)

—P yv'A „(v)+(v —e+zg)B(v)

and

P,„B&v)—+(v (oq„+in—)D,„(v)=0 (21)

From Eq. (19)

A„(v)= Pyv/(v vv+irl)—5B(v),

so that Eq. (20) becomes

(v —e+ig)B(v) QP*qv(v—)Dq„(v) = 1,

(22)

(23)

where
le. l'

=a+6'2 —z~ Z I v. l'~(v —")
P V Vp p

(24)

is an effective complex energy for the excited state.
Thus the natural width is included in our original cal-
culation if, in Eq. (15), we replace e by e, the energy of

I
u) when the real and imaginary parts of the self-energy

due to interaction with the electromagnetic field are
included.

C. Electron-Phonon Interaction

We now turn to the calculation of P,„for the particu-
lar problem that we have in mind. We consider a donor
impurity in Si. Let k, (j=& 1, &2, &3) be the positions
in h space where the minima of the conduction band of
Si occur. These minima are located atk~z ——(~ko, 0, 0),
kyz= (0 &ko 0) and kyz= (0 0 &ko), where ko is 0.82
of the wave number from the center of the fundamental
Brillouin zone (FBZ) to its boundary along the I 1001
direction. Within the framework of the effective mass
approximation, ' the wave functions for the stationary

a minimum of the expectation value of the Hamiltonian
in Eq. (26) is obtained by setting a=25&&10 z cm and
b = 14.2&10 ' cm. We mention this fact only to remind
the reader that, despite the large anisotropy of the e8ec-
tive masses, a and b differ by much less. From now on
we shall take a= b in order to simplify our calculations.
We also remind the reader that the ground state is six-
fold degenerate within the framework of the effective
mass approximation. However, this degeneracy is split
by the crystal potential into a single A&, a doublet E,
and a triplet T&. The symmetry-adapted wave functions
corresponding to these states can be found in Ref. 2.
In this paper we shall only need the state 1s(Az) given
by

q' ( )= (1/V 6)Z F "'( ) ( ) (29)

The excited states are also degenerate and are, in
principle, split by the crystal potential. However, since
these wave functions extend over many lattice constants
their energy is not substantially altered by the central
core potential and can then be regarded as degenerate.
This is indeed supported by experiments. The excited
state 2po will be taken to be

F""(r) = Lz/4a'(2s. a)'"] exp( —r/2a), (30)

where we have already set a= b as before.
We must now consider the matrix elements of the

electron-phonon interaction involving transitions be-
tween the ground state 1s(A z) to a state 2po with absorp-
tion of a phonon.

Let n be the lattice points and y be the vectors from
the origin of a primitive cell to the diferent atoms in the

~ R. N. Dexter, B. I ax, A. F. Kip, and G. Dresselhaus, Phys.
Rev. 96, 1222 (1954); G. Dresselhaus, A. F. Kip, and C. Kittel,
zest. 98, 3m {1955).' J. M. I uttinger and W. Kohn, Phys. Rev. 98, 915 (1955); C.
Kittel and A. H. Mitchell, i'. 96, 1488 {1954).



178 RESONANT PHONON I NTERACTIONS 1255

cell. For Si n is the set of translation vectors of a face-
centered-cubic lattice and y= (0,0,0) or al. (4z, z, x4), where
cL, is the lattice constant. The equilibrium positions of
the atoms are n+y while their actual positions will be
designated by R p n+g+U p The vectors U p are
simply the displacements of the atoms from their
equilibrium positions.

The Hamiltonian of the crystal with one electron in
the conduction band is

H=P'/2m+ V(r, {n+t&+n„p})+Qco,„&zz,„a,„

matrix element is

(I, ( Hz ( &L&z) =g(2hpQa&, „)-'&z
n, p

We now let

g e„„C,(r n—) ='U, „(r—n). (37)

Then

Xe'z'e„„+&'»&'(r)C, (r —n)%' 0(r)dr .(36)

H +P n ~ (i&P/itu )& & (31) (I'IHz le )=Z(»&1o~-) z&"'z'

where

Ho= P'/2m+ U(r, {n+y})+Q ru, „&zz,„a,„. (32)
XP dr F;&'""(r)q;*(r)'U,„(r—n)F, &'&(r) &&:,(r).

Here &zz, „(&z,„) is a creation (destruction) operator of
a phonon in state qzz and 1' (r,{n+f&+u„,})is the poten-
tial energy of an electron in the deformed lattice. In the
second line of Eq. (31) we have expanded this potential
and neglected terms containing the displacements u„p
to orders higher than the first.

We notice that (81'/Bu, ) &,„,& o is a function of the
position vector r of the electron. It is easy to convince
oneself from symmetry considerations that

Now F;"»&(r) and F, "&(r) vary slowly with r as com-
pared with 'U, „(r—n) because the latter is significantly
different from zero in the vicinity of r—n=0 while the
former wave functions extend over many primitive cells.
Thus we write

(I;(Hz(qzz)=(12hoM )
—z&zg P F &z»&'(n)F;& &(n)

Xexp(i(k; —k&+q) n] dr &lz;*(r)'U,„(r)rp, (r) . (38)

(BU/Bu. ,) &„„,& &&

——C, (r —n) (33) Here we have used

H, =Q u„, C, (r—n). (34)

The displacement u„p can be expanded in terms of
creation and destruction operators for phonons as
follows:

depends on r—n only. Also, it is clear that C, (r—n) is
significantly different from zero only if r is in the vicinity
of n. This is because —C, (r—n) is the force acting on the
atom at ny due to an electron at r, or equivalently the
negative of the force on an electron at r due to the atom
at ny. Thus the electron-phonon interaction can be
written as

dr &p;*(r)'U,„(r n) &(zr—) = expLz(k, —k~) n]

X dr q;*(r)'U,„(r)y, (r),

which follows from Bloch's theorem. We can now rewrite
Eq. (38) in the form

(I;~ Hz
~ q&&z)

= (12600co,„) '"P dr &&&,*(r)U,„(r)«z, (r)

XP F;&'»&'(n)F, "&(n) exp(iQ;, 'n), (39)

where
u„,=P e„„(2bo&e,„) z "(&z,„+&zz,„) exp(zq n), (35) Q;, =k,—k;+q. (40)

where epqy is a unit polarization vector, 80 the mass den-
sity of the crystal, 0 its volume, q the wave vector of
the phonon, zz its polarization and character (i.e.,
acoustic or optical), and &0,„the frequency of that mode.

Since the six 2po states are degenerate we consider
transitions from

~
qzz)=

~
1s(Az); qzz) Dn which the elec-

tron is in state (29) and there is one phonon present in
the state qzz] to

~
zz;)=

~ 2po,i & 0) Lwhere the electron is
in F;&z»&(r) «,(r) and there is no phonon present]. The

We can approximate the sum over n in Eq. (39) as
follows:

P F .&»& '(n)F, &o&(n)s&o ~

=00—' dr F;&'»&'(r)F, &'&(r)e'o'

where 00 is the volume of the primitive cell. The integral
can be estimated using Eqs. (28) and (30), where, in the
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former, we set c=b. Ke find that are the imaginary and real parts of the self-energy
function

Q p, (&n«.)«(n)p. (0)(n)e«Q &

where

6v2iQ

(tsar (Q2+«2)3
cos(Q, k;), (41) &e(r)+kiF'e(r) =2

V COqls ZQ

(4g)

«= 3(2(t, (42)

and cos((},k~) is the cosine of the angle formed by the
vectors Q and k„. We see from Eqs. (41) and (40) that
the selection rule k;—k;+q=0 for the matrix elements,
which one would expect from the naive consideration
that a donor electron, because of its extended wave func-
tion, behaves approximately like a Bloch function, is
not correct. In fact we can write for transitions to
I u;) =

I 2po,i; 0) the following matrix element:

p()„=(u, IH)Iqt() =Q A;, ())' cos(Q;, ,k;), (43)
(«'+Q ')'

where

A;,'~ = i(6/—b,Q ))t'(o'0, )-)

X dr (o;(r)V()„(r)(o, (r) . (44)

D. Calculating the Self-Energy Function

We return now to a detailed consideration of the
actual line shape. According to Eq. (16),

where

F'o(~)
P(v) =

(~—e—&e(r) ) '+ h 1'O(r) )'
(45)

Thus, when the selection rule k,—k,+q=o is strictly
satisied, P,„=O. For Q,, small, P,„W0, but because P,„
decreases very rapidly when Q;,o) 1 it is appreciably
different from zero only for smail values of I (},, I

. Thus,
in a sense, the selection rule mentioned above is not
entirely inaccurate.

According to Lax and Hopfield, "transitions between
one valley and the opposite one (k)) —+ k 3) occur only
with a longitudinal acoustic phonon (LA) of symmetry
6&. Transitions between adjacent valleys occur either
with a LA phonon or a TO phonon of symmetry Z&.

Because of energy considerations the last case is the
only one of ultimate interest to us. This explains why
the 2po line is anomalously broad while 2p+ is not, as
mentioned in the introduction.

A;,'"A;,""'Q,,Q;, cos(Q...k,) cos(Q;;,k,)
(5o)

JP («s+,Q . .2) s(«2+ Q. , 2) 3

Terms in the sum for which j/ j will be negligible be-
cause at least one of Q;, and Q;, will be large. Thus

I
A,p«I 'Q, ,' cos'((}...k,)

I
p-I'=2

(«&+Q "2)()

In evaluating

F e(")= 2)r 2 I P()) I
b("

(51)

(52)

the contributions from k;, =O,k;, along L101j, L011j,
L101j, I 011j and k,, along L1001 will occur at well-
separated energies, so we can compute them one at a
time.

Now the dependence of
I A;,'" I

' on q is not known, in
general. For some branches, it vanishes for q along
certain symmetry directions. We shall neglect any
branch and pair of valleys for which A,;~'j&=0. If

I A;,"'("
I
'8 0 we may expand in Q;, . The dominant term

in Fe(v) will come from IA;,"~"I', and we ignore
corrections.

Also, we shall only be interested in modes for which
V~ 6.

Let us then discuss the three di6erent cases in turn.
Case I. k;, =0 (j =i) For the. t(th band we must

evaluate an integral of the form

tVe haec neglected the natural lime mndth, which zoe assume
to be small compared with all oalues of Fo(v) of interest

Of fundamental interest, we see, is the line-width
function I'()(v). This function has contributions from
decay processes via phonons connecting all pairs of con-
duction band valleys. The dominant contributions to
Fe(v) will be from phonons having q's for which

(};,(q) = q —k,,—=q —(k;—k, ) (49)

is small and q may be outside the fundamental Brillouin
zone. In this latter case the phonon frequency uq„ is
defined by periodically extending cuq„ from the FBZ.

Using Eqs. (43) and (44) we must calculate

21'e(r) =~K
I p..I'~(~ ~-)—(46) l.("(r)= dQ b(r —~,.),

(«'+Q')'

1 Fe(e')
Ze(v) = (P de

21t V—6

where we have taken the s axis in the k; direction. If
(4p) r=e, we must consider only optical modes for which we

shall assume eoq„ to have the form

"M. I.ax and J. J. Hop6eld, Phys. Rev. 124, 115 {1961). (o««=(oq o, « ~«Q (54)
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Let us call the frequency of the phonon g;;,„for this case
GO&, ll ~

We find then that
&. l =q-o. l ~ (55)

3/2

I„&'&(v)= 22rM-„"2 lf V (GPj, ls

(MvK +&62 v)

if v) &62,„. (56)

Also, in the neighborhood of k;, , we can expand coque.

~„=~2;,.+Q;, (&7~,„),-k,,+ . . (5'1)

We call the resonant frequency of case II
C02, p,

= (d l;;,ls .

Furthermore, by symmetry, we can see from Fig. 1 that
(V&62„)k,, is along k;, . Let

V(oq. l $2, t u3 ~ (59)

Case II. k;, along I 101), L011], L101), L011] (i.e. ,jr+i). It is obvious that the contributions from these
four directions are the same. We consider k; along L0017,
k, along L010) so that k,—k, is along L011).

We see from Fig. 1 that k;, lies outside the fundamen-
tal Srillouin zone, because X&4, where the valleys lie
at 1&k (X=0.82) and k,„ is the distance to the zone
boundary in the L100] direction. In fact, it lies on the
square face of the zone boundary between the primitive
cells in k space centered at (1,1,1) and (—1, 1, 1) in k
space. We take k;, as a polar axis and introduce three
unit vectors u~, u2, and u3 in this coordinate system, as
shown in Fig. 2. Then we have

Q —Q cos8ll2+Q sin8(cosign&+ sin&ou2),

z= (V 2)(n&+u2)

Q, = Q i=Q(cos8+sin8 cosy)/Q2.

FIG. 1. Two cells in k space showing that, in case II,
k;; lies outside the fundamental Brillouin zone.

Now we can take the polar axis along L001) so that

Q' cos'(Q, i) =Q' cos'8.

If we make the linear expansion of coq„,

&dqv=&o26 Sk, vQ,
C—OS8,

then we Gnd that

(62)

7l $3 Il V Ct)3, P
1„&6&(v)= ~ (63)

I (v —~2,.)2+(».")')'
This is in error when

(v )&62&—(2s2„«)2(&&/&1;,)

(we assume &&/&1,,((1) because of the inadequacy of Eq.
(62). The form of I„"'(v) is more accurately determined
near &6„ if we replace Eq. (62) by

where s2,„can be &&0.

Then we must evaluate ~,.=~ ..—22..(l a I

—
I q, I)

Then, when v~ A&3,„, we obtain

(64)

I„&'&(v)= dQ COS (Q,k) 8(v —
&L&6„)

(&&2+Q2) 6

(sin8 cosy+ cos8)'
dQ2Q2

(&&2+Q2) 6

X 8(v —&62,„—QS2, „COS8) . (60)
We obtain

I„&"()=( I, ,„I'/120)I (,„g,,) (..„,) ] ', (65)

which is small but not zero.

Is, „I' 9(v —
&62 )2+s.,„-'«'

I„&' (v) =
L(v —~ )'+(s2,.~)']'

(61) k&= [0,0,26]

Case III. k;, along j001]. We note again that k;, is
not in the FBZ. This time it is within one of the neigh-
boring primitive cells in k space, and is equivalent to
k,,=2(1—l&)k z in the FBZ.

-k&=[0,26,0]

FrG. 2. Coordinate system u1, u~, ue to describe Qg in case II.
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In the three cases we observe that Fs(v) has a local
minimum at ~&,„, a&2,„,or coa,„, respectively, and goes to
zero again rapidly away from the minimum. In the first
case rs(v) is zero for all v& "t,„as well. In the second
and third cases, Fs(v) is an even function about this
central minimum. We now turn to a qualitative discus-
sion of the expected absorption line shape to be observed
if ~ is near one of these three frequencies.

by

so that

(r(x) = 6—'
g(x')

dx
g—gI

(72)

(73)

In case I, because Fs(rat, „)=0, we take ~s to be some
frequency &cot,„.In case III, Fs(a&s,„)=0 unless we use

Z. Qualitative Discussion

r,(.)
~(v) =

Lv —e—Zs(v))'+Lgrs(v))'
(66)

where

We wish to discuss the energy dependence of P(v) as
given by

Fp( )=2 Z IP..I'~( —,.)= 2 IP( )I'p( ) (67)

and
1

gs(v) =—5'
2'

re(e')
de

V—6
(68)

(69)5= 6—Cdp.

To put this dependence into its most explicit form, we
express Fs(v) in terms of a function g(x) centered at the
origin and having unit peak height and unit half-width:

so that
g(x) = r, (~.+xs)/r. , (70)

r,(.)= regL(v —&oo)/8). (71)

Then g(0) =1 and g(1) =sr.
SimBarly, the real part of the self-energy function

&s(v) can be expressed in terms of a function o(x) defined

and we have neglected the natural linewidth F„(and,
of course, q). We assume Fs(v) to be localized around
some frequency cop, to have a value Fp at +p, and a half-
width 8 defined in some reasonable way Dike rs(cos+b)
=ere).

The exact character of the absorption curve, for a
given form of Fs(v), depends on three parameters: Fs,
8, and 2P

,Is~ t l t . '"I I t

8=
I000
l.5

2/-QJp

5,0 I348

I

I

I
:I.I

I

I

I I

I.p

000
.5
75
p5

y(x)

-I0
o

(b)

I.O 2,0

FIG. 3. Graphs of the functions g(x) and cr(x).

Fzo. 4. Absorption line shape for various values of 5 when in
resonance p 0, Fig. 4(a)j and off resonance (a=0.S, Fig. 4(b)].
Energy units, I o=1.
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Fro. 5. Absorption line shape for
various distances from resonance,
4= e—coo, when the effective width of
the phonon continuum is small
Pb =0.25, Fig. 5{a)j, moderate Pb
=0.75, Fig. 5{b)j, and large f8 =2.25,
Fig. 5{c)j. Energy units, Fo=1. Note
added in proof. The ordinates on Fig. 5
should read 1.00, 2.00, ~ ~, 5.00 in-
stead of 100, 200, ~ ~, 500.

-PO -IO 0 I,O 2.0

0

I ~ ~

3.0

the more accurate form implied by (64). g(x) is an even the particular form of g(x), 0 (x) is not only odd but also
function about x=0, whichever form we use. In case ~'(0) =0. For this case g(x) and 0(x) are shown in Fig. 3.
II, we take coo=co2, „and g(x) is again even. Because of We can now expressP(v) in terms of thefunctionsg(x)
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and o(x):

g(x)
P(v) =— (74)

Fp K(2~/Fp)(x —~/~) —a(x)]'+Lg(x)]'I
where

x= (v ca p—)/ "o (75)

Although there are three independent parameters all
having the dimensions of energy, variations of these
parameters for which Fp/8 and 5/8 remain constant
produce changes in P(v) that amount only to scale
changes of I' and v. In the calculations displayed in
Figs. 4 and 5, we have fixed Fo and varied independently
8 (or 8/F p) and 6 Lor (6/8)/(Fp/b)].

As an aid in discussing the qualitative behavior of
P(v) for arbitrary g(x), we should recall from Eq. (4)
Lor its analog in terms of the exact eigenstates of (17),
in the event the natural width of

~ I) is included] that

P(v)dv=2vr P ~(N(X) ('=2 . (76)

Thus, whatever the function g(x) and the values of the
parameters 6, Fp, and h, the total area under P(v) is
just 2m.

From the form (73), the qualitative behavior of P(v)
can now be discussed for various values of 6, Fi), and 8.
We restrict our discussion to case II.

Characteristics o& case II. The line shape P(v) for
case II is plotted for diferent values of b and 6 in Figs.
4 and 5. Before considering limiting cases and detailed
behavior, we can make some general remarks about
these line shapes.

(a) If 6=0, the line is symmetric; otherwise, it is
not and the bigger peak occurs at a higher (lower) en-
ergy when p is greater (less) than cop.

(b) If Fe(v) is a slowly varying function near p, be-
cause either 8 or b, is large, then P(v) will be close to a
Lorentzian line of width Fe(p).

(c) In general, the line is neither symmetric nor
Lorentzian. It can have one or two prominent peaks and
possibly a third one if Fe(v) has a sufKciently pronounced
minimum at coo.

In order to understand the dependence of line shape
on 8 and 5, we have calculated P(v) for many points on
the "8—d plane, " especially along the lines 6=0 and
0.5 and 8=0.25, 0.75, and 1.25 as shown schematically

in Fig. 6. It is useful first to comment on the various

limiting cases and then to make more detailed
observations.

8 —+ pp. As seen in Figs. 4(a) and 4(b) and anticipated
above, the absorption line approaches a pure Lorentzian
around e with linewidth Fo for all h. This is because the
linewidth function Fe(v) is then essentially constant
near e.

g —v 0. If AWO fFig. 4(b)], P(v) becomes an extremely

sharp line at p. If 6=0 [Fig. 4(a)], P(v) becomes two

very sharp lines at p&$(1/2z) J'Fe(p)dp]'" which stay
apart if Fob is held constant but which merge if Fo is

held constant. This special case, with Fob=const, was
treated by Sander. "The electronic state

~
I) forces dis-

crete states to split o6 both above and below the cluster
of continuum states around coo, each being composed
about 50%%uo of ~N).

6~ pa LFigs. 5(a)—5(c)].When d is sufliciently large
that the absorption line near e and the width function

Fe(v) have well-separated peaks, then Fjp(v) is essentially
constant in the neighborhood of ~, whatever the size of
b. The absorption line near e is a Lorentizan with a width

Fe(p). The line is centered about an energy p —Ze(p),
i.e., it is displaced slightly from e in a direction away
from ppp by the small self-energy function Z&(p). There
will also be a very small (and possibly broad) absorption
peak around a» essentially proportional to Fe(p). This
"peak" will have a height nF p/6', a half-width b, and
so an area Fpi/6', which is assumed to be very small.

6 =0 LFig. 4(a)]. The line in this case is symmetric.
For small 8, in addition to the two peaks mentioned
above (as 8 ~ 0), there is also a small central peak aris-

ing from the central minimum in Fe(v). In order that
J'Fe(p)de remain constant, Fp must tend to ~ if h ~ 0.
But the central peak height is proportional to 1/Fp, so
in this limit it disappears. As 8 increases, the central
peak remains while the big side peaks move out, are
broadened, and become smaller. Finally the side peaks
disappear, leaving only a central Lorentzian.

If 6 is small but different from zero LFig. 4(b)], then,
for small 8, the three peaks seen for 6=0 are still present
although the one nearest to e is larger and the others are
smaller. As b increases, the side peaks decrease in magni-
tude the central peak increases and merges with the
dominant side peak. Eventually only this central peak
remains, becoming a Lorentzian centered at e.

We also observe that, even for large 6, if 5 is large
enough there is never more than one noticeable peak,
whatever the value of d, , although the shape may be far
from Lorentzian.

0 .85

FlG. 4b

FIG.4O
f.2S S

FIG. 6. Schematic diagram
shoveling the ranges of b and 6
in Figs. 4(a) and 4(b) and
5(a)-5(c).
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P* 0
P Qp Xg*

H= 0 Xy Qg

.0 XN 0

0

0

QN

(A1)

in the representation ~N), ~ko), , ~kN&. The trivial
generalization has been to let X„depend on n. We note
that X.=0(X-'~').

It is immediately clear that this model is equivalent
to a special case of that described by Eq. (3) if we make
a one-to-one correspondence between the states ~qp&

and the eigenstates
~
a& of the (cV+1)X(1V+1) matrix

in the lower right corner of (A1). To see this we write

Icc&= cp olko&+ 2 co
n 1

Then, the eigenvalue equation

H ~cc&=co.~a&

is equivalent to the set of algebraic equations

(A3)
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APPENDIX A

In a recent paper, ' Harris and Prohofsky have con-
sidered a similar model in which the impurity can decay,
emitting a phonon into only one special mode which we

shall call kp, which in turn can be scattered into any
mode of a continuum k~, k2, . -. , k~. We designate the
frequency of the mode k„by Q„.Thus, neglecting natural
widths, this model, slightly generalized, is described by
the Hamiltonian

These equations are readily solved to yield

coa= Qo+ P
& GO~ Q~

while the normalization of the eigenvectors gives

(A6)

Io-ol'= I+K
a-c (co —Q )'

(Af)

Whatever the value of Qo, if the Q„(n= 1, 2, , 1V)

form a quasi-continuum, there are $-2 quasicontinuum
energies +, one lying between every consecutive pair
of Q„, Q~i. There are also two discrete energies cop and
co~ lying below the continuum and above the continuum,
respectively.

In the new represents, tion
~
oc), and {~ a&}, the Hamil-

tonian has the same form as that in Eq. (3), with

for all 0.. Thus
P.=(oI&I co&=Po.o (AS)

13 =P I+K
a-z (co —Q„)o

(A9)

( coa Qm

kQ, —Q„j
(A11)

p(Q) is the density of phonon energies at Q, and
~
X(Q)

~

'
is the average of

~
X(Q„)

~

' over all modes with energies
lying in a small neighborhood of Q. The phase shift g

is determined by inserting Eq. (A10) into the eigenvalue
equation (A6) to give

ix(Q) i'
oo —Qo —(P dQ p(Q)

Now for a 6nite box and no degeneracies, the energies
Q„are split by 0(E '). It is shown in Appendix 8 that
as E approaches in6nity, if ~ lies between Q and Q +~,
then

inc(Q)f'—+6' dQ p(Q)
a (co —Q„) GON 0

+or j lb. (co.) ~
'p(co ) cotb, (A10)

where

N

QOcpaO+ Q ~a cpaa COa'paO y

n=l

~n pep+ Qn pun =a pan ~

(A4)

(AS)

= or
~
Z(co.) ~

'p(co.) cotb. , (A12)

where now a can be replaced by Q„everywhere except
in 8 .

It is also shown in Appendix 8 that

=L p( -)~( -)j'(1+cos'~-)+O(1)
(co.—Q„)'

6 -—Qo —6'J'dQ p(Q) I ~(Q) I'I( -—Q)j'+I p( -) ll ( -) I'j'
+O(1),

I &(~-)I'
if co is m the continuum

dQp(Q)
~
g(Q) i

'(oo —Q) '+O(1), if co is discrete. (A13)
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For the case considered in Ref. 8, as E—+~,
l&(~-)I'

C~- Q—o 6—'I'dQ co(Q)ll(Q)I'/(~- —D)]'+L~c(~-)Il(~-)I']"
(A14)

Since the vectors (P,0,0, ,0) and (Po, Pc, . ,Px) are related by an orthogonal transformation, they must have
the same norm:

I
pl'=p

I p I'. That this is so is seen explicitly in the limit lc ~ 0, when

P —+ Pb(co Qp).—

Thus the model of Ref. 8 is equivalent to assuming that the electronic transition is coupled to all phonon modes
but with a coupling strength dependent only on energy and having essentially a I orentzian shape I neglecting the
energy dependence of )c(Q) and p(Q) and the line shift J'dQ pl)c I

'(co—Q) '] around an energy Do.

To complete the rederivation of the result of Ref. 8 for optical absorption under the assumption (A14), we return
to Eq. (13).To include the natural linewidth, we make the replacement

We must evaluate

1 '6~ 6—2ZFp. (A16)

Ip. l k»(~-)
. =Ipl'Z

+cv ~p(~ ) I
~ DO+ 2cTx(~ )]C+ Do QcT&(~ )](v ~ +c 7)

(A17)

where we have introduced I'q(co) =2sp(co) I Ic(co) I' and have neglected the line shift

dQ, (Q) I ~(D) I2/(, -Q).

When g ~~ we may convert the sum to an integral. The dominant contribution comes frorg cu near 00 or e. If
these are close together we may replace»(co ) by its value in this range, which we call I'z. If these regions are
also sufficiently removed from the minimum and maximum frequencies among the co, @re may also extend the
integration (which goes from co; to co ) to the entire infinite interval (—cc, ~).Then we obtain, by a simple
contour integration,

Thus
&(v)=l v —c+-'ci', —IPI'/(v —Qo+-', cl' )]-'.

» IP I
'+ I'~L(v —~o)'+4l'i']

P= —2 ImB=
I:( —)( -D)- IPI'-li, l'.]'+C( -o)li.+( -Qo)!I,]'

(A18)

(A19)

Except for a spurious factor -', F~, Harris and Prohofsky's to calculate
Eq. (3.20) agrees with (A19). When I'~ ~ 0,

p~ (A 20) a„d
L(v —o)(v —Qo) I p I ]+(|I'&) (" o)

APPENDIX B

~~(~)= Z
~-~ ar —0„

S2(co) = g
a 1(co—Q )2

(B3)

(B4)

Consider a set of coupling constants (lc„}and energies
(Q„}which are quasicontinuous functions of the integer
n as it ranges over 1, , X. We assume that as n —+ ~

as E~, where cu lies within the range of the 0„'s. If
co lies outside this range, then the sums go directly to
the integrals

X„~(1/QN)7 (n/N) (B1) I7,(x)l'
dS

[co—Q(x)]' '

Q„~ D(rc/N), (B2) and there is no problem.
Suppose or lies between 0 and 0 ~~..

co=Q +b (Q„+c—Q )=—Q +b 6
where g(x) and D(x) are continuous functions and the
ordering is so chosen that Q(x) is monotonic. We wish (B5)
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i.e., b is the fractional displacement of ao from Q

toward Q~~. Then

Sg(x) = Q
~-~ Q +~~A —Q„

Similarly, to evaluate S&(&o), we use the fact that

1
~

=~'(1+cot's b) (B10)&~ (l—b)' (sins bl

obtained from (B7) by letting a ~ b, and obtain

(k-h-)&-++ [X„(' . (36)
(Q„—Q„—s„s.)(Q.—Q.—$a.)

l~(~)l'
Sg((u) =Q

~ (Q„—Q —5 5)' (1—8 )'

When N —+~, the erst sum can be replaced by the prin-

cipal value integral

(X(x))'
(p dx

co—Q(x)

e—b = s (cots b —cotta)—- (f—a)(f—b)
(3'I)

and setting u=q, b=b„+h(m/N)—, we obtain

Si(~) ~ +
J
~(Q)[2

p(Q)dQ

+s i X(co) i 'p(&o) cots 8(cu), (38)

where p(a&) is defined by

r(~)=,
Q (x) o(g)

(39)

The second sum is rapidly converging with the dominant
contribution coming from Q„Q . When N —+~
we can replace ~X„)' by ()„(' (1/N) [X(m/N) ~'

and approximate Q„—Q by (n m)h—~ $(n m)/—N]
)&Q'(m/N), and extend the range of sununation to

(—~, ~). Using the relation

=NLsX(ru) p((u)]'L1+ cot's 8((u)], (311)

i.e., if co is in the range of Q 's, then $2(ar), but not S~(a&)

is of order X.
The assumptions (Bi) and (32) are consistent with

the interactions encountered in Appendix A if the modes
are those of a one-dimensional lattice or of just one rep-
resentation of the point group of the lattice elm im-
purity for a three-dimensional lattice, because we as-
sume that, when N —+~, percentage variations in X„
and Q„of the same order occur over the same range of n.
In general this is not true. In three dimensions, ) „can
vary appreciably when I changes by 0(N'") while, if
the labelling is chosen to make the Q 's vary mono-
tonically, Q changes appreciably only when n changes
by 0(N). This is the case, for example, if the n's refer to
different k vectors and enumerate all the k's on one sur-
face of essentially constant energy before going to the
next surface.

Ultimately these difhculties are more formal than real.
One way out is to assume that the Q„'s will divide into
many LO(N'13)] degenerate sets while the X„'s vary as n
runs through each set. If one assumes such strict de-
generacies, then one must 6rst sum over all n in each
degenerate set and then sum over the different sets. If
there are K(ro) =0(N'") modes in the set with Q„=au,
then ~&n~'~ (1/N) ~&(~) ~'&(~)y where (&(~)~' is «
average over the K(co) modes. The different sets can now
be indexed with e. Formulas (BS) and (311) are still
valid if by p(co) one now understands K(au)/Q'(x)

~
s &,~ „,

the total density of modes per unit range of co.


