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Microscopic Dielectric Function of a Model Semiconductor
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Penn s model of an isotropic semiconductor is used to calculate «(q), the diagonal part of the static micro-
scopic dielectric function. Penn s results have been extended beyond q=Ez. This region is important in
developing a quantum theory of lattice vibrations of diamond and zinc-blende crystals. Explicit results are
given for the range 0&q&4Eg.

ep ——-,'Tre„(0,0) (&.2)

is large compared to unity. This suggests that it should
be fruitful to study the diagonal part (6=6') of
e;;= e,(q+6).

In this paper we discuss e(q+6) for a model isotropic
semiconductor. The exact form of e(q+6) is known only
for a free-electron gas. To describe semiconductors in
which the static dielectric constant is much larger than
unity, Penn has proposed a simple isotropic model. '
The principal features of Penn's model have been con-
firmed for Si ' and Ge ' by calculations which have used
realistic energy bands and oscillator strengths. These
numerical calculations show that the efI'ects of anisot-
ropy and oB-diagonal matrix elements (GAG') are
indeed small, as anticipated by Penn.

In attempting to utilize Penn's results, we found it
necessary to extend his calculations to larger values of
q. Also, it appears that there are some algebraic errors
in his formulas. Even the simple model considered by
him leads to rather intricate expressions for the model
dielectric function e~(q). Since it now seems that e(q)
can have much more general significance than was anti-
cipated at the time the model was proposed, we have
reconsidered Penn's model in detail, and have obtained
consistent expressions for e/ (q) for the entire range of q.
In particular, we believe our results to be more accurate
than the results obtained by Penn from an interpolation
formula. Penn's interpolation formula has had wide
applications: It has been used to calculate screened
pseudopotential form factors4 and screened impurity
potentials. '

' D. R. Penn, Phys. Rev. 128, 2093 (1962).
~ H. Nara, J. Phys. Soc. Japan 20, 778 (1965).' H. Nara, J. Phys. Soc. Japan 20, 1097 (1965).
4 J. C. Phillips, Phys. Rev. 166, 832 (1968).' A. Morita, M. Azuma, and H. Nara, J. Phys. Soc. Japan 17,

1570 (1962).
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I. INTRODUCTION

'HE microscopic dielectric tensor e„(q+6, q+6')
describes the response of a crystal to a static elec-

tric field Fe'«+G" at wave number q+6:
D.e/&q+G) r —~ (q 6 61)P g/&g+o'& r (I I)

Here q is a reduced wave vector in the first Brillouin
zone, while 6 and 6' are reciprocal lattice vectors. It is
an empirical observation that in many covalent crystals
the static dielectric constant

In Sec. II we clarify the definition of Penn's model.
Explicit expressions for ez(q) are quite lengthy and are
given in Appendix A, hopefully free of errors. In Sec.
III a convenient method for transforming e(q) into ~(r),
a related function which exhibits the e6'ects of spatial
dispersion, is presented. In Sec. IV results for diamond,
Si, Ge, and several zinc-blende crystals are given and

applications are discussed in Sec. V.

II. MODEL

The model due to Penn replaces the actual energy
bands of a semiconductor by those of a nearly free elec-
tron gas, isotropically extended to three dimensions.
A graph of energy versus wave vector for this model is
shown in Fig. 1. There is an energy gap at what corre-
sponds to the Jones zone, i.e., an energy gap between
the occupied valence states and the unoccupied conduc-
tion states.

Such a model is described by the eigenvalues and
eigenfunctions

= ~(g„o+g~,o~t (g„o +~,0)2++ 2j~/2) (2 f)

P&
—(&ak r+&&+&sh' r)/LI+(&&k)2$&/2 (2 2)

where

n/, += 2Eg/(E/, +—E/, '),
E/, '= (I/'/2m)k', k'= k 2E/k, —

E tk)

E
g

4EF

KF

FIG. 1.Energy as a function of m ave number for nearly free electron
model, isotropically extended to three dimensions.
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4me2

e(g) =1+
2

Xk,—Ek,
I
(kyIe- 0 Ikm) I2, (2.3)

g kI kg ~kg Eky

and k is the unit vector along k. The superscripts + and
—refer to the cases k&EI and k(E:p, respectively.
The energy gap E, is treated as a parameter whose
value is adjusted to yield the experimental value for
e(g=O), viz. , the macroscopic dielectric constant. We
note here that because of the isotropy of the model,
every direction k assigns a reciprocal lattice vector of
magnitude 2Ep, directed antiparallel to k.

One can write the general expression for e(g) as

where 1Vk is the occupation number of state Ik). We
have for the matrix element between states Ik~) and

I k2)

(&+
I
e *"IA +)= 31+(~k+)'7 '"LI+(ok +)'?'/2

I"ro. 2. Possible construction of k~', where k2=kI+q. k2 has
the same reciprocal lattice vector as k1, viz. , a vector of magnitude
2E~ along —$1.

XI d'r(e 'k&'+nk, +e *k"')e '&'(e'k"+ok, +e'k&") I.

(2.4)

Carrying out the integration, one gets

(|t/„+Ie—iq IP„+)—LI+(~„+)7
—

&/2I I+(o„+)27—&/2

X (~kH-q ks+okl ok' ilk''+e, kg'

+ok,+6k,~,k, +ok,+6k, +g, k,), (2 5)
where

bk, k,
——0, kgek2
=r, k, =k, .

If one examines the limit of the four terms in Eq. (2.5)
as q tends to zero, one finds that they tend to nonzero
values. In particular, one finds that the first, second,
third, and fourth terms, in the limit q

—+0, of the
interband matrix element, tend to +2, —2, —ak /
L1+(nk—)'7, and +nk /L1+(ak )'7, respectively. We
know that in order for e(g) to have a 6nite value at g= 0,
it is necessary that the total interband matrix element
vanish at g=0 (corresponding to the orthogonality of
wave functions belonging to diBerent bands). This can
easily be achieved by grouping together the first and
second terms and the third and fourth terms in Eq.
(2.5). However, for g=O+, i.e., for g not identically
zero, the four momentum-conserving b functions in Eq.
(2.5) are manifestly incompatible. Such incompatibility
arises from the assumption that for every vector k there
exists an unique vector k'=k —2E&k.

En a real crystal there is only a discrete number of
reciprocal lattice vectors. In this spirit we shall assume
that for a given k~, k2=k~+q does not have an inde-
pendent reciprocal lattice vector. This is a reasonable
assumption when the angle between k~ and k2 is smaller
than the smallest angle between the reciprocal lattice
vectors of interest in the real crystal. In that case, the
reciprocal lattice vector G used to construct k~'= k~+6
and k2'= k2+ 6 is assumed to be the same. The meaning

of this construction is illustrated in Fig. 2. This conven-
tion enables us to group the terms in the matrix element
as described above even when q/0. This leads to the
following expression' for the matrix element which is
consistent with the requirement of orthogonality of
wave functions of different bands:

We then get the expression for e(g)

8me2 I(kIe *'&'Ik+q)I'
e(g) = 1+ Q Xk(1—Sk+,)

q2 jVk + jVk-

I( Ie-"'I(k+q)') I'
+P Nk(1 —XO,+,&.)

k )p

(2 7)

in agreement with Penn. The first term in brackets in
(2.7) corresponds to the "normal" process, and the sec-
ond term involves the reciprocal lattice vector —2E~
and describes "umklapp processes. "

In the actual computation of e(g), we have
used an approximation to the matrix elements previ-
ously suggested by Penn. It can be verified that
both (kIe '&'"Ik+q) and (kIe '&'I(k+q)') approach
2Erq. k/E, Er' as q —+ 0. In this limiting case it is a good
approximation to replace the oscillator strengths (the
square of the matrix element) by their average on the
Fermi surface. Such an averaging implicitly assumes
that for g —+ 0 the main contribution arises from transi-
tions from states lying just below the Fermi surface to
states just above it. This is clearly true for the normal

(6'le "'IA.')
1+0.k,+nk, +

LI+(~ +)27+&/2I 1+(~„+)27+&/2

+ s+ bk,+, k, (2.6)
I 1+(o„+)27+1/2LI+(o +)27+&/2
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process, and our calculations indicate that this is true
for the umklapp processes too.

Penn's approximation consists of obtaining an inter-
polation formula for the oscillator strengths between
this limiting behavior as q ~ 0 and the limiting form as
q~~, where we must get the free-electron behavior.
This leads, upon angular averaging, to an approximate
expression for the oscillator strengths

1&kle *"Ik+q)I'=1&kle "'I(k+q)') I'

s (Es/E. ) (q/K. )
(2.8)

1+x(Es/Er)'(q/Kr)'

Note that for q ~ 0 this goes to zero as q', reflecting the
orthogonality condition. This guarantees that s(q) will

show no anomalous behavior as q-+ 0.
In order to evaluate the sum in (2.7) we introduce

the following approximations for El,+:

Ea = (h'/2m)k',

Ea = (hs/2m)(1 ——'E)sKrs

Es+=(hs/2m)(1+ Ex) Ksps

Es+= (hs/2m) k',

k& (1 stE)Kr—
(1——,'E)Kr &k &Kr

(2.9)
Kr&k&(1+stE)Kp

(1+xsE)Kr&k,

(2.10)

where bj„;=2 if k lies in region i and zero otherwise, and
I3f I

' is the approximate oscillator strength as given in

where E=E,/Er. These approximations will introduce
an error in s(q) of order E,/Er.

%e next divide the Fermi sphere into several regions,
consistent with the approximations made in Eq. (2.9).
The actual geometry of these regions depends on the
value of q that we are considering. Ke illustrate this in
Fig. 3 for the case (1+sE)K&&q& (2—-',E)K&. We may
then write (2.7) as

(2.8). The approximate energy denominators E, are
given by'

Ei= (hs/2ttt)[(k+q)" —(1——,'E)'Krs7,
E2= E4= Eg,
Es Es ——(h'/—2—ttt) [(1+-,'E) 'Krs —k'7,
Es —(hs/2sts) [(k+q) s—ks7

Er (—hs/2stt) [(k+q) s—(1—tsE) sK rs7

Upon performing the various sums one gets the 6nal
expression for s(q). These are given in Appendix A. It is
noteworthy that even the simple model described
here leads to algebraic expressions of considerable
complexity.

To complete the specification of s(q) we have carried
out the calculations in two additional regions:

and

(1+tsE)Kr &q& (2 ,'E)Kp—-

(2+-,'E)Kr&q.

(2.11)

(2.12)

III. SPATIAL DIELECTRIC FUNCTION

In the discussion of V(r), the effective potential
modified by the screening eGects of valence electrons,
it is useful to introduce the concept of a spatial dielec-
tric function s(r) which is defined by the relation

e(r) =Ze/s(r)r, (3.1)

where e(r) is the screened Coulomb potential of a point
charge Ze.

The general prescription for the screened pseudopo-
tential V(r) is

The results for these regions are also given in Appendix
A. For (2.12), where q) 2K', there is no contribution
to s(q) from umklapp processes.

For large q one has
e—2((2, (2.13)

but the exact value of the left-hand side of (2.13) is still
important, e.g., for the calculations of restoring forces
for transverse lattice modes.

V(r) =
(2tr)'

Ve(q)e —'q rdsq (3.2)

E, 7
KF

4EF
V'(q) =s'(q)/s(q) (3.3)

where V'(q) is the screened form factor defined in terms
of the ion-core form factor s;(q) and the model dielectric
function s(q) by'

q

This reduces for the case of a point charge to

V'(q) = 4rrZe'/qse(q) . (3 4)
FIG. 3. Division of the Fermi surface into regions for the pur-

pose of evaluating the sum in (2.7), for the case (1+)E)(q/E p
&(2—$E). Regions 4-7 contribute to normal processes and re-
gions 1-3 to umklapp processes.

Since, in the actual calculation, we use an interpolation formula
for the oscillator strength, we take (k&+q)'= QI+q) 2Ep'
X(it&+it)/~hi+q[ instead of the construction given in Fig. 2.
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TAME I. Comparison of the parameter B~ used by us with the
main peak in optical absorptivity experiment.

e (q)

10

Element

Si
Ge

Diamond

E~ used by us
(Ry)

0.35
0.28
0.99

Main peak in
optical absorptivity

(Ry)

0.32
0.32
0.88

0.1 03 0.5 0.7 0.9 I. I

q/KF

FxG. 4. Dielectric function versus wave number for Si. The
curve labeled N is the contribution of the normal processes to
e(q) —1, and the curve U refers to the umklapp processes.

The function e(r) is then given by

1 rv(r) r

e(r) Ze (2m) ' e—*&'d'q (3 5)
q"(q)

We have computed e(r) for diamond, Si, Ge, and some
zinc-blende crystals. Instead of using the exact expres-
sion for e(q), which would make the above integration
very diScult, we have fitted a rational function to the
calculated values of e(q) and have used this function in
the Fourier transform. The details of this procedure are
shown in Appendix B. In general, the use of a rational
fitting function facilitates determination of the fitting
parameters by a least-squares procedure.

IV. NUMERICAL RESULTS

We have evaluated e(q) for Si, with results shown in
Fig. 4. In Fig. 5 we have compared our results for Si
with those obtained by Nara and those obtained by us-
ing Penn's interpolation formula. The values for the

parameter E, that were used and their agreement with
peaks observed in optical spectra' ' are shown in
Table I.

In Fig. 4 we have shown for the case of Si the separate
contributions of the normal and umklapp processes to
e(q) Lsee (2.7)j.Ft is clear that in the region q(0.4E&
the umklapp processes dominate, and beyond this value
of q the contribution of the umklapp processes drops
rapidly. For g) 2E& only the normal processes contri-
bute. The detailed form of c(q) for q(IC& is strongly
aIFected by the assumed interpolation formula (2.8)
which defines interband oscillator strengths. Thus, great
significance probably should not be attached to the
maximum in e(q) near q=0.05K», which results from
a delicate cancellation of the normal and umklapp terms
in a region where the former is quite small.

In order to study the efFects of changes in E,/Aced~

and Er/Aced~ on the results, we have calculated e(q) for
BeO, BN, ZnSe, and GaAs, all assumed to be in the
zinc-blende structure. Ke have set the lattice constants
of the first two crystals equal to that of diamond and set
the lattice constants of the last two equal to that of Ge.
(The actual lattice constants differ from the assumed
values by less than -', %.) The results for e(q) are shown

—Our Resu1t

&(q)

12

10

a(q)

I I 1 I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q/KF

0 I i I i I I I i I t I

0.1 0.3 0,5 0.7 0.9 1.1

q/KF

FIG. 5. e(q) versus q for Si. We show a comparison of our results
with those of Nara and those obtained from Penn's interpolation
formula.

FIG. 6. e(q) versus q for diamond, BeO, and BN.

~ H, R. Philipp and E. A. Taft, Phys. Rev. 120, 37 (1960).
H. R. Philipp and E. A. Taft, Phys. Rev. 113, 1002 (1959).

9 R. A. Roberts and W. C. Walker, Phys. Rev. 161, 730 (1967).
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&(q)

10

MOND

5.7

4.5

3.0

I I I I I f I I

I 2 3 4 5 6 7 8 9 IO
r (a.u)

t t s l t l i I s I

0 0,2 0.4 0.6 0.8 I 0
q/Kt. -

Fro. 7. e(q) versus q for Ge, GaAs, and ZnSe.

in Figs. 6 and 7, and those for e(r) are shown in Figs.
8—10.

To facilitate the application of the elaborate formulas
given in Appendix A, we show in Table II values of e(q)
for diamond, Si, and Ge up to q=4Ep.

V. APPLICATIONS

Ke have remarked that in spite of the apparent sim-
plicity of Penn's model, calculation of the phase-space
sums involved requires no little labor. The agreement of
the screened ion form factors (calculated using Penn's
interpolation formula) with empirical pseudopotential
form factors determined from electronic spectra" ap-
pears to be reasonable, 4 and the energy bands obtained
using these form factors agree with experiment as well
as with those obtained from the best available first-
principles calculations. The advantage of the present
approach is that it makes possible the qualitative assess-
ment of the eftect of covalent bonding energy gaps on
valence screening. Because the magnitude of the gap

Fxo. 9. e(r) versus r for diamond, BN, and BeO.

used in each case is determined from optical data, the
method should yield results closer to self-consistency
(especially in discussing the effects of chemical shifts)
than one would obtain from a superposition of free-atom
charge densities.

The present calculations make it possible to evaluate
the apparent atomic pseudopotential form factor,
V~(G&) more accurately in Si. Here G& is the magnitude
of the first reciprocal lattice vector, G~= (2~/a)(111).
Using the free-electron screening of the ion-core form
factor v;(q), Animalu and Heine" found

~-*(V)= s'(V)/~r*(V), (5.1)

~r'(V) —1=L~r(V) —171—fHR) j, (5.2)

l7—
16.0

l5

where or*(g) includes many-body corrections to the
Hartree free-electron dielectric function er(g):

'3 Atomic Radius
I I,94—

9
e(r)

Lattice Const

i (m)
I

Single
ond Length

SILICON

l3

—I0.9

5.9

I I, I . I

r (a.u. )

FIG. 8. Spatial dielectric function of Si. Note that e(r) reaches
its value at in6nity by the nearest-neighbor distance. At the
present time we do not attach any importance to the overshoot in
e(r) above e{~).

5 7
r(a. u }

I

9

' M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(1966).

FIG. 10. e(r) versus r for Ge, GaAs, and ZnSe.

"A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
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TABLE G. Calculated values for the model dielectric function e(ft)
as a function of wave number measured in units of Ey.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1
1.2
1.3
f.4
1.5
1.6
1.7
1.8
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5
3.7
3.9

Si

12.94
11.93
9.54
7.24
5.52
4.33
3.50
2.92
2.52
2.20
1.80
1.66
1.55
1.46
1.38
1.32
1.27
1.22
1.117
1.076
1.052
1.037
1.028
1.021
1.016
1.013
1.010
1.008

16.00
2 5.80
11.90
8.56
6.28
4.78
3.79
3.12
2.65
2.31
1.86
1.71
1.59
1.49
1.41
1.34
1.29
1.23
1.224
1.080
1.055
1.039
1.029
1.022
2.017
1.013
1.010
1.008

Diamond

5.70
5.86
5.08
4.19
3.44
2.87
2.44
2.13
1.90

~ ~ ~

1.49
1.41
1.34
1.28
1.24
1.20
i.f 7
1.14
1.076
1.049
1.034
1.024
1.018
1.014
1.010
1.008
1.007
1.005

where the factor fH(q) is set equal (following a sugges-
tion by Hubbard" ) to

fH(q) —1q2/(q2+It 2+It" 2) (5 3)

where IC.2= 2Ep/2r (a.u.). We propose to replace ep(q)
by ep*(q) defined in a manner analogous to (5.2):

ep (q) —1=Lep(q) —1jt 1—fH(q) j. (5.4)

In (5.4) we use for fH(q) the expression (5.3) derived for
a free-electron gas, which means that we are neglecting
the effect of bonding on the many-body corrections.

In the diamond structure, Gj=1.1E~. For a free-
electron gas of density corresponding to the density of
valence electrons in Si, eq(G2) =1.98 and ep(G2) = 1.80.
From (5.3) one has 1—fH(G2) =0.79. This gives 2&*(G2)
= 1.78 and ep~(G2) = 1.63.

The comPlete exPression for Vp(G2) includes a bond-
ing contribution' to the effective atomic form factor,

Vp (Gb) = V,*(G&)+(Sb/S,) Vb* (5.5).
Here Sb/So=2 '~2 is the ratio of bonding to atomic-
structure factors for q =G~. The Hartree value of V~
calculated from Poisson's equation Dour bonding
charges of magnitude Zb= e/2(0) per atomic volume j is

Vb = (32/32r)Zbe/a, (5.6)
where c is the lattice constant. This diGers from a value
given previously4 by a factor of 4.

"J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1964);
V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).

We now ask about the many-body corrections to
(5.6). With a well-localized (point) bonding charge, half

of the Coulomb repulsion will be cancelled by exchange
terms. t This is the meaning of (5.3) in the limit q ~~.j
We therefore get

(5 7)Vg*= ~ Vg.

Our complete formula for V„~(G2) then is

2;(G,) Sb
V„*(G2)= +—Vb*

ep~(G&) S.
(5 8)

and this can be evaluated given" 2 *(G2)= —0.180
Ry/atom. The result is

Vp*(G&)= —0.177 Ry/atom. (5.9)

Thus, we find that Vp*(G&) is essentially equal to
V ~(G2).

It is interesting to compare the value of ep(G2) = 1.80
calculated here with the value obtained by Nara, using
numerical sampling techniques. ' Nara's Fig. 3 shows
that 2(G2) = 1.5. This value, however, is not reliable, for
the following reason. Nara solved the pseudopotential
equations and calculated 2(q) from a small number of
pairs of interband transitions (1—4) ~ (5—8).As a result,
he obtained a value of 2(0) =8.9, which is smaller than
the correct value of 11.94. This was corrected by adding
more points to the sample. But, of course, the omitted
transitions (1—4) —b (9+) contribute an amount to 2(q)
which, although small, decreases rather slowly with in-

creasing q. Nara's procedure for normalizing e(q) at
small q therefore underestimates 2(q) at large q.

To obtain agreement with the empirical value of
V„*(G2) one needs a value of 2(G~) = 1.5. It so happens
that this is close to the value given by Nara and that
obtained from Penn's interpolation formula. We feel,
however, that in order to be certain that Nara's result
is more accurate than that obtained from the present
model, it would be necessary to repeat his calculation
with more attention paid to the question of convergence
at large q.

The above bond charge model together with the
microscopic dielectric function yields a basis for the
calculation of lattice vibration spectra of covalent crys-
tals. Martin has calculated phonon dispersion curves for
Si in this manner. "He finds that ep(q) for Si (shown in

Fig. 4 and Table II) yields a lattice vibration spectrum
in good agreement with experiment, after adjusting the
curvature near q= 0 to 6t the longitudinal sound veloci-
ties. The results are sensitive to the values of 2(q) at
large q, and are materially improved when our (larger)
values are used rather than Nara's (smaller) values.

It is likely that oversimpli6cations involved in a point
bond charge approximation to umklapp terms are re-
sponsible for the disagreement between the empiric~i
values of 2(q) at large q (of order G&) obtained from

'8 R. M. Martin, Phys. Rev. Letters 21, 536 (1968).
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electronic spectra Le(G5)=1.5j on the one hand and
lattice vibration spectra fe(G~) = 1.Sj on the other. To
keep proper perspective on this problem, it is perhaps
useful to note that when 5(Gq) is computed for Ge from
the semiclassical shell model, the value Dongitudinal
screening in (111)direction"$ is 2.7. Thus the present
disagreement between the two microscopic values is
about four times smaller than their disagreement with
the shell-model value.
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APPENDIX A

To simplify the problem of obtaining an expression
for e(q) we approximate Eq, E5, E5, and E7 by 85
= (h'/2m)[(k+q)' —k'+E, j. Equation (2.10) now
reads

2- —I

(q)=q+l~l —
) q+lH

3 (IIqe,)'
A 5 ——— g-'L-,'g(1—a') —g'(1+ a')+-5'g'],

4 EpEg
(A4)

A5=a51 q
' ag 5g5+5(E+g') I

kE~ E

Here, II'„'=4)me'/555 is the plasma frequency and n is

the density of electrons.
In the region 4E(g(i —4E the A; are given by

q 'I 5E(5—sE)+5gE

1—a BI 1 83 1 85
ln(1 —a)+ a ln———ln + (1+84)5—ln ——

a 85 a 84 a 84

1 83 8385
+—(1+85)' ln—+a85 ln

a Bg 848'

48e
+g(1+-,'E) ln, (A5)

EB2

Ace„' 88 BgBgp Bs
A5= —,

'
q

' —,'E+g —E ln—+ ln—. (A6)
Ep E 4q2 Bg

where
X(Ag+A5+A5+Aqq), (Al)

B384 8384
+-,'BP In ——,'(1—a') ln (A7)

Bg85 4(1—a)
8xe2 1

A;= P —qI), ;,
q2 &E;

g=q/A5, E=E,/&5, and b),„=1if k lies in the region
i and zero otherwise.

For convenience, we define the following variables:

3 (Aa&,)'
g
—5(1 a5)5

8 EpEg

Aa)„2
3

q
3 1E+ 1 E2 1'

(AS)

Bg= 2+&, 82= 2—g,
83= 1+a+ad, 84= 1—a+q,
85= 2—2a+q, 86= 2—g+4E,
87=E+2aq —q2 88=E+2q—q2

B,=E+2q+q2, 8&p——E—2q+g2,

where a= 1—4'E.
In the region g&4'E the 8; are given by

Ace„' (1+85)'
A, =$ q

' 2g+-,'ag+ —,'q' — In-', 85
Ep 2a

(1+85)' 28, EB5
+ In —-,'a(1+g) ln

2a E 485

(A2)

8/85)—558q5 ln
l q (A3)

E 3
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8584 858;—-'(E+g') In +-,'g(1+ —,'E) ln
8285 8284

8684
+55(1—a') ln, (A9)

and Ae is as given in Eq. (A6).
In the region (1+5E)E') &q&(2——,'E)E5, A&, A5,

and A5 are given by Eqs. (A7), (AS), and (A6), respec-

tively, and A3 is given by

)))Iqe '( a' —1
A.=-;l- "

l
—;E+

Erg ), 4g

8586 1—a' 8582
+-,'(1+-,'E) ln + ln

8,84 4g E

(1+-,'E)' —1+g' 8585)
+ ln

l
. (A10)

4g 858 5/
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In the region q)(2+4'E)Kr, Eq. (Ai) reduces to

g
2-

gym~a

—'
e(q)=1+-,' — 1+-,' —

i
(Ar+Arr), (A11)'E 'E)

where, once again, A;=(Salem/q')g(1/E, )bq... with g
and 8&,i as dined previously. Here A& refers to 0(k
&(1 ,'E)—K—r and Arr refers to (1 ~E)—Kr&k&Kr.
The approximate energy denominators in these two
regions are given by

E,= (k'/2m)P(k+q)' —k'7 0&k&(1——,'E)Kz

Err ——(k'/2m) P(k+ q)' K—'r(1 ,'E—)—'5

(1 ,'E)Kr—&—k&Kr.

Ke give below the resultant expression for A~+A~~.

A~~ '
A ~+A ~~

———,
' g-' —,'g+-,'qE

1 r

i(r) 2~'
(B2)

In the integrand of the above equation, instead of using
the exact expression for ez(q), as given in Appendix A,
we use the rational function given in Eq. (81).We may
rewrite the expression for e(q) as

(q2+o2) (q2+p2)
e(q) =

q4+Aq'+8

In order to perform the integration in Eq. (B2) we re-
solve 1/Lq'e(q) j into partial fractions, and it reads

q'+Cq'+D
~(q) =

q4+Aq'+8

to the calculated values of the model dielectric function
«p(q). This determines the parameters A, B, C, and D.
We see from Eq. (3.5) that ~(r) is given by

where

where a= 1—~E.

(g+ 2a) (g—2a) )
+ag ln

I ~ (A12) and
q2 )

g+ 2a
+(2a'+sg')»- +32(1—a') —sg'j

g—2a

(g+1+a)(g+1—a) (q+1—a)(q—1+a)
)(ln 1ag ln

(g—1+a)(g —1—a) (g+1+a)(g—1—a)

1 a b c
=—+ - +

q2r(q) q2 q2+~2 q2+p2

a= 1/c(0),

u4P2+BP2 —A~2p2
b=

o2p2(o2 p2)

Aa'P' Ba' a'P4- —

o2p2(a2 p2)
APPENDIX 3

Performing the integration, we obtain
In order to obtain «(r), we fitted a rational function of

the form 1/~(r) = 1/e(0)+be «'+ce s".


