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An ab initio calculation of the low-frequency limit of the second-order optical susceptibility x&4( ) is pre-
sented for eight III-V compounds possessing the zinc-blende symmetry. In the frequency range considered
(above the lattice absorption and below the onset of real electronic transitions), the molecular model due
to Coulson, Rhdei, and Stocker can be used. The susceptibilities x(') and xj4(~) are expressed in terms of bond
polarizabilities. These last quantities are calculated, using a variational perturbation procedure. Effective-
field corrections are included in a semiempirical way. Numerical results are given for the following com-

pounds: InSb, InAs, InP, GaSb, GaAs, GaP, AlSb, and BP.They are in good agreement with the available
experimental values. For boron phosphide, for which no such data exist, our predicted value is very low,
in disagreement with the usual formulation of Miller's rule. This is discussed within the framework of a
linear correlation shown by our results to exist between Miller's reduced coeKcient and the bond dipole
moment P.

INTRODUCTION

'HE intensity of second-harmonic generation of
light is partially determined by the second-order

susceptibility tensor X,;&"& which relates the harmonic
polarization P&" to the applied macroscopic electric
field. Formal quantum mechanical expressions for this
quantity have been given for localized systems by Arm-

strong et cl.' and in the formalism of band theory by
Butcher and MacLean' and by Kelley. ' The complicated
appearance of these expressions prevents any attempt
to extract accurate numerical values from them. An
empirical rule has been proposed by Miller' which per-
mits one to estimate X;;~&'& in terms of X;;&".More re-
cently, Robinson' has investigated the foundation of
this rule and proposed approximate methods of calcu-
lation for bound systems.

For crystals with inversion symmetry, X;,I, &'& vanishes
identically. The simplest class of crystals possessing
nonzero second-order susceptibility X(" is the 43 m class
which includes the members of the important family of
III-V semiconducting compounds such as InSb and
GaAs. In this paper we attempt to calculate the ground-
state second-order susceptibility X&" for III-V com-
pounds with zinc-blende structure in the frequency
range above the lattice resonances but below the elec-
tronic transitions. This crystal class is cubic and in the
long-wavelength limit X&'& is a scalar and X(2& has only
one independent component XI4('). Then

p(t) =X„&s&hs(t) .
For the vexing question of definitions and susceptibility

~ Work supported by D86gation Go&ale k la Recherche Scien-
ti6que et Technique under Contract No. 6600171.

t Earlier and partial results have been given in previous notes:
Compt. Rend. 8266, 347 (1968); 8266, 494 (1968); B266, 810
(1968); Phys. Letters 26A, 315 (1968).' J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

~ P. N. Butcher and T. B. Maclean, Proc. Phys. Soc. (London)
81, 219 (1962).

~ P. L. Kelley, J. Phys. Chem. Solids 24, 607 (1963).
4 R. C. Miller, Appl. Phys. Letters 5, 17 (1964).
~ F. N. H. Robinson, Bell System Tech. J. 46, 913 (1967).
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notation, see Robinson. To these susceptibilities the
dominant contribution comes from the valence elec-
trons. One possible approach is to use the formalism of
band theory, but this is beset with serious computa-
tional diKculties. Moreover, in the frequency range con-
sidered there is no contribution from real transitions
and no particular domain of the Brillouin zone (BZ) is

singled out. Thus the detailed band structure has little
inQuence on the value of X(".This point has been em-

phasized by Leman and Friedel. ' Furthermore, it
should be pointed out that X('& is under generally satis-
fied conditions determined exclusively by the knowledge
of the ground-state electronic density. ' For a compound
with saturated bonds, the total antisymmetrized wave
function is not affected by the choice of one-electron
wave functions as localized orbitals or suitable linear
combinations of these. Hence we start here from a differ-
ent point of view and use the molecular model proposed
by Coulson, Redei, and Stocker' and by Gubanov and
others. ' This model is presented in Sec. I. The suscepti-
bilities are then expressed in terms of bond polarizabili-
ties derived from this model. In using such a microscopic
model one is faced with the pertinent question of the
effective field. This problem is treated in a semiempirical
way in our work. Expressions for X('& and XI4&" and dis-
cussion of the effective field are given in Sec. II. The
primary entities, the bond polarizabilities, are calculated
using a variational perturbation procedure. These cal-
culations along with the values for X&'&, XI4&'&, and the
Miller coefficient b, are given in Sec. III. In Sec. IV we
present a discussion of our results as well as a simple
but quite general model which accounts for a correlation
found between the Miller coefIicient 8 and the bond
dipole moment.

e G. Leman and J. Friedel, J. Appl. Phys. 338, 281 (1962).' See, for instance, Appendix E.
C. Coulson, L. RNei, and D. Stocker, Proc. Roy. Soc. (Lon-

don) 270A, 357 (1962); this paper in the following will be denoted
by CRS.

s (a) I. Gubanov, Fiz. Tverd. Tela 1, 203 (1959) LEnglish
transl. : Soviet Phys. —Solid State 1, 182 (1959)$; (b) I. Gubanov,
and O. Pushkarev, Fiz. Tverd. Tela 2, 1776 (1960) LEnglish transl. :
Soviet Phys. —Solid State 2, 1607 (1961)j.
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fuopp(ha)) d(A~») = -,'pr(AQ„)', (1.2)

where 0„is the valence electron plasma frequency and
0 designates an energy or frequency which lies above the
lattice frequency but below the 6rst electronic transi-
tions. In view of the previous conclusions heep can be
considered as an averaged energy over the joint density
of states. Note that the transitions near the energy gap
do not contribute appreciably to this average.

"H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963}."D.Brust, Phys. Rev. 134, A1337 (2964}.

I. OPTICAL PROPERTIES AND MOLECULAR
MODEL

The III-V semiconductors are binary compounds
formed by an element of the IIIb column and an element
of the Vb column of the periodic table. They possess in
the mean four valence electrons of the s and p type per
atom and their lattices are preferentially of tetrahedral
symmetry. In the present work we shall restrict our-
selves to the compounds with the zinc-blende structure.
This is the simplest and commonest structure with point
group symmetry 43 m and can be described as two inter-
penetrated face-centered cubic sublattices parallel
to each other, the one being displaced by a vector
R= (xi, ip, xi)u along the diagonal of the other (a is the
lattice constant). The sites of these sublattices are oc-
cupied by the two atoms III and V, respectively (see
Fig. 1).

The linear optical properties of these compounds are
described by the wave vector and frequency-dependent
complex dielectric tensor p(q, p&). In the long-wavelength
limit, this quantity behaves as a scalar and the linear
macroscopic susceptibility Xp~ ' is defined then by

p(p») = pi(co)+ ppp(c») = 1+4prxp"'((») . (1.1)

The study of this important quantity has been con-
ducted within the formalism of the band theory and the
random-phase approximation (RPA) method. Philipp
and Ehrenreich" and others, " in their extensive experi-
mental and theoretical study of the linear optical proper-
ties using sum rules derived from the Kramers-Kronig
relations, arrived at the following conclusions:

(1) There is no appreciable difference in the dielectric
properties of III-V and IV-IV semiconductors.

(2) The first spectral region extending above the lat-
tice frequency is characterized by a detailed band struc-
ture related to the real valence-to-conduction band
transitions.

(3) The structure of the absorption curve pp(p&) is
almost completely determined by the joint density of
states. "

(4) The electrons which contribute effectively in this
range are the valence electrons, four in the mean per
atom, and one can define an energy h40p which "satu-
rates" the sum rule:

krppp

FIG. 1. Zinc-blende structure.

(5) Along with harp one can deffne an effective dielec-
tric constant

2 ""pp(ip»)
p(0) = 1+— d(Api) . (13)

p Acr

The difference p(0) —p(0) is attributed to the contribu-
tions of the inner d shells and is of the order of 5% of
p(0). This shows that the virtual transitions below h~»p

are mainly responsible for the magnitude of p(0).
The first-order nonlinear response is described by the

second-order susceptibility X;;&&". In the long-wave-
length limit, this third-rank tensor quantity possesses
only one independent component denoted by X&4"' in
Voigt notation.

The previous conclusions show that in the frequency
range of interest it is mainly the valence electrons which
are responsible for the linear dielectric properties and
the nuclei and core electrons can be discarded in the
calculation of the first-order susceptibility X~ ). This
can be seen to be even more legitimate for X(".The same
arguments as before apply also for this quantity and the
role played by the joint density of states has been
stressed particularly by Chang, Ducuing, and Bloem-
bergen. "Moreover, the second-order susceptibility is
zero for a free atom possessing the inversion symmetry;
in a solid this symmetry can be removed because of the
mutual interactions with the neighbor atoms. Clearly,
the valence electrons are the ones most perturbed, and
the mechanism of the optical nonlinearities must be
sought in the dynamics of this system in interaction
with the incident radiation.

For this kind of calculation the molecular model seems
to be quite adequate. In this frequency range no real
transitions occur and the joint density of states is irrele-
vant for the calculation of the dielectric constant. This
point has been stressed by Leman and Friedel' for the
pure elemental IV-IV semiconductors. For these semi-
conductors the bond picture seems to be quite well
established. Owing to the similarity of the IV-IV and
III-V materials as far as the linear optical properties is
concerned we can assume that the validity of the bond
picture persists in the case of III-V compounds as well.

The molecular model of these compounds has been
proposed and discussed by many authors, in particular,
by Gubanov, " Gubanov and Pushkarev, ' and by
Coulson, Redei, and Stocker (CRS).' According to this

"R.K. Chang, J. Ducuing, and ¹ Bloembergen, Phys. Rev.
Letters 15, 415 (f965).
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FrG. 2. Four equivalent tetrahedral bonds in a unit cell: 8 is the
III atom and A is the U atom. The crystalline axis 111 and the
corresponding bond axis 01@are pointing from the III atom to the
V atom of the BAI bond and similarly for the other three bond
directions. This convention is the one adopted by H. C. Gatos and
M. C. Lavine, J. Electrochem. Soc. 107, 427 (1960).

model, the valence electrons, eight per unit cell, are con-
sidered as a system of separated electron pairs accommo-
dated in eGectively localized bonds between adjacent
atoms. The core electrons are assumed unaGected by the
bonding and not coupled to the valence electrons. There
are four equivalent tetrahedral bonds per unit cell and
following CRS we will use the simple linear-combina-
tion-of-atomic-orbitals-molecular-orbital (LCAO —MO)
treatment and regard each bond A-B as represented in
its ground state by two uncorrelated electrons with
opposite spins in the orbital P&+. Then the two-electron-
bond wave function of the z bond is

~(1)P(2)-o(2)P(1)
+'(1,2) =4 '"(l)|t"'(2) (1.4)

V2

where n and P are the two spin states, and the numbers
1 and 2 refer to the two electrons. By analogy with the
situation for IV—IV semiconductors, the LCAO —MO
are of the bonding type

f"'=&' '"(q~+&va), (1.5)

where ~V is the normalization constant; A and B stand
for the group-V and -III atoms, respectively; q ~ and
p& are tetrahedral sp' hybrid orbitals, oriented around
each atom in such a way that the orbitals which are
paired together to form (1.5) point directly towards each
other; and X, a parameter to be determined variationally
or by some other means, is a measure of the polarity of
the III-V bond: it is equal to unity in the case of homo-
polar IV-IV bonds.

In the model of CRS the atomic orbitals p~ and q~
are nodeless Slater-type orbitals (see Appendix A)
whose |coeKcients are determined by assuming the
electronic configuration A+B for the bond, and the
parameter I, is then determined by the usual LCAO
method. In the model of Gubanov and others, the choice

of q is quite diGerent, as described in Appendix B, and
the value of X is determined by assuming neutrality of
the bonds. Discussion of the above orbitals in terms of
ionic and covalent parts is quite diKcult and will not
be attempted here.

In the above descriptions, the bonds are assumed to
possess axial symmetry, since we have assumed only
s-p mixing. Actually the 43 m symmetry allows an ad-
mixture of sp', d, and f orbitals, and this would intro-
duce a rotational asymmetry in the bonds. Inclusion of
such eGects has not been undertaken, although the for-
mulas given below can be extended to allow for such
corrections.

In terms of the two-electron-bond function (1.4), the
total ground-state electronic distribution of the crystal
is given by the antisymmetrized function

4„.=C 'I'Q (—1) Pg 4', (2'—1, 2'), (1.6)

where M is the number of bonds and I' represents any of
the permutations of the electron coordinates; the nor-
malizing factor C is equal to (2M!)2~. We assume
throughout that"

4;(1,2)%',(1,3)dr&=0 for iW j. (1.7)

With this picture, and regarding the bonds as the
primary entities, we can express the susceptibilities of
our system in terms of bond polarizabilities.

G. OPTICAL SUSCEPTIBILITIES AND
EFFECTIVE FIELD

We now proceed to obtain expressions of X&" and
X~4&" in terms of the bond polarizabilities. First we use
these quantities to derive expressions for the micro-
scopic susceptibilities relating the medium polarization
to the eRective field. Then we consider the relation be-
tween eGective and applied macroscopic field.

Owing to the 43 m syrrimetry, all bonds are equivalent
to each other and can be obtained from one another by
successive application of the group operations. In Fig. 2
we show a group of four bonds centered around a group-
III atom and the crystalline axes EXVZ. In this
reference frame, the bonds point along the principal
diagonals iii, 111, 111,and 111.W'e also introduce the
bond axes O„xyz, where ~= 1, 2, 3, and 4. The bond axes
are oriented so that they are equivalent with respect to
the 43 m point group operations. The s axis is oriented
along the bond axis towards the group-V atom, and 0 is
the geometric midpoint of the bond. We single out one
bond and call 8' the energy of such a bond in the pres-
ence of an electric field 8 of arbitrary direction. The
polarizabilities of diGerent orders are then defined by the
following expression:

8'= H, -p a--'~ aS--', y: Sea (2.1)

"J.Parks and R. Parr, J. Chem. Phys. 28, 335 (1958).
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where 8'0 is the bond ground energy, p is the permanent
bond dipole moment, a,j is the 6rst-order bond polariza-
bility tensor, and P;j& is the second-order bond polariza-
bility tensor.

As pointed out in the Introduction, we are interested
in the response of the valence electrons to a field the fre-
quency of which is wel]. below the electronic transitions
but above the lattice resonance frequency and can be
taken equal to zero. Thus time-independent perturba-
tion theory involving only electronic wave functions can
be used to calculate the above quantities.

The tensor indices of these quantities refer to the bond
axes. It can be shown that the components of these ten-
sors satisfy the following relations:

&ij=0.'js

case. The electrons are not confined to cubic sites, and
neither are they free to move around; rather, because of
the strong overlap of the atomic functions paired to-
gether to form the bond orbitals, they are localized in
the regions between adjacent atoms. S,gg varies strongly
over this region. The complexity of its functional de-
pendence Geld prevents any a priori calculation and

compels us to resort to very drastic simplifications and
approximations. The 6rst one is that for a cubic lattice
we can write

8,f)= 8+3sI'p= f8, (2.6)

where r and f are scalars. The second is that S,g is con-
stant over the polarizable unit, in our case the bond.
Then it can be shown" that the experimentally mea-
sured macroscopic susceptibilities are

and

Pvl =P~I'=Prig=P'~y=P, 'I =Pa~*,

so that finally there exist six independent n components
and 10 independent P components. They are given in
Appendix C, where it is shown that the 6rst-order
microscopic susceptibility of the crystal is given by

16
X'"=—X—(a„+2ag),

3 6

32 f'
X14 X (P1 I 3P1)

3V3 a3

(2.7)

(2 g)

Xo& = (4/a')43(n„+a„„+n„) (2.2)

and the second-order microscopic susceptibility by

y~4(~)—
g3

8 j.
X Pars $(Pzsx+Pyry) (Ptlyv 3Pzyz) ~ (2 3)

3VS v2

In the present work we assume from now on that the
bonds possess axial symmetry. Then n =n»= n&,

P . =P„.„=P&, and P „=P»„——0. We also put a.,= a~&

and P„,=P„.The above expressions reduce then to

x&'&= (16/3)a '(n„+2a,), (2.4)

xg4"&= (32/3VS)a '(Pii —3Pi), (2.5)

respectively; a&~ and P, ~ are the longitudinal bond
polarizabilities, a& and P~ are the transverse bond
polarizabilities.

The polarizable units in a crystal, the bonding elec-
trons in our case, do not respond to the externally ap-
plied electric 6eld but rather to the effective field. This
field includes also the contributions of the induced di-
poles and is different from the macroscopic 6eld. Lorentz
considered the case of a 6ctitious cubic crystal with well-
localized and tightly bound electrons and calculated the
effective field at a cubic site emanating from the induced
parallel dipoles on the other sites. Darwin'4 in his care-
ful discussion of the local field shows that this model
applies at least qualitatively to ionic crystals. But for
metals where the electrons are free to move around and
feel a spatial average of the 6eld over the crystal one
must take S,ff=8. Neither model is applicable in our

'4 G. Darwin, Proc. Roy. Soc. (London) A146, 17 (1934).

In the case considered by Lorentz fz= &L~(0)+2j
and in the case of metals f= 1. A theoretical framework
to compute the effective 6eld has been proposed by
Adler, "but no attempt has been made until now to ap-
ply his treatment to actual crystals. Lacking any other
evidence about the effective-field value in a III-V com-
pound, we determine the factor f by requiring that the
effective-field factor is such that the value of X&" calcu-
lated by (2.7) is equal to the experimental one Xo&"=
[e(0)—11/4r. Actually, in addition to the inductive
interactions between bonds in the presence of the exter-
nal electric Geld, the factor f includes the interactions
of the bonds in their ground state as well. These last in-
terference effects between bonds cannot be taken into
account explicitly in our treatment owing to the assump-
tion of strong orthogonality (1.7) between diferent bond
orbitals.

Following Miller, 4 we also define a parameter:

(2)/(x o&) 3 (2.9)

This parameter is actually independent of effective-
6eld factors~ and depends only on the microscopic
susceptibilities.

III. BOND POLARIZABILITIES AND
RESULTS

We proceed now to the calculation of bond polariza-
bilities. These quantities describe the response of the
bond to an applied uniform electric field 8 of arbitrary
orientation with respect to the bond axis, and can be
calculated using conventional quantum-mechanical per-
turbation theory. According to the usual LCAO —MO

' N. Bloembergen, 1Voe-linear Optics (W. A. Benjamin, Inc. ,
New York, 1965)."S.L. Adler, Phys. Rev. 126, 413 {1962).
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H'= —er 8, r=(x,y,z). (3.1)

Because of the assumed rotational symmetry of the
bonds, the direction of the Ox axis is immaterial and can
be chosen for convenience such that the electric field
has the components (Bi,o,hi&). Then the wave function
P perturbed to the first order in H' is

P =P(0)+P(I) (3 2)

and the energy perturbed to the third order in H' is

where

W= Wp+ Wi+ Wp+ Wp,

wo= 9"'l&olk"'&

(3.3)

(3.4a)

(3.4b)

method we suppose that the two electrons in any given
bond are uncorrelated and equivalent. In the absence of
external fields each electron is described by an effective
one-electron Hamiltonian Ho and by a wave function
f&" of type (1.5). In the presence of a uniform electric
field the perturbation part of the one electron Hamil-
tonian is

(3.4c)

(3.4d)

w.= &~("f~'l~"'&,
wp= &0"'I(&'—8"'I&'l0"')) l0"'&

The bond polarizabilities are defined by

Wp p@ll 0 ((rligl +(rilll )
$(3P'l@l @II+Plligl I ) I (3 5)

which is the simplified form of (2.1) for the case of axial
bonds. By identification of the corresponding terms in
the two expansions (3.3) and (3.5) we obtain

„=40(a/aS„)Q &o&lzly( », (3.6a)

.=4 (~/~h. )&4"'I lf"'&, (3.6b)

P„=30((&0/(&h„p)Q &'& I2 If&i&) (3.7a)

P.= 20(~'/~h ~h.)Q ")I*II")&
+0(80/(&Is 0)&ip(i) Izlp(I)) (3 7b)

where z = z —Q &'&
I
z I f&'&) and account was taken of the

fact that there are two equivalent electrons per bond.
These expressions give a concise formulation of the usual
expressions using summation expansions. In this formu-
lation the polarizabilities are written

Iz„=40' p'
jV,

&olxl0&&plxl o&
a,=4e' p'

(3.8a)

(3.8b)

, &olzlp&&plzli&&ilzlo& l&olzlp&lp-
p„=6ep P" —&olzlo&Z

'

(E'—Ep) (E—Ep) I (E —Ep)'

2(OI x
I 0)&0 I*I~&&~ I

z
I O)+ &OI x

I 0&&0 I
3

I ~&&~ I xlO& I&olxlp&lp-
Pi=2e' Q" —&olzlo) E'

SIP (E,. E )(E. E ) (E,. Ep)0

(3.9a)

(3.9b)

The above expressions suppose that the eigenvalue
problem,

+0/ .(0) =E (0)P . (0)

is resolved. This is seldom the case in practice and even
then the summation is a hopeless task. In the present
work we have used the variational perturbation method
in the form proposed by Dalgarno and Lewis'~ and
Schwartz" and applied by Karplus and Kolker" and
O'Hare and Hurst" in the calculation of bond polariza-
bilities of diatomic molecules. A brief account of this
method is given in Appendix E. Its crucial point is that
it permits the calculation of both a and &I&& from a knowl-
edge of the exact ground-state wave function f(0) only. H'= TrH' (3.10)

Actually, as is stressed in Appendix E, one needs to
know only the ground-state electronic distribution if
spin-orbit coupling is neglected. Lacking the exact f(0)
in our case, we have to formulate the method for the
available approximate molecular orbitals of the type
(1.5). Since the orientation of the electric field is arbi-
trary we can consider the two parts B~'= —e8&x and
H/1 —e81fz of H'= BtI'+H&' as independent and use
double-variational perturbation theory. Accordingly we
have to use tw'o trial variation functions Elf and Ii~,
respectively. This can be cast in matrix form as follows.
Formally in our case we can write

'7 A. Dalgarno and J. Lewis, Proc. Roy. Soc. (London) A233,
70 (1956).

'8 C. Schwartz, Ann. Phys. (N. Y.) 6, 156 (1959).
'9 M. Karplus and J. Kolker, J. Chem. Phys. 38, 1263 (1963);

39, 2011 (1963).' J. M. O'Hare and R. P. Hurst, J. Chem. Phys. 46, 2356
{1967).

where H' is the 2X2 diagonal matrix

0 H~'
(3.11)
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We also construct the matrix functional

(3.13)F(l,m) =
0 Fg(m)

where F~ &(1) and F,(m) are the trial polynomial functions
with / and m parameters, respectively. In our case we
have used three pairs {F~~,F~} with {1,1), {3,2) and
(4,4) parameters as follows:

{1,1}parameters:

J(F)= (0 i
LF(H' —(H'))+ (H' —(H')) F

——,'LF, LF, He777~0), (3.12)

where unspeci6ed expectations ( ) hereafter refer to the
initial ground state f&'&. Here F is the class of 2&&2

diagonal matrices of the form

F(((l) 0

Compound
Lattice constant Linear macroscopic Mean gap

a susceptibility energy'
(A.) X0(&) ~o (eV)

InSb
InAs
InP
GaSb
GaAs
GaP
AlSb
BP

6.479
6.058
5.869
6.095
5.653
5.451
6.135
4.538

1.17
0.86
0.69
1.07
0.81
0.59
0.71

47

5.9
6.5

& M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
b G. Gieseche. in Semicomdlctors and Semsmetals. edited by R. K. Willard-

son and A. C. Beer {Academic Press Inc. , New York, 1966), Vol. 2, p. 63.
e Reference 10.

TABLE I. Data concerning the III-V compounds. The values of
Xo('), the linear macroscopic susceptibility, were calculated using
the value of e(0) given by Hass and Henvis, and the values of the
lattice constants were taken from Gieseche.

{3,2) parameters:

F(i(1)=)I.rHi(',

Fg(1)=arHg',

6((3)=Ki'(&1+~2rA+) erB),

F~(2)= H'(~&+fez);

(3.14a)

(3.14b)

a~ = —(8'/8$~') (TrA H' TraF), (3.17b)

Pi~= —(8'/8h~&')(TrhF TrAH' TrhF), (3.18a)

P&= —(8'/8b»'8h&)(TrhF TrhH' TrhF), (3.18b)

where

f4,4} parameters:

Ffl(4) =Ho'p x+X,rg+XgrB+X~), (3 14 )
Fl(4) = Hj. (al+perA+perB+a4s) i

or in matrix form (superscript T indicates the trans-
posed matrix):

FI{——X f11, FJ——P fJ.

2 and f&& are the l&r', 1 column matrices {X;}and ff,')
={Hu',H„'r~, H„'rB, ), respectively; p and f& are
the m&&1 column matrices {a;}and ff,")=—{H&',H, 's,
H&'r~ ), respectively; r~ and rB are the distances of
the bonding electron from the V- and III-atom, respec-
tively (see Appendix D).

This choice was guided by the requirement of sym-
metry, boundary conditions, and simplicity of calcula-
tion (see Appendix E). The parameters a, and ); were
then ixed by the requirement that the 6rst variation of
the functional J should vanish: bJ=O. This is equiva-
lent to

~H'= H' —(H')

DF= F—(F).
The effective-field factor f was calculated according to
the prescription given in Sec. II. Finally, the second-
order susceptibility X&4&') and the Miller coeKcient 8
were calculated through the formulas (2.8) and (2.9).

The results for the {1,1) parameter choice are given
in Tables I and II, while those for the {3,2) and {4,4)
parameters are given in Table III. For comparison, we
have included in both tables the experimental results.
The values of X&4&'& and b as calculated by the f3,2)- and
f4,4)-parameter choices are almost equal to each other
but diGer appreciably from the values obtained with
the {1,1)-parameter choice. All the calculations were

TABLE II. Values of x(') and 8 calculated using the {i,i)-
parameter trial function (Unsold approximation). %ith the con-
vention of the crystalline and bond axes given in Fig. 2 the cal-
culated values of X14(') and 5 are positive.

8J/M, =0 and 8J/8p =0, (3.15)

or to the two systems of linear homogeneous equations:

A;,A; = a; and B„IJ,,=b„
respectively, where

A,,=(Vf,' Vf )

a,= (2/eeae)P(f Hii) —(fi')(Ki')7 q

g„=(Vf," Vf/"), and b, = (2//e'ae)(f, "Hi').
Once these parameters were determined the polariza-

bilities were calculated by the expressions

a„=—(8'/88„')(TrAH'. TrAF), (3.17a)

Calculated

AQl 1 AQJ
Compound ieV) (eV) f

InSb 4.8 5.2 2.35
InAs 5.6 6.1 1.90
InP 5.9 6.8 1.60
GaSb 5.3 5.9 2.24
GaAs 6.3 7.0 1.87
GaP 6.9 7.9 1.52
AlSb 5.3 5.9 1.48
BP 9.2 10.7

& See Sec. IV A.
b Reference 12.
o Reference 22.
4 Reference 23.

Reference 4.

109

10'x ('& (4n-)'
(e.s.u.) (e.s.u.)

9.8 0.30
6.9 0.55
5.3 0.80
1.9 0.09
2.9 0.27
2.1 0.51
1.0 0.13
0.0 0.0

ExperImental

(18)d
18~8o

(5)e
10.6
1.06

10 XI4(2) %avelength4
(e.s.u.) ) Q)

30&15 extrapolated
20~8' 10.6
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TABLE III. Values of p( ) and b.calculated using the {3,2} and {4,4} trial functions. With the convention of the
crystalline and bond axes given in Fig. 2 the calculated values of x14(') and 8 are positive.

Compound

InSb
InAs
InP
GaSb
GaAs
GaP
AlSb
BP

1.95
1.41
1.23
1.93
1.55
1.26
1.30

{3,2} term
10'y14('&

I 10'/(4')'j5
(e.s.u.) (e.s.u.)

63
40
26
15
18
13
6~.0

2.0
3.3
3.7
0.7
1.7
2.7
0.9~.0

1.95
1.41
1.20
1.93
1.50
1.24
1.30

65
41
28
16
19
14

7~.0

2.0
3.3
3.8
0.7
1.8
2.8
1.0~0

Calculated (variational)
{4,4} term

10',.(') t 10&/(4 ) gs
f (e.s.u.) (e.s.u.)

10&X14(2)

(e.s.u.)

30+15b
20a8o

(18)d
28a8

(5)'

Experimental

Wavelength"
) (p)

extrapolated
10.6

10.6
1.06

a See Sec. IV A. b Reference 12. o Reference 22. ~ Reference 23. Reference 4.

2tg
~ —«*—&p)1(o I*le& I'=1, (3 1»)

A'

we obtain

hQ~~= (hP/2m)((zz)) —~ and j'gQ, = (hP/2np)((xP))-&

respectively, where ((s')) = ((s—(s))') and ((x'))= (x')
The polarizabilities take then the following simple

form:

=8«"»'/",
-.=8«*')& /",

24((s'»
&(s'))',

8'Cp

8« "))
«*'»('«"»+«x'&»

Gap

(3.20a)

(3.20b)

where ((s'))= ((s—(z))') and ((x's)) = (x'(s—(s)))
These expressions are identical with the ones obtained
using {1,1}-parameter trial functions. Similar results
were obtained by Robinson. ' The results were given in
Table II where also the values of hQ&1 and hQj. are in-
cluded. These two energies are almost equal, which
amounts to saying that the bonds as far as linear prop-
erties are concerned behave almost as isotropic bonds;
also pff is always greater that p~. If we put then hOff

~' A. Unsold, 43, 388 (1927).

performed after transformation to prolate spheroidal
coordinates (see Appendix D).

To gain physical insight into the above calculation we
consider more closely the (1,1)-parameter choice, and
show that this is a special case of the Unsold approxima-
tion. "According to this method, one replaces all energy
denominators (E,—Ep) in (3.8a) and (3.8b) by common
energies hOff and hQ&, respectively, which must be de-
termined by other means. Now if we perform the same
substitution into the Thomas-Khun sum rules

2tn
(~*—~p) I &0 I

z
I j& I

'=1, (3 1»)

hQJ hQp, we obtain

p(0) = 1+f(AQ„/AQp)',

f* (~p.&'
(("))—~(("*))

Xj4(') ——

2vrV3 AQp

(3.22)

(3.23)

where Qp= (4xne'/pn)'" is the valence electron plasma
frequency and n=8(4/a') is the valence electron den-
sity. Furthermore the energy hQp is almost equal to
Imp, the energy dehned by Philipp and Ehrenreich, "
and which plays the role of a mean energy gap.

No such simple interpretation can be given to the
higher-order trial functions. Yet the qualitative conclu-
sions are the same: The bonds behave as isotropic as far
as the linear response to an electric 6eld is concerned,
but in the nonlinear case P» is the dominant part,
showing that the bonds in this regime behave as longi-
tudinal unidimensional bonds.

We have attempted a calculation using the Gubanov
and Gubanov-Pushkarev wave functions (see Appendix
B). No satisfactory agreement was obtained. Perhaps
some improvement could be achieved by reconsidering
carefully the choice of parameters in these wave func-
tions. In particular the calculation showed that the
transversal polarizabilities calculated with the Gubanov
wave functions were greater by a factor of 2 than the
longitudinal polarizabilities. These latter ones were in
good agreement with those obtained by CRS wave func-
tions. The difference between transverse and longitu-
dinal polarizabilities was much less pronounced for the
values obtained with the Gubanov-Pushkarev wave
functions and shows that the r factors in front of the
exponentials play an important role.

In general X~4"' seems to be more sensitive than X("
to the choice of the ground-state wave functions.

The convergence of the variational perturbation
technique, though not completely conclusive from our
calculations, seems to be satisfactory. A calculation
with (5,6)-parameter trial functions gave only slight
changes from the (4,4)-parameter choice, and left un-
changed the trend of the results. The convergence is
more satisfactory for X('& than for X~4&'&.
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IV. DISCUSSION

A. Results Compared with Experimental Data
10,5 {e.s.u.)

(4m)3
4.0 ~ InP

Our results must be compared to experimental data
obtained when the fundamental and harmonic frequen-
cies fall within the transparency range between the lat-
tice and electronic absorption bands. This is the case for
Patel's measurements" at 10.6 p, on GaAs and InAs.
As shown by Table III, the agreement there is good,
though that obtained for GaAs must be considered as an
accident rather than really indicative of the accuracy of
the method. For other compounds no experimental re-
sults are now available in this range. Chang et al."have
studied the dispersion of X~4(2~ in InSb in the range be-
tween 2 and 2 eV. A rough estimate of the low-frequency
value of this quantity can be obtained from an extrapo-
lation of their results, the uncertainty being of order
+50%. Here also theoretical and experimental results
seem to be within a factor of 2. The agreement for GaSb
is good, but it must be noted that the experimental
values" are made very uncertain by the lack of precise
knowledge of the linear constants for this compound.
For GaP the experimental data of Miller4 at 1.06 p in-
dicate a value substantially lower than ours. '4 In the ab-
sence of either a measurement in the low-frequency
range or a systematic study of dispersion, it is ddhcult
to draw any conclusion. For other compounds no ex-
perimental data have been published at the time of this
writing.

B. Miller's Rule

According to Miller's rule, 4 the coefficient 8 de6ned by
Kq. (2.9) should be roughly the same for the eight com-
pounds considered here. In fact our values of 8 show
a remarkable correlation with the values of the bond
dipole moment p calculated with the CRS orbitals (1.5).
The values of 8 versus p are plotted in Fig. 3. It is seen
that for the seven 6rst compounds the range of varia-
tion of the calculated b is about 4. For the last com-
pound BP, 8 is smaller by nearly two orders of magni-
tude. A study of the CRS functions for BP shows that
although the centroid of the electronic charge is slightly
displaced towards the P atom the electronic distribution
is symmetrical around this point.

We can understand at least qualitatively this linear
dependence of b by using a simple classical point model
for the electronic distribution of the bonds. As it has
stated plf& p& and thus we can to a good approximation
assume that the bonds are unidimensional. Then, within

C. K. Patel, Phys. Rev. Letters 16, 613 (1966).
"N. Sloembergen, R. Chang, J. Ducuing, and P. Lallemand,

Physics of Semiconductors (Dunod Cie. , Paris, 1964), p. 121.
'4 After the present paper was sent in for publication our atten-

tion was called to the work of D. F. Nelson and E. M. Turner D.
Appl. Phys. 39, 3337 (1968)j, where an indirect measurement of
X14&') for GaP is given. This value is also still lower than Miller s
value. We thank Dr. D. F. Nelson for communicating his results
prior to publication.

3.0
~ InAs

+ ~ GaP

2.0 eInSb

GaAe

1.0 ~ +AISb
+ eGaSb

SP p (a.u.)

0.4 0.8 12 16

Fm. 3. Plot of Miller's reduced coeflicient 8 versus the bond
dipole moment, as calculated with CRS orbitals (black circles)
and Callen's effective charges (crosses), respectively. The values
of Callen's effective charges for the III-V compounds were taken
from M. Bass and B. W. Henvis, J. Phys. Chem. Solids 23,
1099 (1962).

the Unsold approximation,

6'

X&'& =Cgf-
d' AQ

(4 1)

8 Z
y(s) —Csfs

d' O'0'
(4.2)

where Cj and C2 are numerical coefBcients containing
crystal-structure factors, f is the eifective-6eld factor
and

h0= (h'/2m) ((s'))—'.
To estimate ((s')) and ((s')) we assume that the bonding
electron charges are located at the atoms as shown in
Fig. 4. We obtain then

p= 268d
q (4.3)

(4 4)

(4.5)

((z')) = 2d'(1 —c')~2d',

((s')) = —4s(1—s')ds——4eds

and finally

FIG. 4. Point-charge distri- e (~ -6)
bution for an A-B bond.

eii ~e)

~mt m wham~ m~+~~ ~

b= LD~(1 Ry)7p, (46)
where D is a numerical dimensionless coefBcient depend-
ing only on the crystal structure. The above discussion
is valid only for small values of s(s(1).This isthecase
for the III-V compounds. For higher va1ues of the di-
pole moment the ionicity of the bond increases, &~ I,
and as the electronic distribution becomes more spheri-
cal around the atoms 8 increases. In this picture the
small variation of 8 for various materials is consequence
of the small variation of p. Although this simple model
reproduces the linear variation of 8 with p it does not
give rise to a p-independent term. This can only be ob-
tained by giving up the point distribution. In Fig. 3
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we show also the points obtained when p is calculated
with the Callen's effective charges. "

It is worth noticing that a similar result can be derived
from the anharmonic-oscillator model used by Garrett
and Robinson. "Writing the equation of motion for the
oscillator as

they show that

z+0's e—s'=(e/m)8(t),

b=nw/Ã'e',

(4.&)

(4.S)

go) —Q y.(D

x&'&=+ x,&'&,

(4.10)

(4.11)

where X is the number of oscillators per unit volume.
Such an oscillator possesses a permanent dipole moment

given by
p= each/2mQ'. (4.9)

From this equation one deduces easily a relation similar

to Eq. (4.6). In view of this it seems to us more reason-

able to interpret b not as a constant, but as proportional
to an asymmetry parameter of the ground-state elec-
tronic distribution. The components of the octupole
moment of the charge distribution' are certainly the
best choice for this parameter. Nevertheless, it is seen

here that consideration of a more accessible quantity,
namely the bond dipole moment, will probably sufBce
in most cases to interpret the variation of b.

The considerations developed here for the III-U
compounds may be generalized. Thus assuming that
the valence charge distribution can be decomposed in

independent polarizable bonds

band. Lacking the exact ground-state wave functions
we used the only available sets of approximate molecular
orbitals proposed by CRS to describe the valence elec-
tron pairs. There are good reasons to believe" that at
least qualitatively the bond picture adequately describes
the optical properties of the III-V compounds. On the
other hand we cannot claim that an electron pair is well
described by a simple MO of the type (1.5) where inter-
pair and intrapair electron correlations are completely
neglected. Quantitative estimation of the relative mag-
nitude of these two contributions even for simple models
is scarce. ' The effective-Geld factor f has usually been
assumed equal to unity. In some others cases, as for the
calculation of the Szigettie' effective ionic charges, it
is taken equal to the complete Lorentz factor fz
= SLY(0)+2j. Qualitative arguments against these two
extreme cases have been given before. "Our model gives
a value for f which is substantially smaller than the
Lorentz correction but still larger than unity showing
that the localization of the bonding electron pairs can-
not be completely neglected. The influence of electron
correlation and bond interference on our results can be
considered as incorporated in the value of f Explici.t
consideration of these effects, a better choice of ground-
state wave functions, and an explicit calculation of the
Il operator are among the possible improvements.

APPENDIX A: CRS ORBITAL3

The CRS orbitals qg and q~ paired together to form
a molecular orbital (1.5) are tetrahedral sPe hybrids
constructed with Slater-type nodeless atomic orbitals.
The radial part of these orbitals, the same for s and p
states, is defined by the formula

where a Miller-type relation connects the components
of X&'& and X&'&. If a given type of bonds dominates the
linear properties, it is likely to dominate the nonlinear
ones. "Then 8 can be expressed as in Eq. (4.6), where p
must now be interpreted as the dipole moment for the
most polarizable bond.

C. Final Remarks

Jha and Bloembergenma have independently per-
formed a calculation of the second-order susceptibili-
ties. They use a method which is similar to our Unsold
approximation. The difference between their results and
ours can be attributed to a different choice of ground-
state wave functions and of energy denominators. They
also take the microscopic and macroscopic susceptibili-
ties identical.

In our work assuming effectively localized bonds, we

have used the fact that one can calculate X~4&2) from a
knowledge of the bond-charge density of a filled valence

'~ H. Callen, Phys. Rev. 76, 1394 (1949).
'I C. B.G. Garrett and F.N. H. Robinson, J.Quant. Electron.

QE-2, 328 (1966)."Note that if this is not true x&'~ wiH necessarily be small.
1 S.Jha and N. Bloembergen, Phys. Rev. 171,891 (1968}.

(2i )@i++0 5. .

R(ri) =(4R') tm -ni Ie r,&ri (A-1)-
F(2~.++1)I/2

where i stands for A or B.In each bond the p~ and q~
are directed along the bond axis towards each other and
they overlap strongly. On the other hand the overlap
between atomic sp'orbitals not paired together to form
a molecular orbital (1.5) is very small. Including the
radial part and using the notations of Appendix D below
the qg is written

(2g )ng'+05.
y"—x(4~)—i/2 r ng+ —1

F(2m'» j1)'"
Xe r"'"(1+3cosa") (A2)

and a similar form for y~.
The parameters g;, the orbital exponent, and n;*, the

effective total quantum number, were determined ac-

"L.Rei, Proc. Roy. Soc. (London) 270A, 383 (1962); 270A,
405 (1962); D. Stocker, ibid. 270A, 420 (1962)."O. Sinanoglou, Proc. Natl. Acad. Sci. U. S. 47, 1217 (1961).

3' B. Szigetti, Trans. Faraday Soc. 45, 155 (1949).
'~ M. H. Brodsky and E. Burstein, Bull. Am. Phys. Soc. ?, 214

(1962); R. Quertin and F. Stern, Phys. Rev. 134, A427 (1964).
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cording to the usual rules" and correspond, following
CRS, to tetrahedral atonis A+ and 8 . In other words
only the configuration A+B is kept. The parameter X

was then determined by CRS by applying the usual
methods of LCAO —MO. Its value was found equal to
0.68 for almost all III-V compounds with the zinc-
blende structure. CRS extended this picture to the II-VI
and I-VII compounds as well, but we believe that the
omission of other electronic con6gurations than the one
considered by these authors is too crude an approxima-
tion. As a matter of fact X~4(2& seems to be very sensitive
to the choice of the values of f'~ and fs or more pre-
cisely to the value of (f'~—f's)d. No attempt was made
to calculate this value variationally by minimizing the
energy; instead, we used the values prescribed by CRS.

r'R(r) dr =0, (B3)

which is equivalent to saying that the wave function
R(r) is orthogonal to a wave function describing a uni-
form electronic distribution inside a sphere of radius
r;. The a is determined by the normalization condition

r'R'(r) dr = 1.
0

(B4)

Finally, c is taken quite arbitrarily equal to 4 in the case
of the Gubanov orbitals.

APPENDIX B: GUBANOV AND GUBANOV-
PUSHKAREV ORBITALS

The Gubanov and Gubanov-Pushkarev orbitals q ~
and ys are also tetrahedral hybrids (sp2) with the same
angular dependence as the CRS orbitals but their radial
parts for each kind of atom are given by

R(r) g(e r/zrz $e r/rz)—- (B1)

R(r)=ar(e "" $e "")—(B2)

respectively. r, and r; are the tetrahedral covalent and
ionic radii, respectively, for the corresponding atom.
These orbitals have a node. The constants a and b are
determined in both cases as follows: b is determined by
requiring that

~ill'Iz ~ +t'l ~jm ~kn ~lmn &

(2) ~ . «' . 2t «P

g3 c
(C2)

where ~ runs over the four bonds of Fig. 2 and a;,'are
the direction cosines of the ff:-bond axes O„xyz with re-
spect to the crystalline axes K,X,V,Z. After substituting
their values in the above expressions, (C1) and (C2),
one obtains

where

X,,(» =X(»b...
&' 2"'=XI4"'I 2* 21,

(C3)

(C4)

&"&= (4//22)-;(a. .+a„„+a.,],
4 8

p.*. a(p.*-.+p...) (p—... 3p.,-),
and 8;; and e;;~ are the Kronecker and Levi-Civita
tensors.

$= (r~+r/z)/2d, 1&~]&~a1
I/= (r~ —rs)/2d, —1&g& 1

and the azimuthal angle p. It can be shown that'4

2:=d(P —1)'"(1—I/') "2 cosy,

y d(P 1)1/2(1 g2)1/2 sjny

Z= —d/I/,

dr =d2(P I/2) d)dr/d—y,

APPENDIX D: PROLATE SPHEROIDAL
COORDINATES

For our calculations it was found convenient to use
the prolate spheroidal coordinate system with foci at the
positions of the nuclei A and B. We refer to Fig. 5 for
notations where we show also the three Cartesian co-
ordinates Ax,y z„Oxyz and Bx&y&& centered at A, the
bond midpoint and B, respectively. The coordinates of
a bonding electron in this system are then

APPENDIX C: SUSCEPTIBILITIES

The independent components of the tensors n;; and
Pz/2 aI'e

n components: n„,n», n„,n „,n„„n, .
P comp nents ~ Pzzz Pyyy PzzzzPzyzzPzyzzPyzy&Pyzy Pzyz

gZS) ZSZ ~

The susceptibilities X;;&» and X;,~(2) in terms of bond
polarizabilities are given by the formulas

x,,'"=—Q a'2'/I, I'a21, (C1)
ge g"See, for instance, %. Bingel, Z. Naturforsch. 9A, 675 (1954).

/

IA
Yb

/
)s /

4 sf
A Z~ P Zb B

Xa

R= 2d

Xb

FIG. 5. Bond coordinates.

"See, for instance, H. Preuss, Irstegraltagelrl, zur Quantenchemie
Qulius Springer-Verlag, Berlin, T950).
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APPENDIX E: VARIATION-PERTURBATION
PROCEDURE (F OPERATOR)

In the Rayleigh-Schrodinger perturbation theory the
higher-order corrections are expressed in terms of in-
finite sums over intermediate states. The variation-
perturbation procedure circumvents these infinite sum-

mations by reducing the problem of summation to that
of solving an inhomogeneous differential equation; con-
veniently, this method can be presented as a conse-
quence of the conditional identity

&i I

H'
I 0&/(8,—ED) = &i I

F
I 0)

for any operator Ii satisfying the equation

LF,ao] I 0& = (H' &0 I
a'I 0&) I 0&

(E1)

and its adjoint; Ho is the unperturbed Hamiltonian with
eigenvectors Ii) and H' the perturbation. The first-
order correction

I oi) to the wave function
I 0) is given

by
loi&= (F—&o IF Io&) Io& (E3)

and the second- and third-order corrections to the en-

ergy by

w, =
&o la'F lo& —

&o la'lo&&olF lo& (E4)

and

w, = &o I (F—&o IF I
o&)(a'—&o I

a'I o&)

x(F—&o IF Io)) Io), (E5)
respectively.

Schwartz" showed that one can construct a varia-

d' 8 Bf
~'f= —(t' —f)—

(P —n')

~f (P n'—) ~'f
+—(f—~')—+

(t' —f)(l—n') ~s'-

~f ~c ~f ~g
~f.~g= (P—l)——+(l—n')——

(e' —n')-

(P—n') ~f ~g
+

(P—l)(f—~') ~~ ~~-

tional principle for F. The quantity

z= &ol&F(a' —&ola'lo&)+(H —&ola lo&)F
—

HALF, LF,Ho]])lo& (E6)

is stationary for arbitrary variations of the operator F,
provided that F satisfies an equation like (E2) and its
adjoint. Further, the extremum value of J is S'2.

We assume an unperturbed one-electron Hamiltonian

H p
———(h'/2m) V'+ V(r), (E7)

where V(r) is a scalar, and we restrict ourselves to the
ground-state state described by the wave function
P"'= (r Io). Then the equation (E2) reduces to

(A /25$)l f( )V2F+2» qy~o&]

=(H'-&ola'lo&)q& & (Es&
and the functional (E6) to

(A'/2~)&ol(»)'Io&+2&olF(a' —&ola'Io)) Io&. (E9)

The equation (ES) was derived initially by Dalgarno
and Lewis. '~ It can be written also in the form" "

~[i (r)»]=(2~/f')(H' &oI
—H'I 0&)u(r) (Elo&

where p(r) =P"'(r)f&"(r) is the ground-state electronic
density. This last equation shows that Ii is uniquely de-
termined by the ground-state electronic density when
V (r) is a scalar. To solve equation (ES) one must require
f=P "&+Ff&"to be a wave function normalized in first
order with respect to H'.

The explicit solution of (ES) is possible only for some
simple cases. For more complicated cases one must
resort to computer solutions or use the variational for-
mulation of the method and apply the Ritz-Rayleigh
procedure as suggested by Karplus and Kolker. "Ac-
cording to this method one chooses a suitable class of
trial functions f(u;) containing a certain number of pa-
rameters u; which are determined by minimizing the
functional (E9).The choice of the trial functions f(r; a~)
is restricted by symmetry conditions (the same as for
the perturbation H'), boundary conditions (f=f&'&
+go& must be a normalizable wave function), and sim-
plicity of calculations which makes the polynomial
forms most suitable. Actually this last choice is sug-
gested by the exact solutions of the simple cases.

'~ S. Prager and J.Hirschfelder, J. Chem. Phys. 39, 3289 (1963).
'6 J. Pople and P. Schofield, Phil. Mag. 2, 591 (1957).


