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Ultrasonic attenuation and electron trapping in cadmium sulfide have been studied by means of the
acoustoelectric eGect. Pulses of 30-MHz ultrasound, short compared to the sample length, generate acousto-
electric current signals with a portion corresponding to the sound pulse entirely inside the sample. This
portion should decay exponentially with a time constant proportional to the total ultrasonic attenuation,
independent of bond losses, transducer efEciencies, etc. By varying the conducitvity, the electronic and
lattice parts of the attenuation can be separated. Available CdS crystals have rather inhomogeneous spatial
impurity distributions which appear as spatial variations in the electron density. These variations distort
the exponential decay of the acoustoelectric current, forcing us to formulate a model for the nonuniformity
in order to explain the observed waveforms. This model gave good quantitative agreement with the data
on one sample. The ultrasonic attenuation due to electrons was found to be accurately described by the
theory of Hutson and White, and lattice attenuations of about 2 dB/cm were measured. Information on
trapping parameters can be obtained from the magnitude of the acoustoelectric current. One sample showed
strong evidence of trapping which could be explained by the presence of a trap 0.4 eV below the conduction
band with a density of about 4X10't' cm ~.

INTRODUCTION

HE bulk of the acoustic work done on CdS has
centered on the amplification, oscillation, and

current saturation that exist when an external electric
Geld is applied. Unfortunately, the behavior of CdS
under conditions of gain is rather complicated. ' Some
problems are inherent in the processes themselves, '
while others are due to the poor quality of presently
available crystal. s. Because alternative interpretations
are sometimes possible, the results of such experiments
may be open to question.

In this paper we report a study of ultrasonic attenua-
tion, electron trapping, and crystal impurity distribu-
tion by means of the acoustoelectric eGect in the
absence of any external electric Geld. Since the problems
of noise and acoustic saturation that plague amplifica-
tion experiments are entirely absent, and other compli-
cations enter to a much smaller degree, the interpreta-
tion of results in more straightforward and unequivocal.

In Sec. 1 we shall review brieQy the relevant theory.
The advantages of pulsed ultrasonic measurements will
be discussed, and the computational extensions neces-
sary to make full use of the method will be presented.
In Sec. 2 the experimental methods will be outlined.
In Sec. 3 a sample will be examined that behaves
roughly as we would predict, although showing signs
of spatial conductivity inhomogeneity. Section 4 will
treat the Grst-order eQ'ects of such inhomogeneity on
acoustoelectric measurements, and in Sec. 5 we shall
examine in detail a sample which is readily amenable
to this analysis and yields detailed information about
ultrasonic attenuation and trapping.

f Work supported in part by the U. S. Atomic Energy Com-
mission under Contract No. AT{11-1)-1112.

~ Present address: Lincoln Laboratory, Massachusetts Institute
of Technology, Lexington, Massachusetts 02173.' J. H. McFee Bell Laboratories Technical Memorandum
64-1352-22, 1964 unpublished).' D. L. White, J. Appl. Phys. 33, 2547 (1962).

1. BASIC THEORY

Using a general argument based on conservation of
energy and momentum between traveling ultrasonic
waves and conduction electrons, Weinreich' showed
that the local electric field produced by a sound wave4

was given by
Eam= rrsW/qrsp,

where EAg is the acoustoelectric Geld, og that part of
the ultrasonic attenuation due to conduction electrons, 5

q the electronic charge, no the conduction electron
density, and lV the energy density of the ultrasonic
wave.

Relation (1) can be expressed in terms of a current
density by multiplying by the sample's conductivity:

JAZ= ~0FAZ= ~a+'.
Here p is the electron mobility.

The above relation holds regardless of the nature of
the electron-phonon coupling. Xt does, however, assume
that all the momentum absorbed by the electrons is
removed by the acoustoelectric Geld, and therefore has
to be modified in the presence of trapping.

Acoustodynamic eR'ects in semiconductors, including
the possibility of gain resulting from the application of
an external electric Geld, were first analyzed by Wein-
reich. ' This analysis was extended by Hutson and
%hite'~ to the case of piezoelectric semiconductors
such as cadmium sulfide. The latter authors made a
number of important generalizations, such as the in-

~ G. Weinreich, Phys. Rev. 107, 317 (1957).
'The correct term for 30-MHs acoustic waves, used in our

work, is "ultrasound", but for brevity we shall use "sound. "' We consider only electron conduction since hole conduction
is negligible or absent under aH but a few special cases. See F.
Chernow, E. Courtens, M. Douma, and L. Goodman, Appl.
Phys. Letters 9, 145 (1966).' G. Weinreich, Phys. Rev. 164, 321 (1956).' A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).
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elusion of the efFect of trapping mentioned above.
Imposing the restriction that

strain«pv, / ft(e,

where v, is the velocity of sound, e the piezoelectric

constant, f the fraction of acoustically produced space
charge that is in the conduction band (i.e., not trapped),
and e the dielectric constant, they obtained the follow-

ing expression for the ultrasonic attenuation due to
electrons:

0' 1—((p/ppn) Im(f)
eg=-',E~

v, [1—( / ) 1m(f)j'+[ / +( / ) Re(f)I)
(4)

ag Re (f)g (aff+aI, ) s, (

Wp(x)CE,
gÃp pulse

(10)

Here fd is the acoustic frequency, or& the difFusion fre-
quency defined by p)z& = vP /D, where D is the electron
difFusion constant, and E' is the electromechanical
coupling constant, defined in terms of the above quan-
tities and the elastic constant c by KP= eP/pc. It should
be noted that because of finite trapping times, the
fraction f is, in general, complex.

The Hutson-%hite theory gives expressions for such
first-order quantities as the acoustically produced space
charge (n,) and the ac electric field accompanying the
sound wave (El), in terms of which the acoustoelectric
current can be calculated from

J'~E=(((it-', Re(EI*fpt,). (5)

Putting the expressions in Eq. (2) in for El and e„we
Jgg=t(agW Re(f) . (6)

This is relation (2) modified to include trapping effects.
In terms of E~E it becomes

E~E=ngW Re(f)/qnp.

Equations (2) and (6) are point relations, and in
order to express them in terms of parameters measured
in an external circuit they must be integrated over the
entire crystal. For sound traveling in the x direction,
we have for the observed open-circuit acoustoelectric
voltage

E~gdx.
crystal

If the crystal were short-circuited, the measured cur-
l ellt. Wollld be

(9)

where R, is the crystal resistance.
In this experiment a pulsed ultrasonic Geld was used,

with the pulse length always shorter than one acoustic
transit time through the crystal. If we only consider
times when the sound is entirely inside the crystal, and
further assume that fpp, f, ag, and al, (the component
of ultrasonic attenuation due to the lattice) are con-
stant throughout the crystal, we obtain

ag Re(f)
V~E(t) =

g+P pulse

where Wp(x) is the acoustic energy density at t=0.
The last integral is independent of time, so that as
long as the pulse is inside the crystal the observed
voltage should decrease exponentially with time, with
time constant

r = [(ng+al, )v,]—'.
It is the main purpose of this experiment to analyze

the acoustoelectric waveforms from the standpoint of
Eq. (11), since the exponential section of the wave-
forms provides an absolute measurement of the total
attenuation in the crystal, independent of bond losses,
transducer efficiencies, reflection and transmission co-
efBcients, etc. By varying the illumination of the
crystal, it is possible to separate nz from O.z„sinceonly
nz is s function of conductivity.

%e will be interested here only in the small-signal
regime, where the acoustoelectric voltage is merely
proportional to acoustic power. The two interesting
independent variables in this range are acoustic fre-
quency and sample conductivity. All work reported
here was done at constant frequency, using conductivity
as the variable. Conductivity is particularly powerful
as several orders of magnitude are available on each
crystal merely by varying the illumination.

A. Trapping

The presence of Re(f) in Eqs. (6) and (10) shows
that it should be possible to get some information on
electron trapping from acoustoelectric measurements.
The efFects of trapping have been studied by several
authors, ~' among them Greebe, ' who studied varia-
tions in acoustoelectric current as a function of acoustic
frequency. He considers an extension of the method of
Shockley and Read, " which treats the steady-state
lifetimes of carriers due to the presence of traps, to the
case of sinusoidal carrier density fluctuations caused by
sound waves. The efFectiveness of traps is now modified

' C. A. A. J. Greebe, Philips Res. Rept. 21, 1 (1966).' C. A. A. J. Greebe, Phys. Letters 4, 45 {1963).' E. Z. Meilikhov, Fiz. Tverd. Tela 7, 1529 (1965) LEnglish
transl. : Soviet Phys. —Solid State 7, 1228 (1965)j.

II A. R. Moore and R. W. Smith, Phys. Rev. 138, A1250 (1965).
~ P. D. Southgate and H. N. Spector, J. Appl. Phys. 36, 3728

(1965).
'g l. Uchida, T. Ishiguro, Y. Sasaki, and T. Suzuki, J. Phys.

Soc. Japan 19, 674 (1964).
'4 C. A. A. J. Greebe, Solid State Commun. 3, 227 (1965)."W. Shockley and %. T. Read, Phys. Rev. 8?, 835 (1952).
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TABLE I. Values of physical constants for CdS.

Sound velocity
(1P cm/sec)

Elastic constant
(10"N/m')

Dielectric constant

Piezoelectric constant
(C/m')

(300 K) (sec 1)

Small-signal limit
on strain

Shear coupling

vs= 1.75
1.77
1.78

c44~ = 1.487
1.505 (+0.2 j)

~» /«=9. 02 (+0.5y&)

eI~ —0.21—0.216 (+10%)

0.018
0.0184
0.0194

~ ~ ~

0.0177

0.0177

4.8X 109
6.4

5&&3.4X10 ~

Long. coupling

vI. =4.3
4.41
447

cap =9.37
9.38 (~0.2'P, )

633s/e0 ——9.53 (&0.5 jP)

e33——+0.44
+0.626 (+10yf))

0.015—0.025
0.0121
0.0248

0.018
0.0387

0.0343

2.9X 10'
3.9

S«42X10 ~

References

7
Computed from values in 16.
Measured by us {in dark).

a
16

16

16
Computed from d's in b

and c's in 16.

7
Computed from values in 16.
Computed from d's in b

and other constants in 16.
Empirical fit in 18.
From 1—E2—es/eT

using values in 16.
E' from 16.

7
Computed from values in 16,

using p, =200 cm'/V sec.

Computed from values in 16,
using p = 200 cm'/V sec.

Electron efFective mass m'=0. 2m,

a H. J. McSkimmin, T. B. Bateman, and A. R. Hutson, J. Acoust, Soc. Am. 33, 856 (1961).
& A. R. Hutson, Phys. Rev. Letters 4, 505 (1960).
o%. S. Baer and R. N. Dexter, Phys. Rev. 135, A1388 (1964).

when the period of the acoustic wave becomes com-
parable to or less than the carrier lifetime and steady-
state equilibrium cannot be reached. The generalization
leads to a dependence of f on both frequency and con-
ductivity. The approach assumes that only one im-
purity level is active in the trapping. The resulting
expression for Re(f) is"

n1Xz
Re(f) = 1+ +

(ao+N1) — &T&th(NO++1)--

n1Xp
1+ +

(eo+ni)' orVgh(SO+Si)

where no is the equilibrium carrier density, Ez the trap
density, az the trapping cross section, ~th the electron
thermal velocity, au the acoustic frequency, n& ——E,
Xexp( —E&/kT) is the density of conduction electrons
when the Fermi level lies at the trap, Ez the trap depth,
and N, = 2 (2s tn*kT/h')31'.

The only conductivity dependence here is in no, and
although the functional form is complicated, we can
see two limiting cases:

(i) High conductivity:

If niNr/(No+bi)'«1, then

1+(co/orvu, (eo+Ng) j'
Re(f) = =1.

1+La/~re, l, (no+ nz) P

(ii) Low conductivity:

If no(&n1, then

(1+Nr/ng)+ (~/arvg, n|)'
Re(f) = =const(1. (14)

(1+N r/ng)'+

(a&/(harv|,

hn g)'

In the intermediate region Re(f) decreases monotoni-
cally with decreasing conductivity.

Whereas the shape of the acoustoelectric pulses is
determined by the attenuation, their size is aGected
by trapping, and we shall And that amplitude measure-
ments will yield information on trap depths and
densities.

B. Magnitudes

Table I gives current values of the quantities that
enter our expressions. Although only work on shear
mode coupling will be reported here, the values for
longitudinal coupling are included for completeness.
Ke will use the values from Ref. 16 unless noted, as
they represent the most recent and accurate measure-
ments. Several comments can be made in the light of
this table.

Our experimental work was done at an acoustic
frequency of 30 MHz. Using the values of ~D computed
from Ref. 16, we 6nd that

(ru/con), h„,=0.0294, (co/con) ]o~=0.0048.

I6 D. Berlincourt, H. JaGe, and L. R. Shiozawa, Phys. Rev.
129, 1009 (1963).
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Thus we are perfectly justified in ignoring (te/con)'

compared to 1, and to good approximation we can
also neglect co/run compared to 1.

From the definition of f, we can see that we must
have

and hence
Ifl &1

]Re(f) ] &1, JIm(f) ] &1. (15)

Looking at Eq. (4), we see that we can drop the terms
conte. ining Im(f), and upon expanding the denominator
we can also drop the (&o Re(f)/&oo js We. are thus left
with

o 2 Re(f)o (a)'
as= —'sE' 1+ +I —

I
~

slip — Son (Salk
(16)

When to=30 MHz, the term containing Re(f) is small

compared to the other two terms. In fact, changing

Re(f) from 1 to 0 does not change the denominator by
more than 3% at any conductivity, and by much less
over most of the range. We choose to set Re(f)=1,
giving the Gnal expression for n~ ..

o 2o o' )as=-', K'—1+ +
O'UI 8'dn e cegPI

(17)

It should be noted that, while as is insensitive to f,
J~E is proportional to Re(f), and hence it cannot be
ignored there.

Equation (17) gives a bell-shaped dependence of as
on lno (solid line in Fig. 7). Fortunately, the peak of
the curve lies within our experimental range, so all
facets of the function can be examined.

A wide range of values for the electromechanical
coupling constant can be seen in Table I. This is due
in part to the e' dependence, which magnifies uncer-
tainties in the values of e."Some authors have chosen
the value of ~E' to fit the experimental data, '~" and
we are forced to take that path here. We feel that in
the light of the wide spread of values this approach is
justiGed.

Ke estimate that the largest possible eGect of colli-
sion drag on the attenuation~ ~ in the range of our
measurements is 0.015 dB/cm; this is beyond our
measurement limits.

C. Computational Extensions

The ideal exponential decay discussed above rarely
occurs in practice. Some allowance for crystal inhomo-

'7 T. Ogama and A. Kojima, Appl. Phys. Letters 8, 294 (1966}.
'g A. I. Morozov, Fiz. Tverd. Tela 7, 324 (196$} LKnglish

trsnsl. :Soviet Phys. —Solid State 7, 261 {1965)g.
'9 R. Truell, C. E. Elbaum, and A. Granato, J. Appl. Phys. 35,

1483 (1964).~ H. Kroger, Appl. Phys. Letters 4, 190 (1964}.
~'A. I. Morozov, Fiz. Tverd. Tela 7, 3070 (1965} )English

transl. : Soviet Phys, —Solid State 7, 2482 (1966)g.~ S. G. Eckstein, J. Appl. Phys. 35, 2702 (1964).IH. N. Spector, J. Appl. Phys. 34, 3628 {1963).

geneities, which badly distort acoustoelectric signals,
must be made in order to permit any type of detailed
analysis. Also, in order to get information on trapping
it is advantageous to know the shape of the acousto-
electric current as sound is entering the crystal, as
discussed below. Since the sound pulse shape can best
be treated numerically, a computer program was
written which follows the actual sound pulse envelope
as it moves through the crystal and computes the
macroscopic I~a(t) that should be observed in the
experimental circuit. The crystal is treated as a large
number of parallel slabs sliced perpendicular to the
sound direction. Each slab is considered uniform over
its volume, although diGerent slabs may have diferent
properties (e.g., f, p, a, o, W). The approximations
involved in this model will be considered in detail
below (Sec. 4).

A good example of an acoustoelectric pulse shape is
shown in Fig. 2(d). The 30-MHz oscillations at the
beginning and end of the traces are the Grst-order Gelds

(Et) due to the piezoelectric effect. They are visible
only while sound is entering or leaving the crystal:
Hence the region of interest for attenuation measure-
ments is that between the oscillations, where the sound
is entirely inside the crystal.

The point chosen as a measure of the size of the
pulse, however, was its maximum value, even though
at that point the sound is still entering. It is an easy
value to measure accurately, and, although its location
in time varies with different attenuations, this change
in location is also automatically taken into account in
the computer solution. There is a more important
reason for choosing the peak height, however: It is
fairly insensitive to aL,. In typical cases, changing 0.1,

by 15 dB/cm (much more than observed values)
changes Izz&~» by less than 20%. A point on the
exponential tail, on the other hand, would be greatly
influenced by ez.

If we want to get an absolute value for Re(f) from
I~E, we must have absolute values for 0,~, p, , and 5'.
The attenuation can be measured from acoustoelectric
shapes, as we shall see, to good accuracy. To get p,
Hall measurements were made on all crystals, and
unless noted we have assumed is= p~. (We will consider
changes in is due to trapping in Sec. 5.) But there is
no way to get a good measure of W' in this experiment,
and we must be content with studying the relative
dependence of Re(f) on conductivity. We can, how-
ever, get all the useful information from such a
measurement.

When treating 8', we will speak in terms of the
maximum energy density at any point in the crystal
at any time. When there is no amplification present,
this will invariably occur at the input end of the
crystal when the peak of the input sound pulse envelope
enters; attenuation will reduce the sound amplitude at
other points in the crystal. This maximum energy
density is also independent of attenuation, and so
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Pie. i. Bloclr diagram of the experimental system.

remains constant as the sample's conductivity is varied.
It is also independent of any spatial inhomogeneities.

2. EXPERIMENTAL

Figure 1 shows the basic system used for examination
ef acoustoelectric waveforms. A pulsed oscillator and
resonant quartz transducer (F cut for shear mode
operation) produce the 1-gsec bursts of 30-MHz ultra-
sound that generate the acoustoelectric current pulses.
This current develops a voltage across EI which is
displayed, via a cathode follower to eliminate distortion,
on an oscilloscope. The sample is illuminated from op-

posite sides by a mercury lamp and appropriate spec-

tral filters (the weakly absorbed 546- and 577—9-mp

lines are used). The double illumination, together with

careful alignment of the optical system, gave a light
intensity uniform to better than ~3% over the entire

crystal volume. This is necessary as nonuniform illumi-
nation has the same eGect as nonuniform impurity
distribution and would distort the acoustoelectric wave-
forms. Neutral density 6lters were used to control the
sample's conductivity, although their calibration was
not used and the sample's resistance was measured
with an electrometer at each data point. Forced air
cooling kept the sample at room temperature +1'C
under all operating conditions.

The CdS samples used were photoconductive and
had high dark resistivity (&10' 0 cm). Their orienta-
tion for shear operation had the c axis parallel to the
end (acoustic bond) faces to within ~0.5'. The ends
were polished optically Rat to eliminate mode con-
version; nevertheless, extensive tests for mode con-
version were carried out, the results showing that any
unwanted modes were at least 35 dB below the main
mode and hence unable to contribute any observable
acoustoelectric signal.

Indium electrical contacts were applied to the ends
of the crystals by a process of successive evaporation

(0)

o & 10 (Qcm), ODB -5
cr = 22 x 10 ( Qcrn), -7 DB

2. 38 x &0 ( Qcrn), 0DB o = 3.07 x 10 (Qcm), -(1 DB

(c)

136 x ~0 (pc~) ', ODB 0' = 7.9 x 30 ( Q, crn), -9 DB

FlG. 2. Acoustoelectric waveforms for crystals A. Time base: 0.5 psec/cm. Vertical scale: 5 mV/cm.
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and baking. '4 Since Ohmic contacts are notoriously
diKcult to obtain, extensive tests were made on each
crystal after deposition of the electrodes. Potential
probe, photovoltaic, and V-I linearity tests were per-
formed in several ways, and no contacts were used if
they showed any trace of non-Ohmicity.

3. RESULTS ON CRYSTAL A

Some of the acoustoelectric waveforms seen on what
we shall call crystal A are shown in Fig. 2. The crystal
is a 7-mm cube oriented for shear operation. "Its Hall
mobility was measured as 315 an'/V sec, independent
of conductivity (see Fig. 3). The two traces on each
photo are for sound traveling in opposite directions
through the sample assembly. Although the assembly
is symmetric, it will be necessary to look at both direc-
tions in order to explain the observed pulse shapes.
The two directions will be referred to as "sound in
top" and "sound in bottom. "

In the dark t Fig. 2(a)] as is so small that no signal
is observable. Upon increasing the light intensity, o,z
increases suKciently to give a signal LFig. 2(b)], but
it is small enough that there is little loss of acoustic
power, giving an almost constant I~E. The bottom
trace seems to rise slightly; this is not due to any
ampli6cation of sound, but occurs because the crystal
is inhomogeneous (see Sec. 4). In Fig. 2(c) the attenua-
tion of the sound wave can be seen, but the waveforms
are not simple decaying exponentials. The irregularities
are due to regions of differing conductivity. In Fig.
2(d) the traces look a great deal like the ideal case.
(The input sound level has been reduced by 7 dB to
keep the signals on scale. ) The maximum a~ in this

~ V. E. Henrich, thesis, Department of Physics, University of
Michigan, 2967 (unpublished).

~' This crystal was given to us by Dr. B.Tell.

crystal occurs in Fig. 2(e), where there is not enough
acoustic power left to give any ac signal as it leaves
the crystal. For high conductivity LFig. 2(f)] az begins
to decrease (right side of the peak in as(n)] with the
output 30 MHz again visible. The acoustoelectric pulse
shapes are quite different for the two directions, how-
ever, again due to nonuniform conductivity.

Since the sound-inside region of the acoustoelectric
waveforms is not simply exponential, we must choose
some method of analyzing the data that will retain
as much information as possible. We choose to force a
simple exponential least-squares 6t to the data, thus
averaging over some of the inhomogeneity. It will still
be possible, however, to see the effects of gross con-
ductivity gradients, and all of the essential features of
the waveforms are retained. The experimental points
to be 6tted are read off photographs similar to Fig. 2,
but using expanded scales for greatest accuracy.

Data on crystal A from several runs are plotted in
Fig. 4. The solid and open circles represent sound
traveling in opposite directions. The two pulses in
Fig. 2(f) appear here as different attenuations for
sound traveling in different directions. Of course, for
a sound wave traveling the entire length of the crystal,
the total attenuation must be the same for either
direction; so we will call the ordinate "apparent at-
tenuation. " The solid line is the total attenuation,
using —',K'=0.0142 in Eq. (17) for aE, and n&=0, both
chosen for best 6t. E' determines the size of the curve,
while O.J. merely shifts it up or down. As these are the
only variables at our disposal, there is no way of
accounting for the difference in conductivity of the
peaks of the theoretical and experimental curves. A
possible explanation for this will be presented in the
next section.

Several comments can be made in the light of Fig. 4.
Even though theory and experiment do not quite co-
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tivity for crystal A.
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incide, particularly near the peaks, the general agree-
ment is fairly good. There is not much leeway in the
choice of nr, ,'only ol.(2 dB/cm will allow any sort of
decent fit to the majority of the points, and this fit is
reasonably independent of behavior around the peak.
The value of —',E' is only about 20%%uo below the computed
values in Table I.

The "shape" measurement above has given the ultra-
sonic attenuation; we shall next consider the "size"
measurement. For runs involving absolute size of acous-
toelectric pulses, the input sound level was held con-
stant (0 dB) and the oscilloscope's vertical sensitivity
changed to accommodate the pulses. Since bond eKci-

encies do enter in this type of measurement, runs taken
with different assemblies, or even on di6erent days
with the same assembly, cannot be compared. All

results quoted for these measurements are for a single
run, taken as rapidly as possible, and after precautions
had been taken to assure that the crystal and buyers
would remain at constant temperature during the run.
Figure 5 showers the results of such a run on crystal A.
Corrections for the finite size of the load resistor RL,
have been made, and the ordinate is the short-circuit
value of I~K. It is not surprising that there are taro
distinct curves for sound going in opposite directions
here, since each direction corresponds to a different

100-
0 0 0 0 0

0 4
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OI42, +I aO

5I5 (cIII~/ YIIec )

FIG. 5. Peak acoustoelectric cur-
rent versus conductivity for crys-
tal A.
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input transducer, buffer, and bonds. The closeness of
the curves indicates that the bonds are very nearly
the same throughout the system. The peak current
has been plotted on a logarithmic scale since the
quantities that we are not sure of [i.e., W, possibly
Re(f) and p] enter multiplica, tively [see Eq. (6)j.
Thus a change in acoustic power level corresponds to
sliding the curves up or down. The solid curve is the
computer-predicted Ii&,E&~„&,&(0) for a maximum energy
density of 12 erg/cm', assuming Re(f)=1, @=315
cm'/V sec, and —,'E'=0.0142. This power level was
chosen to roughly fit both curves; attempts to accu-
rately fit either curve would not be significantly more
successful. For one thing, we see here, as in Fig. 4,
that the experimental data peak at higher conduc-
tivity than the theory, and also that "sound in bottom"
peaks at slightly higher conductivity than does "sound
in top. "

One might ask whether allowing Re(f) to vary with
conductivity might give a better fit to the data. We
saw above [Eq. (12)j that Re(f) will either be constant
or will decrease with decreasing conductivity. To get
a better fit on the low conductivity side of Fig. 5 we
would have to increase Re(f) slightly with decreasing
conductivity, however. The fact that the fit to experi-
ment is as good as it is from 10 ' to 10 ' (0 cm) '
leads to the conclusion that Re(f) is nearly constant,
and hence presumably equal to i. So trapping does not
seem to be important in this crystal.

4. CRYSTAL IHHOMOGEÃEITY

The measurements on crystal A indicate that the
ultrasonic attenuation is not constant throughout the
crystal at a given light intensity. We attribute this to
a nonuniform spatial distribution of impurities, since
CdS is an impurity photoconductor for wavelengths
longer than 520 mp, and since electron diffusion lengths
are short enough that the conductivity will reQect the
impurity distribution. The purpose of this experiment
is to study attenuation, trapping, etc. , in CdS, not to
map out in detail the impurity distribution in particular
crystals. Yet some efforts must be made in this direc-
tion if we are to make any progress in understanding
the results obtained on real crystals.

All of our crystals were grown by a vapor-phase
technique. ""By nature of the growth process, we
have no a priori reason to expect any particular spatial
impurity distribution. The location of the crystals in
the original boules is not known, and even that would
give only slight hints. In general, the inhomogeneity
can be described in terms of variations in three spatial
directions: two perpendicular to the sound velocity
(transverse) and one parallel to it (longitudinal). If
the variation were purely transverse, it would not give
rise to different acoustoelectric waveforms for sound

~6 L. Clark and J. Woods, Brit. J. Appl. Phys. 17, 319 (1966)."E.D. A. White, Brit. J. Appl. Phys. 16, 1415 (1965).

(A)

Low conductivity High conductivity

4E

"sound in top"

LE

"sound in bottom"

Fro. 6. Crystal conductivity gradient and
associated acoustoelectric pulses.

traveling in opposite directions. A longitudinal varia-
tion, however, would give different pulse shapes. The
mathematical treatment of this last case is relatively
easy, since we still have straight-line current Bow.

'r =~out/0'in ~ (19)
This will be chosen to give a best fit to the data.
Assuming that 0 is a linear function of position x, we
can express it in terms of these two parameters:

(20)

A. Longitudinal Imyurity Gradient

We will consider only the simplest possible model: a
linear change in impurity density from one end of the
crystal to the other. While we would expect quantita-
tive agreement to be poor, the qualitative results will
tell us whether or not we are on the right track. Since
the electrical conductivity should be proportional to
impurity density, we will talk in terms of a linear
change in conductivity [see Fig. 6(a)j.Two parameters
are necessary to completely specify this distribution.
The only one macroscopically available is R„the bulk
crystal resistance. From this we can define an "observed
conductivity" 0 0.

ao=L/AR, ,

where L is the length of the crystal and A its area. The
other parameter we will use is
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In keeping with the simplicity of the model, we will
assume that y is a constant for a particular crystal
independent of conductivity. The validity of this as-
sumption is, unfortunately, a complicated function of
the trapping kinetics, and for a crystal with as large
and diffuse an impurity content as CdS we could never
hope to predict a dependence which we could be sure
was any better than the above one.

It is instructive to look at the pulse shapes predicted
by the above model for two limiting cases. First, con-
sider the case of low conductivity in which nz is small
and also increases as 0 increases LFig. 6(b)]. Suppose
that n~ is small enough that in a homogeneous crystal
the acoustoelectric signal would be nearly Rat. As the
sound pulse moves down the crystal, it enters regions
of higher and higher nE, and hence larger and larger
I~F„.VVe would then see an acoustoelectric signal which
actually rises. This is just the case seen in Fig. 2(b) in
crystal A. Sound traveling in the other direction enters
in a region of large n g, and hence large I~I, and moves
into regions of smaller aE. We would then see a signal
which decays more rapidly than for a homogeneous
crystal. In the general case of eE large enough to pro-
duce a decaying signal in a homogeneous crystal, the
distinct rise in the first case would not be seen, but
the decay would be more gradual (less apparent at-
tenuation) than normal; sound going in the other
direction would give a steeper decay (more apparent
attenuation) than normal. In the case of high con-
ductivity az will decrease as 0 increases LFig. 6(c)],
and the roles of the two sound directions will be inter-
changed; the limiting case of small o,g is shown in the
figure.

The Iga(t) waveforms computed using the above
conductivity model will not be exactly exponential.
Since we treat the experimental data by forcing an
exponential fit to them, we choose to do the same with
the predicted pulse shapes. The computer first gener-

ates the entire pulse and then 6ts only the "sound
inside" part. It gives both the apparent attenuation
and its standard deviation. In all cases that we will
consider the standard deviations are too small to be
included on the graphs, indicating that the pulses are
nearly exponential. The strength of this method lies in
the fact that both theory and experiment are treated in
exactly the same manner. The graphs now display
"apparent attenuation" versus "observed conduc-
tivity", but there is a one-to-one correspondence be-
tween theory and experiment.

Figure 7 shows the predicted a(a) for y's of 1 (homo-
geneous crystal), 2 and 5 for typical parameters. As

y increases, the curve splits into two branches, one for
sound in each direction; the splitting increases with
increasing y. The negative values correspond to acous-
toelectric pulses that rise, as in Fig. 6, and not to actual
gain. In agreement with the predictions of Fig. 6, the
roles of sound in opposite directions are interchanged
between high and low conductivity. For values of p
as large as 10, a nonzero n& merely shifts the curves
up, as in the homogeneous case. Several trials with
large y's and large nr. 's showed that the error incurred
in just shifting the curves by e& is negligible in all
cases of interest.

As a direct check on the results of a longitudinal
conductivity variation, the light incident on a sample
was purposely made nonuniform. Sound was always
sent in the same direction so that crystal irregularities
would not enter. One-half of the crystal was masked
with a strip of 0.3 neutral density filter (50%%uo trans-
mission) and photos of the acoustoelectric pulses when
the filter was masking diferent ends of the sample
were taken. Here the masking of different ends corre-
sponded to sound going in opposite directions in our
usual measurements. The results were as predicted
above, with the masking that gave higher apparent
attenuation at low conductivity giving lower attenua-
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FIG. 8. Apparent attenuation versus
observed conductivity for transversely
masked crystal.

a 40-

20-

I

IO

&new)

IO

tion at high conductivity, and vice versa. The size of
the apparent attenuations was also in general agree-
ment with theory, although extensive measurements
were not made.

A qualitative comparison of Fig. 7 with Fig. 4 for
crystal A shows that while we may be moving in the
right direction we are not there yet. The experimental
curves are only split at high conductivity, while the
theoretical ones show the same splitting at all points.
It might be possible to construct a 6t by taking y= 1
at low conductivities and increasing to something near
2 at the high end. But this would be doctoring with no
particular justi6cation. Yet one should bear in mind
that keeping p constant is merely an assumption, and
it is quite possibly not a good one for this crystal.
Another point of disagreement is that the two experi-
mental curves are not symmetric about the theory,
and we would have to do some horizontal translation
to make them so. Also, the rightmost curve has a
larger maximum than does the other, something not
predicted by our model. These considerations show
that the simple model used here is not sufhcient to
fully explain the attenuation data on crystal A, al-
though it does at least predict a splitting of the curve.

Curves for the predicted I~E&~ q&(0) for various
values of y were also computed. These curves obey the
same general rules as a(o), with the splitting nearly
symmetric about the uniform case. Minor irregularities
occur at high and low conductivities corresponding to
regions in which one acoustoelectric pulse rises; the
position of I~E(~„I,~ then shifts to the output end of the
crystal. Behavior similar to that has been observed.
The curves for sound in either direction can still be
raised or lowered individually, depending on the acous-
tic power received from either end. Comparison with

the data for crystal A showed the same qualitative
similarities and disagreements as for a(0).

B. Transverse Imyurity Gradient

Any purely longitudinal conductivity variation, no
matter how large or irregular, still gives straight-line
acoustoelectric current flow, and the problem can be
rigorously and easily solved. A transverse gradient, on
the other hand, leads to a problem of immeasurably
greater dBBculty. DiBerent sections of a sound wave
will be attenuated di6'erent amounts in traveling the
same distance down the crystal, due to the diBerent
conductivities of the paths, giving rise to complicated
current patterns. We have not undertaken a mathe-
matical solution of this problem, but one can get some
idea of what to expect by considering extreme cases.

Suppose that the crystal were composed of two
paraHel sections, one a semiconductor and the other
a perfect insulator, whose interface was parallel to the
sound velocity. The sound wave would generate an
acoustoelectric signal only in the semiconducting sec-
tion, and the IgE(t) would have the same shape as if
the whole crystal were semiconducting. Our measure-
ment of E„however, would yield a value of 00 smaller
than the actual 0. In other words, the experimental
data would be displaced toward lower conductivity.
Similarly, if part of the crystal were always more
highly conducting than the semiconducting part, we
would plot the data at higher conductivity than it
belonged. Both a(0) and IgE&~,Io(0) data would be
displaced by the same amount.

The problem of a transverse gradient can be simu-
lated experimentally. The light incident on crystal A
was made transversely nonuniform by masking one-
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Fio. 9. Acoustoelectric waveforms for crystal B.Time base: j. @sec/cm. Vertical scale: S mV/cm.

half of it lengthwise with pieces of 0.8 neutral density
61ter (16% transmission). In Fig. 8 the solid curve is a
measurement of a(0) by acoustoelectric pulse shapes
when the crystal is uniformly illuminated and the dots
are the same measurement with the neutral density
masks. Not only can the shift of the curve toward
lower conductivity be seen, but a substantial Battening
of the curve as well. The analogous case of high con-
ductivity in one section could not be simulated with
our light source.

Any crystal that has a longitudinal component of
conductivity gradient probably also has transverse
components of the same magnitude. %e believe that
such gradients are the cause of some or all of the dis-

placements of the data seen in our crystals, as well as
playing a part in other deviations of the data from
theory.

5. RESULTS 0Ã CRYSTAL B

Rather than trying to 6t the data on crystal A any
further by the above considerations, we shall look at a
second crystal. To be called crystal 8, it is a 1-cm cube
also oriented for shear operation. Its measured Hall
mobility is somewhat conductivity-dependent. Its
acoustoelectric waveforms behave as expected, and
its attenuation Gts the conductivity gradient model

very closely. In addition, it shows strong evidence of
trapping.

A. Ha11 Mobility

1 pe,hs+lv+———+
pH y„1+2expt (E+ Ef )/kTj—(21)

where p,
„

is the Hall mobility with all donors occupied
(bright light), vth is the electron thermal velocity,
P=5.7X10 " V sec'/cm', S+ is the donor scattering
cross section when ionized, E+ the density of donors,

~8 R. H. Bube and H. E. MacDpnaM, Phys. Rev. 121, 473
(&96j.).

Figure 3 gives the measured variation of p~ with 0

for crystal 8, where the solid line is the theory which
we shall apply. Bube and MacDonald" have observed
similar changes in p~ in CdS and were able to explain
them in terms of the changing charge state of scattering
centers. Consider a donor level lying above the dark
Fermi level. It will be ionized at low light intensities
and will have a large scattering cross section. As the
electron Fermi level rises with increasing light in-

tensity, the level will become occupied and thus have
a smaller cross section. The expression derived for
this process is"
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Fzo. 10. Attenuation versus con-
ductivity for crystal B.
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F+ the depth of donor below conduction band, and
E~ the electron Fermi level. Since this gives 1/p~ as a
function of Eg, conductivities were converted to Fermi
levels by

a/ey=n=N, exp( —Ef„/kT), (22)

B. Acoustoelectric Measurements

Figure 9 shows representative acoustoelectric pulse
shapes for crystal B.Only a few comments are necessary
about them. With low light intensity, Figs. 9(b) and
9(c), the effect predicted earlier is clearly seen; "sound
in top" has a larger apparent attenuation than "sound
in bottom, "characteristic of a longitudinal conductivity
gradient. Near the maximum in as(e) [Fig. 9(d)g
both directions look the same, and in brighter light
[Figs. 9(e) and 9(f)j the roles of the directions are

~ U. Biiget and G. T. Wright, Brit. J. Appl. Phys. 16, 1457
(1965).

Io The authors are grateful to Dr. J. D. Zook for calling their
attention to the correct cross section.

where X,= 2 (2s.m*k T/k')3".
The mobility data were fit to the above expression

by least squares, yielding values of

p„=374cm'/V sec,

Ps&hS+1V+=7.55X10 ' V sec/cm',

E+——0.447 eV.

The solid line in Fig. 3 is Eq. (21) using the above
numbers, and the fit is excellent. The magnitude of the
parameters is also reasonable. The trap depth agrees
with a prominent group of levels at 0.40-0.45 eV
reported by several authors. ' ""The value of 5+ ob-
served in CdS in Ref. 28 is about 10 ' cm', and using
that value gives 1V+=6.3X10" cm '.~ So the Hall
mobility variations in crystal 8 seem to be due pre-
dominantly to the changing charge state of deep traps,
with good quantitative agreement with theory.

interchanged, with "sound in bottom" now having
larger attenuation. The uneveness of Figs. 9(b), 9(c),
and 9(f) shows that the impurities do not vary smoothly
down the crystal.

Figure 10 gives the least-squares-fit attenuation for
this crystal, taken on three runs. The theoretical curves
included are based on an analysis of I&z~~,&~ data as
well as the attenuation and will be discussed shortly.

Data on Iga&~q~(e) are plotted in Fig. 11. The
solid curves are theoretical for y=1.8, ~E'=0.0172,
and p Re(f)=374 cm'/V sec and constant. This value
of y was determined as a result of fitting all the data on
this crystal and is not obvious at this stage in the
analysis. The theoretical curves have been fit to the
data at high conductivity because of the variation of

p—having its largest, constant value at large cr—and
because of the predicted dependence of Re(f). There
is good agreement over one order of magnitude at large
cr, but the disagreement is as great as a factor of 20 at
10 ' (0 cm) '. We must thus explain the large dis-
crepancy between theory and experiment and see what
eHect it will have on attenuation measurements.

C. Trapping

%e saw above that o» is only weakly dependent on

p and Re(f). [Note that p appears in the denominator
of the term containing Re(f) in Eq. (16), since 1/con
=D~/&2 =pkT/q&P. j The computer should then pre-
dict the correct lV for all points and times even if there
are large changes in p or Re(f). Any deviations of ex-
periment from what is predicted must then come from
p Re(f) in Eq. (6). Since p& only varies by a factor of
2 over the 10 '—10 ' (0 cm) ' range, the remaining
discrepancy must be due to a conductivity variation
of Re(f).

The method of determining Re(f) from I~a&~,q&(o)
data is somewhat involved and tiresome, and we shall
only outline it here. Full details can be found in Ref.
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24. First, a value of y is assumed and theoretical
I~a&„,~&(0) curves are computed. Then the ratio of
experimental to theoretical values is taken, and since
the theory assumes Re(f) = 1 and p= p„,we get

I~a ~~~~ (experimental) = (I /p„)Re(f).
I~E~~,~~ (theoretical)

When this is done for both directions of sound, two

curves are obtained, similar in shape but separated in
conductivity. This is because I&K(~„&~occurs just as
the sound is entering the crystal, and so the diGerent
directions see diGerent conductivity regions. To correct
for this, the two curves derived above are shifted in
conductivity until they coincide, and the ratio of con-
ductivities at positions of peak current necessary for
such a shift is computed. This ratio should be 10-20%%uo

less than p since the sound is partly inside, and values
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of y are tried until the two ratios are consistent. This
method is very sensitive to p, and for these data
values of 1.6 and 2.0 gave unreasonable results, while
y=i.8 gave consistent results. The results of this
procedure are plotted in Fig. 12. The curves coincide
over most of the experimental range, disagreeing only
for low conductivities where, due to rising waveforms,
I+E(pe Q) can occur at either end of the crystal.

There is an independent method of checking these
data. If a dc electric field is applied to the sample as
for ultrasonic amplification, the field necessary to
restore an acoustic pulse to its amplitude in the dark
is given byi2

where v, is the velocity of sound. There are many
problems with such measurements, '" and they could
only be performed over a small range of conductivity
on this crystal. The results, divided by p„=374cm'/V
sec, are plotted as X's in Fig. 12. The agreement is
fairly good, with the disagreement possibly due to the
high electric fields used somewhat reducing trapping, "
bringing Re(f) closer to 1.

Knowing p(0) from Hall measurements, p may be
divided out of the data in Fig. 12, yielding Re(f) alone.
The resulting curve can then be fit to the expression
given in Sec. 1. The trapping cross sections seen for
traps in the 0.4-0.45-eV range are in the neighborhood
of 10 ' cm'. Using this for gp, the only unknowns in
Eq. (12) are Er and 1Vr. By adjusting these parameters,
a good (and unique) fit could be obtained to the data.
The parameters derived were ET ——0.39 eV and 1Vy
=3.6/10" cm '. The value of Ez is close to the 0.4—
0.45-eU levels, and the trap density agrees well with
values determined from measurements as a function
of frequency. ' Both values also agree fairly well with
those determined by fitting the Hall mobility data.
So the effects of trapping observed in this crystal can
be well explained by Greebe's theory, yielding values
in good agreement with other observations.

AVe must now consider what effect a variation in
p Re(f) will have on attenuation measurements. We
have seen that nE and 8" are nearly unaffected by
p Re(f), but since we use the acoustoelectric pulse

"A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev.
Letters 7, 237 (1961).

3' D. L. White (private communication).

shapes to determine attenuation, there may be com-

plications. If the crystal were homogeneous, changes
in p Re(f) with conductivity would affect the size of

I~E(t) but not its shape. But if the crystal is nonuni-

form, p Re(f) will vary with position and give the same
behavior as a changing nz Both p(0) and Re(f)(0)
were put into the computer program, and correct
values of nE(o) were obtained. The curves agree well

with the data except that they peak at somewhat
higher conductivity (about 30%) than the data. This
is in the opposite direction to the effect seen in crystal
A, and since it may be due, at least in part, to trans-
verse conductivity gradients, we will take the liberty
of moving the theoretical curves slightly toward lower
conductivity. LWe will not bother to shift the theo-
retical values of I+E(peg/&(&r). Such a shift would make
some changes in Re(f)(0), leading to slightly smaller
values. But such changes would make virtually no
difference in the attenuation predictions, and the new

Re(f) (0) would yield very nearly the same trap depth
and concentration. ]

The solid curves in Fig. 10 give the corrected,
"shifted" theory. Considering the simplicity of our
model of impurity distribution, the agreement is very
good. The assumption of constant y over the whole
conductivity range is apparently valid for this crystal.
The value of ar, =1.9 dB/cm is determined by the
asymptotic fit at low and high conductivities. The
value of —,'I' is also very close to those calculated in
Table I. The value may actually be a bit higher than
0.0172, since we saw in Fig. 8 that a transverse gradient
reduced the size of n(0) as well as shifting it, but we
have no quantitative way of treating this.

In summary, all aspects of this crystal can be readily
explained in terms of fairly elementary considerations.
Its Hall mobility is well described by the changing
charge state of a deep impurity level. Electron trapping
is observed and can be accounted for by a deep trap
whose level and density agree well with measurements
made by other methods. The attenuation data show
excellent agreement with the theory of Hutson and
White, taking into account impurity inhomogeneity.
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