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A method is presented for calculating anharmonic contributions to the Debye-Wailer factor in the high-
temperature limit in terms of direct-space sums. These sums are simpler quantities than those resulting
from the phonon technique, in that there are no multiple integrals in reciprocal space and the frequencies
and polarization vectors do not appear. They also have the advantage that no extreme assumptions about
the form or range of the coupling parameters need be made. Calculations of anharmonic contributions to
the Debye-Wailer factor and the free energy are carried out for four models of copper. The values obtained
for the mean-square displacement are compared with experimental values and with the calculations of
others.

I. INTRODUCTION

HIS work is primarily concerned with the calcu-
lation of anharmonic contributions to the Debye-

Waller factor for the scattering of x rays and neutrons
by a crystal at temperatures T where quantum correc-
tions are small. A number of calculations exist which
are based on the small-amplitude or harmonic approxi-
mation. ' Maradudin and Fll»' have given expressions
for the anharmonic contributions in terms of multiple
phonon integrations over the Brillouin zone. They made
rough approximations to these formulas and estimated
for lead a term in T' which is less than 10%%uo of the har-
monic term proportional to T for T=20~ where 0~ is
the Debye temperature. They also estimated the T'
terms, some of which are not isotropic, to be about 10 '
as large as the harmonic term. From the point of view of
experiment a more accurate evaluation of the T' term
is desirable, and also of the anistropic term which may
be observable even when relatively small. The reason
for its smallness is that the amplitude of thermal motion
is small (~6% of the interatomic spacing; see Table IX)
at Debye temperature, so that the crystalline directions
of easy and hard motion are not very important. Never-
theless, the present work shows that the anisotropic part
is considerably larger than the estimate above and
might be seen.

The idea that motivated the present approach is that
anharmonicity is chieQy a short-range eGect due to ion
repulsion in the lattice, so that a calculation using direct-
space sums would be better suited than reciprocal-space
integrations. It turns out that this is not true for all
terms of interest and the procedure developed is a
combination of reciprocal-space integration and direct-
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space summations. The situation is reminiscent of the
Ewald methods' for lattice 6elds in which only long-
range parts are calculated in reciprocal space. This pro-
cedure has several advantages over the complete recipro-
cal-space formulations.

First, there are no multiple integrals in reciprocal
space and a single type of integral over the Brillouin
zone must be done. This can be done quite accurately.
The frequencies and polarization vectors do not appear,
which also gives rise to considerable simplification.

Second, some of the analysis in Ref. 2 can only be
done for a system in which the harmonic forces are also
restricted to nearest-neighbor pairs, whereas experi-
mental work indicates that one must consider, for
example, interactions between at least third-nearest
neighbors for copper4 in order to describe the dispersion
curves. For aluminum, interactions between the origin
atom and atoms in the eighth to 6fteenth shells must be
taken into account. In the present calculation inclusion
of these additional interactions involves no additional
complications.

Third, calculation of those anharmonic terms which
are proportional to the fourth power of the scattering
vector presents no problem in direct space, whereas
Maradudin and Flinn were forced to approximations,
whose effects are dd5cult to determine, in order to esti-
mate them. It appears that a fortuitous large cancella-
ation may have come in as a result of their approxi-
mations.

The use of direct-space sums was 6rst proposed by
Davies' for calculating anharmonic contributions to the
free energy. The preceding remarks about the advan-
tages of a combined reciprocal-space and direct-space
summation procedure apply also to the free energy,

' See, for example, C. Kittel, Introduction to Solid State ph»ics,
(John Wiley 8z Sons, Inc., New York, 1956), 2nd ed., Appendix A.

4 S. K. Sihna, Phys. Rev. 143, 422 (1966).
fl J.L. Yarnell and J.L. Warren, in Lattice Dynamics, edited byR. F. Wallis (Pergamon Press, Inc. , New York, 1965).' R. O. Davies, F/uctuation, Relaxation amt Resonance in 3fag-

netic Systems (Oliver and Boyd, Edinburgh, 1961).
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and we have included here a calculation of the third-
and fourth-order anharmonicity contributions to the
vibrational free energy of copper.

Section II collects the relevant theory. Starting from
the cumulant expansion of the exponent of the Debye-
Waller factor in powers of scattering vector, the per-
turbation expansion of each cumulant is developed
along with a diagrammatic representation involving the
harmonic pair-displacement correlation function. It is
shown that only the "linked-cluster" subset of dia-
grams need be considered. Section III is devoted to
the pair-displacement correlation function, its sym-

metry properties, and its relation to the dynamical
matrix. Use of the pair-displacement function replaces
the need to calculate phonon frequencies and polari-
zations and is computationally economical. The asymp-
totic behavior of the pair-displacement function at large
separations is derived.

The particular sums needed in the third- and fourth-
order anharmonic contributions to the Debye-Wailer
factor are enumerated in Sec. IV in terms of direct-
space sums according to the rules given in Sec. II, and
their convergence is studied. Section V develops briefly
the expression for the thermal-expansion contribution
to the Debye-Wailer factor and Sec.VI does correspond-
ingly for the anharmonic contribution to the Helmholtz
free energy.

Numerical calculations are discussed in Sec. VII,
which also contains tabulations of the results. Those
include the harmonic pair-displacement correlation func-
tion, a comparison with its asymptotic expansion, and
the various contributions to the Debye-Wailer factor
and to the vibrational free energy. The mean-square
displacement, which dominates the Debye-Wailer fac-
tor, is compared with experimental values and with
other calculated values.

II. PERTURBATION EXPANSION

The Debye-Wailer factor for atom / is the thermal
average

e ~)=—(e" ')=Trfe e~e""]/Tre e~, (2.1)

where H is the vibrational Hamiltonian, x is the wave
vector or scattering vector of the radiation involved,
and u~ is the displacement of the atom from its reference
position R~. This position will be assumed to be a center
of inversion symmetry, so that the average of odd
powers of «i vanishes and (2.1) is a real quantity.

For harmonic vibrations the distribution function of
the displacements is Gaussian. A convenient repre-
sentation of nearly Gaussian distributions of a random
variable X is by its cumulants or semi-invariants, which
are defined in terms of its moment generating function

f(o) as follows':

The cumulants (X"),„can be expressed in terms of the
moments (X ) for ni(n. The first four terms, which
are all that are needed here, are

(X),„=(X), (X').„=(X')—(X)',
(X').„=(X')—3(X)(X')+ 2 (X)',
(X4),„=(X4)—4(X)(X')—3(X')'

+12(X)'(X')—6(X)'.

(2.3)

For a Gaussian distribution f(n) is Gaussian, so that
(X).„and (X') are the only nonzero cumulants.

Applying (2.2) and (2.3) to (2.1) gives

&e'" ")=expL—k&(» «)'& -+(1/4')((» «)') -+" ]
(—l(( )')+(1/4!)L&( )')

-3(( «)'&']+" ) (24)

The thermal averages in (2.4) will be calculated by a
perturbation expansion in B—Hp, where Hp is the
harmonic Hamiltonian defined by retaining only up to
the quadratic terms in the Taylor expansion of the
configurational potential energy V in powers of the
displacements. Thus

where

(~&=T L~" ~(p) ~]/T L~'"~Q)]
= &~(P)8)'/&~(P) )',

p(ti) =eeirog eir

(2.5)

(2.6)

(2.7)

and the superscript zero denotes the thermal average
for a system with the Hamiltonian Ho. In order to
calculate the Debye-Wailer factor to order ft:4 in the
exponent, we need the following terms:

&( «o)"&= &~(P)( «o) "&'/(U(P))', (2 g)

for n=2 and 4. It will be seen later in this section
LEq. (2.23)] that the linked-cluster expansion gives
directly the cumulants in the first line of (2.4) rather
than the individual averages on the second line.

We consider a Bravais lattice

Rg =ha&+4a2+4a3, (2.9)

about which the configuration potential energy is ex-
panded in a Taylor's series in the displacement com-
ponents ac~,

v(r„r„.)=p v, , (2.10)

~ M. G. Kenda11 and A. Stewart, The Adeaeced Theory of
Statistics (Charles GriGen and Co., Ltd. , London, 1958), Chap. 3.

&n ( &n

f()=(e' )=x —(x")—= e*pl z —(x"), )n On! kn inl

= exp(e~x —1).„. (2.2)
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where

V,=(j!) ' Q V&,...&, "'u&," . .u&; (2.11)
airxa. ag,

lily ~ ts

The kth term in the expansion in powers of Vg of the
numerator of (2.8) for, say n=2, is a sum over j(1),
j(2), ",j(&) of

and
&!'V(R&,Ro, )

jg) cx1 ~ ~ ~ Qg).rx j
1

(2.12)

(—!3)' Z-o "p
VJ 11"'~lj(1) V~kl" ~kj(k)

k! j(1)! ~ .j(k)!Ju" Jo«o)

X (uz»uz&o ' 'uz'o;&o&uo uos) . (2.18)

el ~ ag 0ll" lp' ~

lg

(2.13a)

Invariance under lattice translations gives

V a&ao ~ ~ ~ a&—&a& —V&, &, , a&ao ~ aj&a& (2-13b)

with 1; =1;—1;,i = 1, 2, , j—1. Finally, if V' is a dis-
crete symmetry rotation with matrix T such that V'I&

=R~, then, using the summation convention,

, al'ay' ~ ~ aa' —7'Vll'lg'" l&' al'al ag'ag

T~;~,.U&,&,...&,
' '" &'. (2.13c)

The Hamiltonian is written

where

H =Ho+ Vg,

P2
Ho—=Q +Vo+ Vo

t 2M

(2.14)

(2.15)

is the Hamiltonian for a harmonic crystal and

Vg —=Q V; (2.16)

is the anharmonic part of H, which is treated as a
perturbation. Linear terms Vj. would exist only for
atoms at the surface when there is an applied stress.

Perturbation Expansion in Terms of Harmonic
Pair-Displacement Correlations

(Wick Theorem)

Since anharmonic eGects are significant mainly at
higher temperatures in the systems of interest to us
here, we shall consider them classically first. Quantum
eGects will be considered later. Then

U(p) =o o"- (2.17)

G. Leibfried and %. Ludwig, Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1961),
Vol. 12, pp. 283—288.

are the coupling parameters (CP) of jth order.
Invariance of the potential energy under rotations

and translations (both infinitesimal and those of the
discrete symmetries of the lattice) leads to relations be-
tween the CP.' The ones useful to us are listed here.
First, the CP are unchanged when any vertical pair
of indices is interchanged with any other pair. Invari-
ance under inhnitesimal translation of all the atoms
leads to

Each J stands for an index pair

and j is the order of the CP involved.
The harmonic thermal averages of products of dis-

placements in (2.18) can be written as the sum of
products of harmonic pair correlations. ' For n even,

(u~&u~o' ' 'u~~)'= Z (u~&u~g)' ' ' (u~o»&)' & (2 19)
A11 pairings

the sum being over all partitions of J~, . , J„into —,'n
pairs, order being immaterial. For n odd, the average
on the left side of (2.19) vanishes. Equation (2.19) is the
analog of the Kick theorem in many-body theory' and
leads similarly to a diagram representation of the per-
turbation series. The distribution function po(u&, uo, . )
is proportional to exp[—PVo(ur, no, )] and defines a
multivariate Gaussian distribution. Relations (2.19) is a
familiar property of such distributions which antedates
the Kick theorem for fermions and bosons by many
years.

When (2.19) is inserted into (2.18), each summand
can be represented in terms of the following elements:
(a) a pair correlation (ufo)o by a line connecting the
points p and g; (b) a CP factor —PV J'&. g& by a vertex
of order jcontaining the points J&, . , J; (for simplicity
the vertex with its points will be shown as a heavy dot;
a line which connects two points of the same vertex
will appear as a bubble); and (c) the points

(ol t'

ko& Eo)

and the associated factors x and ap by a ~-vertex, de-
noted by a cross. Higher-order «vertices Lof order n in
(2.8)7 will be needed and will also be denoted by a cross.
This prescription dednes a labeled diagram. As an ex-
ample, consider the diagram in Fig. 1(a). Since the
points comprising a vertex are not shown, the sa~e
labeled diagram might be represented in apparently
diferent ways. For example, Figs. 1(a) and 1(b) are the
same. The contribution associated with this labeled dia-
gram is dehned as the sum over all numerical values of

QA. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Fkld Theory ie Statistical Physics (Prentice-
Hall, Inc., Englewood CliGs, N. J., 1963).
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(a)

Fro. 1. Example of a labeled diagram.
Figures (a) and (b) are the same diagram.

(a) Each V vertex gives the factor (—P) times the
corresponding CP.

(b) Each line or bubble gives the factor (pt~,ops, )o. If
J is on a V vertex,

and if it is on a a vertex,

(al
E0&

(bl

the vertex indices, namely,

(c) For each point in (2) on a s vertex write ~ .
(d) Sum over all nonfixed indices.
(e) Multiply by the factor

E &~&p Z ~Pa&o&p&4(Nba'aA)
4~ ap J(J)JIJ4

k

(g pm. !g P, f2mp+mg+ ~ +sgpf) I-
i 0

(2.21)

X(Ng Np )'(Ng, lp~)o. (2.20)

Different pairings, that is, different labeled diagrams,
may have the same structure as, for example, when one
of the labels J2, J3, or J4 is interchanged with J~ in
Fig. 1(a). These diagrams are topologically equivalent
when the labels are omitted and give the same numeri-
cal contribution, so that the contribution of a labeled
diagram needs only to be multiplied by the number of
equivalent diagrams which occur for that structure.
To determine this number, consider a general labeled
diagram with a ~ vertex of order jp with mp bubbles
attached to it and with k V vertices, the ith vertex
being of order j;withe;bubbles attached to it, j.&i&A.
Permuting the labels of the points of a vertex leads to
diagrams of the same structure and to possibly different
pairings of the displacements in (2.18) or its generali-
zation. This introduces first the factor j,1 for that vertex
(0&i&k), then the reduction factor (-', )"' excluding
interchanges of the labels of each bubble and the factor
1/ptp, ! for excluding permutations of the bubbles. Fur-
thermore, if Pg lines connect the vertex pair (ij ), there
is the reduction factor 1/P;, !.

If a vertex of order s(&3) occurs v, times in a dia-
gram, the r, !permutations among them will give new
pairings, with the possible reduction by a symmetry
factor 1/f, .

In the kth order of perturbation being considered, the
multinomial factor

and the subscripts C and C' denote the restriction to
diagrams consisting of connected sets of vertices for V~
and Vg', respectively. The connected diagrams for the
latter are of two types: (a) those with no op up vertex and

(b)

Fn. 2. Examples of unlinked or dis-
connected diagrams. Figure 2(a) is un-
linked and disconnected; Figs. 2(b) and
2(c) are linked and disconnected.

where f is the product of the symmetry factors. The
symmetry factor f is 2 for Figs. 2(a), 2(c) 3(d) 3(f)
and 4(b). It is unity for the others.

In the diagram scheme above the quantity ((oo u,) tp)o

will involve jp-order ~ vertices. An alternative scheme
is to represent each x' Np point as a one-point vertex or,
equivalently, as an external point. Then we may apply
the linked-cluster theorem' "in the forms

(p Ivy)p —exp(p tv' 1 ) 0

(p-pv~')o exp(e pvg' 1)& o

where

is the number of different ways in which the sets of r,
vertex terms (g,&o sr, =k) occur in the expansion

@+3

The r, !cancel out and k! cancels with 1/k! in (2.18).
The rules for finding the contribution from diagrams

of a given structure can be summarized":

'OThese rules are consistent with those given by W. Gotze
I Phys. Rev. 156, 95j. (2967)j for the diagrammatic expansion of

fc)

the vibrational free energy and temperature Green's functions
of an anharmonic crystal. At high temperatures P= 1/kgT is small
and his propagators (T,(NJ, (v)zcg, (0)))', 0&v &P, are replaced
by the pair correlations used here, while each of his integrals
J 0&dr gives a factor p. The points of the a vertex correspond to
external points in the Gotze article."J.J.J. Kokkedee, in Lattice Dynamics, edited by R. F. Wallis
(Pergamon Press, Inc. , New York, 1965).
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{c}

CK
(~)

(u~,~'u~ ~')o= (upWpo)o (3.1)

where l=f» —12, and inversion symmetry at an atom
site gives

(u~ uo ) = (u-7 uo ) = (uo ug ) = (ug uo ~) . (3.2)

Under symmetry rotations (u~,~&~»~')o transforms like a
tensor, so that, if 1I~=R~. ,

duces the perturbation series of the previous section
Displacement invariance gives

8

(u( Wo ')'= P T ,o,T ~,(u sW,s'}o. (3.3)
P&,Pa

F»G. 3. Lowest-order contributions to the Debye-Wailer factor.
Figure 3(a) represents the harmonic part; Figs. 3(b) and 3(e)
are O(V4); Figs. 3(c), 3(d), and 3(f) are O{VP), but 3(c) gives no
contribution.

(b) those with, which will be denoted by a subscript L.
Then

In terms of the phonon variables,

~qp'.n .P4

Cr o=(uPuos)o= p— 8(a&op; T)e'o'R', (3.4)S q~ Neo„'

where a„. and ~q; are the polarization vector and fre
quency of the mode qj, and

(&»» oo) (&-Sva+»». oo)o/(o-S&~)o

exp(o oval i» oo 1)-c ~ (2.22)

(o vox )—0—exp(( o oval —1)co+(e &v»+»»»o 1)c zo)
&coqy

8(«,P; T)=ghee„coth
2kggT

(3.5)
Returning to our diagram scheme with higher-order ~

vertices, we will call a diagram with a f(: vertex linked

(L) if all parts connect. to the a vertex. A diagram with

or without a ~ vertex will be called connected (C) if it is
connected without the o vertex. Then (2.22) still holds

with the subscripts having their present meaning. For
example, Fig. 2(a) is»»i»ed and disconnected; Figs.
2(b) and 1(c) are lin&ed and disconnected; Figs. 3 are
linked and connected.

By comparing the expressions (2.4) and (2.22) one

sees that
((ou uo)") ~= ((iu uo)"e s )c,r ~ (2 23)

which is the basis of the subsequent calculations. Fur-
thermore, diagrams with a part connected to other parts
by a single line give no contribution in the case of in-
version symmetry (see Sec. IV).

ID. HARMONIC PAIR-CORRELATION
FUNCTIONS

By=1/6, Bo=1/30, Bo=1/42. (3.6)

The frequencies and polarization vectors are eigenvalues
and eigenvectors of the dynamical matrix

g D(q) ~o„s=o„ar ' (3.7)

where

~ 'Z &«sL1—cos(q R&)]. (3,g)

The eigenvector representation of D(q) & leads to

is its mean energy. The Thirring expansion" on the
second line of Eq. (3.5) converges for koo„/ksT(2or.
The B„are the Bernoulli numbers, the 6rst three of
which are

Proyerties of the Pair-Correlation Function and
Relation to the Dynl~ical Matrix f(D(q)) s=Z f(oo o)oooo~, (3.9)

Use of the symmetry properties of (u&, W&o ')' snd
of its asymptotic properties for large separations re- so «t Eq. (3.4) can be written

FH;. 4. Lowest-order anhar-
monic contributions to the
Helmholtz free energy.

Z % '(q)h(D(q))]'e"", (3.10)
NX q

"M. Blackman, Pmdbu(. h der Physi, edited by S. Flugge
{Springer-Verlag, Berhn, 1955), p. 335.
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Our calculations apply to the region T O~ where the
quantum corrections are small but not negligible (see,
e.g. , Table VIII). Then the 6rst two terms of the ex-
pansion of h(cd) are suflicient, and Eq. (3.10) is more
convenient than Eq. (3.4) because it is not necessary
to solve the eigenvalue problem (3.7), nor to perform
the sum over j.At high temperatures,

klan T
C ap . Q D1(q-)aSSi% R1

T eD

+b-sb12 . (3 11)
12k' TM

The quantum correction to C& & is a multiple of the
unit matrix and is needed only for the zeroth-order
term of (2.8), ((21 n2)2)', so that it will be ignored in the
subsequent discussion of the anharmonic contributions.
Then

kJ3Te,
CaP d2q D-1(q)act% ~ R 1

8x'3f az
(3.12)

where e, is the unit-cell volume. Since D ' is real and
even in q, e'2'R' can be replaced by cos(q R1), and C1 s

is real.

Asymptotic Behavior of the Pair Correlation
for Large Separations

The behavior of C~ & for large 1 was considered 6rst
by Davies, "but the expression derived in this section
is much simpler than his. Afterwards we discovered that
Flinn and Maradudin" had used the 6rst term of the
asymptotic expansion in a diferent context involving
crystalline defects. The connection is that the integral
in (3.12) is the displacement Green's function of zero
frequency and gives the static displacement response
at l to a unit force applied at the origin. We will also
use the second term in the asymptotic expansion. Com-
parison with C1 & calculated using Eq. (3.12) will be
made in Sec. VII.

In what follows, the notation is for a cubic crystal,
but there is no restriction in principle to this symmetry.
We introduce the dimensionless variables k= aq(22r and

y1
——2R1/a where a is the cube edge. A 3X3 matrix

notation will be used for C & and D &. Since 9 is even
in k and is proportional to k' as k —+ 0, D ' can be
written in the form

f2w )
D-'~ —k ~= P f2.(k)k'".

&c i (3.13)

The matrices f2„depend on the direction of k. Inserting

"R.O. Davies and A. V. Reader, in Proceedings of the Eightjg
International Conference on Lozv TemPerutlre Physics, London
196Z, edited by R. O. Davies (Butterworths Scienti6c Publications
Ltd. , London, 1963)."P. A. Flinn and A. A. Maradudin, Ann. Phys. {N. Y.) 15,
8l (1962).

K Kp

e'~~»dk =— e' I'xdX
—K P —Kp

and, for A and B positive,

2:—b(p) (3.15)

B day(x) daf(x)
f(x) dx= (—1)

dX" dX" ~ 0

in (3.14) gives

(3.16)

C1 .- p& 'C"'(p1)-+p1 'C&'&(p1)+0(p1 ') (3.17)
p $-+co

where

and

kgT
g(j)—

kBT
g(2)—

d"' f-2(k') ~(p')

82f2(k')
d0' 8(p') .

Qp 2

(3.18)

(3.19)

The replacement of the x integral in (3.15) by b(p')
neglects the p dependence coming from the limits of
integration. In the original integral this is the Brillouin-
zone surface. Surface discontinuities can give an oscil-
latory term like p & cos(2rK. y), where p is some power.
Such terms occur, for example, in the x-ray scattering
factor for a particle of uniform electron density and
could alter the asymptotic expansion (3.17) after the
6rst term. However, the Brillouin-zone boundary is
220t a discontinuity for the r=R1 (y=y&), since the k
integral is then periodic in k space and the choice of
the period-cell boundary is immaterial. The same applies
to the neglect of the derivatives of the limits of integra-
tion in (3.14).

The matrices f2„ introduced in Eq. (3.13) are found
as follows: Expand the matrix 9 in a power series'.

D= P D2. , (3.20)

this expression into Eq. (3.12) and changing variables
to a set with k3' along y~ gives

kggT
C'= Q dQ' f2.(k')

4~n—&

K (k')

X-,' dk k'"+'e "p~"
—K (Is' )

$2n+2
dD' f2.(k')

2(2~p )2a+2 gp&2a+2

K(k~)

dke'a2r 1 '. (3.14)
—K(k')

Here E(k') is the length of the vector from the origin
to the Brillouin-zone boundary in the direction k', dQ'

is the element of solid angle, and p'=cos(k' z). Using
the asymptotic relation
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important, then «'d' 20 and the ratio becomes &/5&',
so that these terms are about the same order of mag-
nitude. Since part of the x' terms are nonisotropic, an
eAect which cannot be cancelled out by the ff2 terms of
second, order we have chosen to calculate, besides the
K terms of first order, the a' terms of first order. In the
numerical work V~ then, was restricted to be Vp+ V4.

We will now restrict ourselves to the consideration of
cubic crystals. Expanding the exponential in Eq. (4.1)
and keeping terms of order V4 and V»', one obtains for
n=i

where D2„ is proportional to k'". Then

D '=(Z Dp-) '
n~1

=(I+D; P D,.)-D;
n~2

=LI—Dp ' g Dp~+(Dp ' P Dp~)P — ]Dp '
n~2 n 2

=Dp-' —Dp 'DpDp '+O(k')

=L /k'+fo+0(k') .

Since D2 ~k2", it follows that

321
-'(( uo)'). =-'[&( uo)')' —PZ (V ( 'uo)')z'

+pP'E &Vp'(» «)')~'j

f 2=k'D2 ' (3.22) 3Ep+3f j—+Mp, (4.3)

&o= —D2-'D4D2-'. (3.23)

The first terms in the perturbation expansion are ob-
tained from terms in V4 and V» which give contribu-
tions of the same order of magnitude. The question
arises as to which are larger, the first-order contribu-
tions to ~4 or the higher-order, i.e., VI and V»V~, con-
tributions to If.2. An estimate can be based on the as-
sumption that V~p (I"/d")Vp, where d is a length
which characterizes the rate of change, of say, the
repulsive interaction. (For a Born-Mayer potential,
d —,'pR, where R is the nearest-neighbor distance. )
Thus (u')P/dP is the perturbation parameter and one
obtains the following expansions:

(«')' (&«')')'
—,'«'(up') —p'«'&up')'~ 1+& +& +

dp

](4 3K4 (u ')'—Dup') —3&up')'j- ((uo')')' ~'
4l 4l d2

,(&«')')'+B' ' +". ~. (4.2)j
The coeKcients A, A', B, and B' are presumed to be
of order unity. The ratio of the x' terms of higher order
to the «' terms of first order is 4B/A'«'dp. When «'(up')'

1, as it must be if the Debye-Wailer factor is to be

IV. DEBYE-WALLER ANHARMONIC TERMS
FOR A CUBIC CRYSTAL

Enumeration of the Linked-Cluster Sums Needed

Only connected linked diagrams contribute to the
cumulants &(». up)") (see Sec. II).Each such diagram
will be denoted by 2, so that the Debye-Wailer factor
(2.4) contains

((» u ) ~) =g(e sr~(» up) ")g n=] 2 ~ . (4.1)

respectively. For a cubic crystal ((» up)') may be re-
placed by ~~«P&upP).

The diagram associated with Mo is shown in Fig.
3(a) and its contribution is

—,
' p «.«e&up ups) p=

—p,«p(upp)p.
aP

(4.4)

The

Afar

diagram is shown in Fig. 3(b), and the as-
sociated contribution is,

~]= ——P/P ~ V l +&+2+3+4Cl +& gl 2 Cl l
+3+44P c lglglgl4 lg lg ll—l4

ypP«g Vl l t ~ L
a apapa4C& asap

)(( l ~2P( l l
~S~4 (4.3)

V-l, ,-l, .o '""=—Vl, l, 0
' ' '

from (3.2) and (2.13c), respectively, shows that the
l&', lp' sum in (4.6) gives zero. This argument holds for
any diagram containing a part joined to the rest by a
single line, since all other points in that part may be
measured from the point of attachment of the line
and these other points, being end points of hnes, are
even in number.

The sum in the second line runs over all repeated
indices.

With Mp are associated the diagrams in Figs. 3(c)
and 3(d). The contribution of the diagram of Fig. 3(c)
is zero because of inversion symmetry. To see this,
consider

Vl l l ~&~p~pVl I 1
4+5 +l —l 1 pcl —l

p~4

XG "C& p' (46)

Displacement invariance LEqs. (2.13a) and (3.1)j per-
mits replacing the first and third factors in (4.6) by

Vl, l, 0"""Cl,-l, "", ~''= ~'—4,
which, together with the relations

(l e l P )1+2 Cl l
'tsar'+2
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The contribution associated with Fig. 3(d) is, for a
cubic crystal,

M«=hp'«'Z Vr~i«r« ' "'Vi i i
4 ' '4, i 4

XQ &
~s~sC& ~«AC& ~op (4 7)

The x4 term is

((» «)'&-=Z (s-'"'(» «)'&~'

=-PZ(V (',) &.

+'p'r, (V '(

Although 5R4»~ defined by the sum in parentheses in

(4.13) is not symmetrical in its four indices, only the

quantities

gg 11=~ aaaa gg &2= gq4aN'M+2~ alas (4 14)

are needed and

M = 5R "Q « '+BR "Q' « '«s'
a ap

—«2[3($/411+ « ~41«)+ f(gg 11 gg 1«)h~] (4 15)

—=M«+M4, (4 g) Convergence Rates of Sums

since ((» u)")0,„=0for n) 2 according to the remark
below Eqs. (2.3). Again, only terms containing V4 and
Vg' are kept.

The diagram associated with M« is shown in Fig. 3(e),
and the contribution is

M« Q«~«——s«—„««(Q Vgg gg, & ««4C(, '
4f

XG, "6,"'4,"') (4.9)

The ~ sum can be simpli6ed for a cubic crystal. Ke write

M« =Q K~Kp«y««OR«

with BR&»~ equal to the term in parenthesis of Eq.
(4.9), and note that (a) 5R« is symmetrical in its four
indices, (b) the transformation z-+ —z requires that a
Cartesian index occur an even number of times, and (c)
all cubic symmetry operations permute tensor indices
with possible sign changes. Therefore, the two distinct
nonzero elements of BRI are of the form BR3
(=OR«~s~s etc.), aWP, and OR« ~ . If we de6ne

The sums involved in calculation of the anharmonic
contributions to the Debye-%aller factor can be written
in a way which makes their convergence properties more

apparent. The greatest contribution to the anharmonic

coupling parameters comes from the short-range part
of the potential, so that each third- and fourth-order
CP decreases rapidly as the difference ~l—I'~ for any
two arguments becomes large. The sums can be re-
written so that each CP has an argument l=0 and the
other arguments are then restricted to a neighborhood
of zero.

The M~ sum (4.5) becomes

~+&2 M P' a Iagaea4C a3e4
le

/1, t,0
a1,a,a, 4

X Q G, i+,""6, «+"" (416)
/4, p

The sum over l4 is not absolutely convergent because

Clg+l4 pl4 asymptotically, but it can be made to
converge by replacing the inner sum by —Bl, l, ' ',
where

gg 11—gg aaaa gg 12—3' aapp

then MI can be written

8( ( ' '=Q(C(, '"C(, '" C(, (,—'"C(~(, '")~4. io~

4sP

M«= OR«Q K +BR«Q K Ks
a ap

(4.11)
= Q [C4 '«C(, '&——,'(C(,+4 ' C(«+(, '&

l4, y

+C t+t '"C &«+—& "")5 —(4 17)

where the prime on the summation means to omit those
terms for which a=p. Alternatively, M«can be written
as the sum of an isotropic part and of a part propor-
tional to the invariant cubic harmonic, h& —=s (g « '/«'
—g), which averages to zero over solid angle and gives
the deviation from isotropy,

M« ——«4[)(m«"+pe«")+-'(Oe«" —alt«")hg]. (4.12)

The diagram associated with M'4 is shown in Fig. 3(f).
Its contribution is

M4= —$p' Q «N«p«„««(V), (,), ' ' 'V(, g,(, ' ' '
XC~ alaC~ eIPC~ a4'YC~ as«Q

~
asas)lg lg l4 lg, lg—le

—=Q ««p«, ««GR4 ~". (4.13)

where use has been made of the symmetry (3.2). The
summand on the last line of (4.17) decreases as p~,

'
for large p«. This can be seen by expanding it in a
Taylor series about l&=l«=0. Introducing (4.17) into
(4.16) does not change the latter value because the sum
over l~, using (2.13a), shows that the added term is zero.

Even with the p~,
' dependence in (4.17) the sum

over E4 would have to be taken to p~,~100 for 1%
accuracy. It proved more expedient to evaluate Sl as a
Brillouin-zone integral. Using the 6rst term on the
right side of (3.11) for C~ and the relation

P exp[i(@+q«) R&,)=X&„, „
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for q~, 2 inside the Brillouin zone, we obtain Writing 5@3»~ so that the fourth-order CP has a
zero argument, one obtains

X$1—cos(ti. Rt)]
(kttT)'

d'k L1—cos(ork y&)j
4M' pz

2trll '" 21rk
D-'! D'!-. (4 18)

ka a&

The integrand has a k ' singularity at 4=0, so that
the same integration procedure was used as for the
evaluation of Ct from Eq. (3.12). The convergence of
the sum

1 ptt2 p V atataaCt aoatatflt t atao (4 19)

is determined by the (short) range of Vt, t, t,o.

Similar convergence techniques are needed for the
sum (4.7) for tM'o, where neither the lo nor lo sums are
absolutely convergent. Af ter the transformations
/j. ,~

—ls ~ /~, 2, l4, 5
—le ~ l4, 5, and li—l6 ~ l3, and doing

the lo sum using (4.17), we get

~o= r'gPx'—Z Vt, t,o"""Vt,t,o"" oCt, t,+t,""-
XCt t,+t, ' oBt, ' o. (4.20)

Here the indices /&, /2, /4, and /5 are restricted by the
CP to a region about the origin and the convergence
rate of the summand is determined by the l3 sum. To
determine this rate we Grst note that the asymptotic
dependence of Br, on pl, is determined by those terms
of D ' in the integrand of Eq. (4.18) which are pro-
portional to k '. It will be shown in Sec. VII that
Br pl for large pl. Next, the product Cr, r4+rICr~r&+rl
is expanded in a Taylor series about pl, =pr, =pr4=pr, 0.
The only terms in this expansion which give a nonzero
contribution to M2 are those for which each of the
expansion variables pr, , pr, , pr, , and pl, appears at
least once, since otherwise the condition (2.13a) would
give zero. On the other hand, Vt, t,o= —V t, t,o Lsee
Eq (2.13c)j. , so that the sum of the exponents of pt,
and pl, t' must be odd for the snnmand to be even. The
same applies to pr, and pr,r. Therefore, the number of
partial derivatives with respect to components of yr,
must be even so that the resulting function is even in
yt, (note that St, is even in yt,). The 6rst term to give
a nonvanishing result occurs when the sum of the ex-
ponents of pl, and pr, r is 3. The same holds true for
pl, and pr, &. The products of the third derivatives of
the asymptotic expression for C result in a term of order
p pr, and multiplication by Sr, gives p„'pl, ~, where
p„refers to the nearest-neighbor distance.

If the le sum is taken over all points within a radius
p„ the neglected part will be of order p„„'p,-4. For ac-
curacy of about 1%,p, =3.2p 't'=5.4 for an fcc crystal.

gg agyb ~ V a1aga3a4C a la
r1rgr30

24
l1+l4

XCt„t, "Ct~t,"'Ct;" .(4.21)

The change in variables l4, 5, 6
—+ —/4, 5, g, together with

V t, t,o= ——V—t, too, leads to the replacement in (4.22),

~to—te 2 (Cts te Cto—+to) ~ (4.23)

The double sum over lo and lo in (4.22) is unrestricted
in range by the CP and corresponds in Fig. 3(f) to each
of the V vertices being arbitrarily far from the ~ vertex.
For purposes of estimation the sum may be replaced
by an integral (pt, ,)p„) equal to twice that over the
region pr, &pl„and we consider the error in cutting off
the yr, integration at p, . Using the asymptotic form of
the C's and the Taylor expansion in pr» 4, as for 5R3
leads to the relative error in the p. cutoff of order

2pnn

"d'pt, "Id'pt, 1( 1

pe pto paa pto 2 &!@to ttto! !g +tarot !&o

The region !yt, Wyt, ! p makes a contribution to the
yr, integrand of order p 'pl, ",so that the relative error
is of order (p, /p. ) . In the remaining region, approxi-
mating the expression in parentheses by 2p&, /pr, ' gives
a pr, integrand 2p „'pl, ~ and the larger cutoff error
of order -', (p,„/p, ) '. To keep this to less than 1%%uo requires
summing to p, &2.7p„„=4 for an fcc crystal. Machine
calculations show that the estimates above are quite
reliable.

(All indices except a, ll, y, and h are summed. ) The
convergence rate with respect to l4 is determined by
expanding each of the Cl,.+l„i =2, 3, 4, in a Taylor series
about the point yr,.=0. Here each of the pl;, t= i, 2, 3,
must appear, and since Vr1rgrio V r1—r~rio
the exponents of the pl,. must be even. The lowest-
order term which contributes is of order p„'pl4 ' and
the neglected part is of order p „4pr, 4. For accuracy of
about 1% one should choose p, =3.2p „=4.5 for an fcc
crystal.

The arguments used here are similar to those used for
calculating the electrostatic potential in an ionic crystal,
which also involves conditionally convergent series. Be-
cause of the vanishing of the sum (2.13a), the CP are
like neutral multipoles. The introduction of Br I ' into
(4.16) corresponds to replacing the potentials of the
individual charges in a cell by the potential of a
multipole

The most complicated sum, among those considered,
for discussing convergence is that for 9R4 in (4.13) which
can be written

llo«~2~3vrlor4rflo rg+ri
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V. THERMAL EXPANSION where I"0 pelf are isothermal elastic compliance coefhci-

ents. Minimizing (5.7) with respect to gg gg leads to
The treatment follows closely that of Maradudin. '~

The equilibrium positions Rl are for some reference
temperature To. Changing 1 causes strains g q and
changes in RE'.

Fo~s:r(T To—)+g Fo„gg,ggg, g=0, (5.8)
yb

6 =Z v.Age.
g

(2—To)Fogg: r
gg(T) =-

3QoB " (5.9)The changes are due to the anharmonic potential and
are proportional to V3 or V4, so that, to the order of
perturbation U4 or V3', only the change in 3f0 need be
considered. Under the combined displacements ng+(g,
which is equivalent to the displacements ul from the
new equilibrium positions, the potential energy is

where 00 is the crystal volume and 80" is the isothermal
bulk modulus at temperatures T0.

To 6nd

5.a
and abbreviating the argument about cubic symmetry
(see Ref. 15), we et

00

V = P Vg(N)+ —g V gg gogo

2f

~Oaf; T=
~gaP~~ TO,R ~

we use the relation'

(5.10)

+—ZVgggggg ' '' '4
3f

+ +terms in P+ . (5.2)

The terms linear in both ( and I vanish, since Rg+(g
are still equilibrium positions. The term in )INN van-
ishes on the average and can only enter squared in a
perturbation expansion, so that it is ignored. The new
harmonic CP are

bF= (8B)+O((bP)'),

and restrict ourselves, for the accuracy required, to
&~harm ~

~harm
Fharm, aP=

gaP TO, R E

~«ala" '
=o Z C(T)gg-go "' (5 11)

~gad
Vgggo + Q Vgggogo (go

E3,a3

—Vg g
ala2+ P Vg g g

alagcro()g ao ( as)
E3,ag

where we have made use of (2.13a).
This changes the dynamical matrix (3.8) by

»(q)'=E d(e)' "n,g,

The derivative on the right side can be read from (5.1)
and (5.3) and is

5.3
BVE,E,

' '
V gggogo +go go-

l3
(5.12)

(5.4)
Since, for high temperatures, C(T) g

oo T,

Foagg;r=(M/2T)g Vg, og,
~' o~RggeCg, ~'~' (5.13).

The change in ufo is proportional to BCO, which, by
(3.12), (5.4), and (5.5), is VI. ANHARMONIC CONTRIBUTIONS

TO THE FREE ENERGYkgTv,
AC, = — Q gg„, d'qP (9—') e

Sx'M &~ The Helmholtz free energy is given by

~here
j. » Eqs. (5.11)—(5.13) the sums are over repeated indices.

d(gI) ' = Z «gogo e~&o'L1 —cos(q Rg,)j. (S.S) The sum in (5.13) is determined by the range of Vo~ Ej, , lg and is much more convenient than the q-space form in
Ref. 15.

Xdee "(D ')e'~ (56)
For the cubic symmetry gg e= o eg(T).

The thermal expansion rg(T) can be taken from experi-
ment or calculated directly. For the latter, w'e expand
the Helmholtz free energy in g p and T—T0, i.e.,
F=Fo+For(T—To)+Q Fo gg, rgg e(T—To)

aP

+o Z Fo-evoke-w. g+", (57)
aPyg

"J.C. P. MiHer, Math. Comp. {Formerly: MTAC) 14, f30
{1NO).

F= keT ln(Tre e~)—
=Fh„—kggT ln(e e"")',

(6.1)

(6.2)

where the second equality involves neglect of quantum
eGects in the anharmonic terms. The Iinked-cluster
theorem LSec. III above Eq. (2.22)j gives

F=Fhorgn kggT(e e + 1)co (6~ 3)

of which the terms proportional to V4 and Ve~ are
represented in Figs. 4(a) and 4(b), respectively, and are
(sums over repeated indices)

F4=)SQ Vg, g, g o 'o'~g~'Cg,
g

~'~'Cg ' ' (6.4)
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and

VII. NUMERICAL CALCULATIONS AND RESULTS

Calculation of Cg t' and Bg &

In this section we discuss the evaluation of the singu-
lar Brillouin-zone integrals, (3.12) for C~ and (4.18) for
B~, and give numerical results. Values of B~ for larger
p~ are not needed and values of C~ for larger p~ are calcu-
lated using the asymptotic forms. The latter values of
C~ are not needed in the calculation of M~, M3, and M4,
while in the calculation of M2, neglect of terms which
contain a C~ with p~) 6 leads to an error of about 4%%uo as
compared to an error of about 1% when not neglected.
If one were to try to evaluate the M& and M2 sums
without evaluating B~ in reciprocal space, the contribu-
tions of Cg for pg)6 would be significant. The slow
convergence of this latter method is mainly in the parts
giving the propagation from the place of perturbation
(V vertices) to the origin, as shown in Figs. 3(b) and
3(d). The rearrangements LEqs. (4.19) and (4.20)]
which introduce B&, together with the g form of B)
LEq. (4.18)], in effect describe this propagation in the
phonon representation. The remaining direct-space sums
converge much more quickly.

The calculation of Cg and Bg are discussed together,
since their integrands both have the g

' singularity
which gives rise to the principal di6iculty in their
numerical integration. One method of treating this
singularity is to ignore it, that is, to use a numerical
integration formula in which none of the evaluation
points coincides with the singular point. Another
method is to substract o6 the singular part and inte-
grate it separately. (The dimensionless variables intro-
duced in Sec. III will be used. ) For C~ the unbounded
singular part is the term f o(k)/k' in Eq. (3.13). We
write

ka7' f-o(k)
d'k D '(k) — cos(ork. yi)

4M k2

d'k D '(k) cos(ork yi)
BZ--(Rp

PgT
+

4M

„sinLorK(k) p~]
dQ f o(k), (7.1)

~k y(

Fo= — P &t ~ o
' ' '&t t o

' ' '
i2kgT

XC), (,+(, "C(, ),+(, C(, ". (6.5)

The range of the sums for Ii 4 is determined by the CP,
while in Ii 3 the arguments used in Sec. IV show that the
Io summand is 0(p~, ') in the asymptotic region, so that
it converges well. Note that the structures of F4 and
M~ are the same if C&g &g is replaced by B&, &, in the
latter, and likewise for F3 and M2 if C&, is replaced by
Blg.

where $0 is a region of the Brillouin zone about the
origin, K is a vector from the origin to the point on the
boundary surface of (Ro in the direction k, and dQ is
the element of solid angle. In the last term on the right
side in Eq. (7.1) the radial k integration has been done.
The function D"'—f o/k' is now bounded, although
still nondMerentiable at the origin. This singularity
presents no difhculty analytically. The method of sub-
tracting the singularity is used to compute the values
used in subsequent calculations, since it was found to
be more accurate (&0.2% error as compared to )2%
error when the singularity was neglected). The addi-
tional computer time required for the two-dimensional
integral in Eq. (7.1) is small.

The corresponding expression for B) ls

(ks T)' ( (L,)'~
d'k

i (D ')' — iLI —cos(n.k pi)]
k' i

+ dok (D-')'L1—cos(ork y&)]
BZ—(Rp

(ksT)' t'cos(~K y&)
—1

dQ (f,)'~
E

~K y~
x"smx

dx ~, (7.2)Z, x

where (D ')' and f oo are matrix products. Neglect of
this singularity gives less accurate results than those
obtained for C~ because of the more complex angular
variation near k=0. The asymptotic behavior B& p&

is determined by the K y& factor on the last line of
(7.2).

The Brillouin-zone volume integrations were done by
subdividing q (or k) space into cubic integration cells
and using in each cell a 27-point numerical integration
formula due to Miller, ' which is suitable for three-
dimensional integrals. The vertices of the cubic grid
used were obtained by dividing the distance from the
origin to the centers of the square faces, k=(1,0,0)
etc., into eight equal parts. Thus the origin is the vertex
of eight cells which comprise the region 6Io in (7.1) and
(7.2) where the singularity is subtracted out, while the
square faces of the zone lie in faces of the cells. The
hexagonal faces of the zone can intersect cells but, be-
cause the integrands are periodic, it is sufhcient to
integrate over all cells whose centers are in the interior
of the zone. That part of a cell which protrudes through
a hexagonal face corresponds to an equivalent interior
volume at the opposite hexagonal face of a cell whose
center is outside the zone. A factor —,

' is needed for cells
whose center lies on a hexagonal face.

If the integrand has cubic symmetry also, then a
further reduction is achieved by integrating only over

'1' A. A. Maradudin, Phys. Status Solidi 2, 1493 (1962).
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d'k F(k) cos(nk tu) = P d'k F(k) cos(sk tu)
C~lBZ

48

d'k g F(v;k) cosLs(v', k) tn]
SI C~l

d'k F'(k),
S1

where v'c is the transformation which takes Sl into Sc.
Because t runs over the entire cubic group (48 elements),
it is easily verified that F'(V'k)=F'(k), which means
that each component of F' can be extended from Sl
throughout the Brillouin zone as a symmetric function
of k. The final integration formula for a second-rank
tensor which was used is

d'k F~s(k) cos(sk tu)
BZ

24

=2K Z &~-&est
t~l e', P'

1
d'k

cells i which p,s

intersect $1

XF «'(k) cos(sk V'& 'y&), (7.4)

where the first sum is restricted to proper transforma-
tions. For the mesh size used there are 60 cells i.

The singularity in (7.1) and (7.2) was subtracted out
in the volume Ro of the eight cubes about the origin.
The remaining two-dimensional solid-angle integral was
converted to an integral over the surface of (Ro. The
surface was subdivided into a square mesh by dividing
the distance from the center of a square face to the

each cell which intersects the sector Sl defined by
gl&g2&g3 and multiplying the contribution of that cell
by 48/p, where p is the number of sectors S&, , S4s
which it intersects. The factor 1/p comes from the fact
that, if this procedure were applied to all 48 sectors
and the results added up, the contribution of each re-
gion of cell i would be counted p; times. The volume
integrands in (7.1) and (7.2) are of the form F(k)
Xcos(s k y~), where F carries tensor indices. Because of
the tensor indices and the yg, each component does not
have cubic symmetry. It is possible, however, to intro-
duce a function of cubic symmetry which permits evalu-
ating the integral by using only the cells which inter-
sect Sl. We make use of the symmetry property which
may be verified for all of the tensor functions that we
encounter here, namely,

F(v'k) = (TF)(k), (7.3a)

S(&t. )=(TS)(e), (7.3b)

where TF or TP denotes the matrix transformation on
all of the tensor indices and the right-hand. members
are to be evaluated for the original arguments. Equa-
tions (2.13c) and (3.3) are examples of (7.3b). Now

center of an edge into eight equal parts. Again only the
cells intersecting 1/48 of the integration region need be
used. There are 55 for the mesh used. In each cell a
nine-point integration formula due to Miller" was used.

For each value of yg the computation time on an IBM
T040 was about 2 min for the volume integral and & min
for the surface integral. The volume integration was
tested in several ways. For the integrable functions,
f(k)=1, cos(wk y), cos'(zk. y), where y=(4,4,0), the
mesh used gave agreement to six decimal places. A $
reduction in the linear dimension of the integration mesh
made a 0.002% further change in the value of C~" for
y&=(6,0,0) calculated by the singularity subtraction
method of Eqs. (7.1) and (7.2). In Miller's integration
formula none of the points is at the cube vertices, so
that (3.12) and (4.18) for Cq and B~, respectively, can
be used directly by ignoring the singularity. For the
mesh size used CP' was 2% too large for y~=(6,0,0)
and the mesh refinement did not reduce the error much,
presumably because the integration points move nearer
to the singularity. Neglect of the singularity is more
serious for S~ because of the more complex angular
variation near k= 0.

About 95% of the contribution to C~"' for y~= (6,0,0)
comes from the region 80, where the integrand is vary-
ing more rapidly than elsewhere in the Brillouin zone,
and the principal source of error is the integration in
(7.1) over the surface of 64 because of the rapid angular
variation. For the smooth function f(k) = 1 even a much
coarser surface mesh than the one used gives the in-
tegral to seven decimals. To test the rapid. angular
variation, the integral

1/~q 'I' 2 8'p
dQe (~t 'o"""~=-erf

p 2n'"

'7 G. W. Lehman, T. Wolfram, and R. E. DeWames, Phys.
Rev. 128, 1593 (1962). The CP in Table III of this reference are
incorrect and are corrected in the errata of Phys. Rev. 130, 2598
(1963).The corrected values are used in Ref. 24.

was done for p=6, 0.= ~. For the mesh used the value
was i.048305 as compared with the correct value of
1.047198, a difference of 0.1%. Reducing the mesh
dimension by two gave agreement to 0.002%. Errors
of 2 or 3% in each C~ or B~ could lead to serious errors
in M; because of the subtractions and multiplications
involved )see Eqs. (7.9) to (7.12)j. The tests above
show that much smaller errors are made in the inte-
grations used and, since even these errors are for large
y&, they are negligible compared with truncation errors
in the M; sums.

The calculations were done with two sets of CP for
copper. The first is that of Lehman, Wolfram, and
DeWames, '7 and is based on a third-neighbor central-
force model. The CP were found by fitting to x-ray-
determined phonon dispersion curves and to elastic
constants, both at 300'K. The second set was given by
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Sinha, "who Gtted a sixth-neighbor tensor-force model
to neutron dispersion curves and elastic constants at
300 K. The CP are listed in Table I and the values of
C/u' (@=3.610&&10 ' cm) are shown in Table II. The
values of C obtained from Lehman's model are some-
what larger than those obtained from Sinha's model.
Table III gives S~ for y~&6. The values obtained for
8& using Sinha's CP are generally larger than those ob-
tained using Lehman's CP, although the former give
smaller values for C~,

Test of the Asymptotic Expansion for C~ P

The integrals (3.18) and (3.19) for the first two terms
of the asymptotic expansion of C~ can be reduced to
one-dimensional form because of the b functions. The
integration variables used in Eq. (3.18) have the ka'

axis along y~. Transforming back to the original vari-
ables lr and carrying out the 8 integration leads to

dQf 2(p, q)h(k p)

& 2(po(v ),v )
4 (7.5)

23f 0 (g~ cosy+ &2 sing)'+ $P

where p=cos8, po ——cos80(p), &,=p,/p, and

8o(q) = —tan '+3/(pq cosy+pm sing) j. (7.6)

In Eq. (7.5) use was made of the property that, if g(x)

gs

220

222

Harmonic CP (dyn/cm)

ap —V &b —V &' yi

11 11 240 13 478 220
33 —105 —1215
12 11 250 14982
11 —227 28 310
22 105 —48
11 1122 507
22 35 239
23 363 259 222
12 725 378

~p —V-t b

11 267
33 —32
12 —36
12 —110
22 —203
33 37
12 18
11 —157
12 —58

Born-Mayer parameters, &~~=A expL —B(r—Rnn)/Rnnj

2
Pressure dependence

Shear moduli' of shear moduli'

A (eV) 0.0408 0.1081
B 166 11.75

3
Cohesive energy

lattice parameter,
compressibility

0.0958
13.34

Models used for anharmonic calculations

I Harmonic CP' and AI, BI
II Harmonic CP' and A2, B~

III Harmonic CP and Al, Bg
IV Harmonic CPb and Ae, BI

~ Reference 17. b Reference 18. & Reference 20. d Reference 21.

has only simple zeros at x= x„,

8(x—x„)
~(g(x)) =Z

~
(dg/dx), ,„~

TABLE I. Parameters of the potentials used. The harmonic
CP are taken from I ehman, Wolfram, and DeWames' and from
Sinha, both sets essentially from phonon data at 300'K. The
anharmonic CP are assumed to be determined by the repulsive
Born-Mayer pair potential. Four combinations, models I—IV, are
used in the calculations of anharmonic eGects.

TABLE II. Pair-displacement correlation functions CIO& for copper (T= 0=325'K). The units are 20 4a'= 1.303X20 "cm', where
a=3.610X10 8 cm is the cubic lattice constant. Columns marked "a" are based on the CP of Lehman, Wolfram, and DeWames' and
those marked "b" are based on the CP of Sinha b Not all of the latter values are given.

p~

000
120
200
221
220
310
222
321
400
330
411
420
332
422
431
510
521
440
530
433
442
600

22

5.5878
1.7289
0.9825
1.0201
0.8942
0.6706
0.6906
0.6634
0.4914
0.5918
0.5023
0.5065
0.5317
0.5024
0.4869
0.3950
0.4038
0.4422
0.4024
0.4364
0.4201
0.3255

11b

5.4688
1.7659
0.9468
1.0166
0.9537
0.6654
0.7031
0.6813
0.4894
0.6251
0.5029
0.5090
0.5440
0.5150
0.5025
0.3946
0.4065
0.4626
0.4083
0.4471
0.4325
0.3249

22~

5.5878
1.7289
1.0249
0.8991
0.8942
0.6866
0.6906
0.6348
0.5202
0.5918
0.4976
0.5099
0.5317
0.4577
0.4776
0.4163
0.4028
0.4422
0.4022
0.4098
0.4201
0.3495

5.4688
1.7659
1.0221
0.9257
0.9537
0.6973
0.7031
0.6551
0.5321
0.6251
0.5115
0.5238
0.5440
0.4729
0.4949
0.4276
0.4146
0.4626
0.4152
0.4212
0.4325
0.3595

5.5878
1.4206
1.0249
0.8992
0.7088
0.6394
0.6906
0.5583
0.5202
0.4567
0.4976
0.4437
0.4819
0.4577
0.3941
0.4053
0.3753
0.3373
0.3345
0.4098
0.3571
0.3495

Component
22b 338 22~

0.0
0.5262
0.0
0.2239
0.3043
0.1148
0.1877
0.2927
0.0
0.2015
0.0654
0.1233
0.1659
0.1172
0.1520
0.0414
0.0811
0.1499
0.2229
0.1228
0.1372
0.0

12b

0.0
0.5879
0.0
0.2222
0.3394
0.1097
0.1861
0.1996
0.0
0.2250
0.0652
0.1246
0.1696
0.1219
0.1614
0.0428
0.0826
0.1645
0.1160
0.1265
0.1434
0.0

23~

0.0
0.0
0.0
0.1381
0.0
0.0
0.1877
0.0882
0.0
0.0
0.0302
0.0
0.1248
0.0823
0.0535
0.0
0.0297
0.0
0.0
0.1049
0.0816
0.0

13.

0.0
0.0
0.0
0.2239
0.0
0.0
0.1877
0.1049
0.0
0.0
0.0654
0.0
0.1248
0,1172
0.0576
0.0
0.0416
0.0
0.0
0.1228
0.0816
0.0

Reference 17. b Reference 18.

'8 S. K. Sinha, Phys. Rev. 143, 422 (1966).
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TABLE DI. Values of the function 8 ~& of Eq. (4.18), for copper. Units are 10 'a' 2.698' 20 '~ cm . All the calculated values for
the coupling parameters of Lehman et al.~ are shown and only some of the values for the coupling parameters of Sinha. (T=e.)

P1

000
110
200
211
220
310
222
322
400
330
411
420
332
422
431
510
521
440
530
433
442
600

0.0
0.2809
0.4532
0.5293
0.5939
0.7134
0.7351
0.8063
0.9326
0.9053
0.9643
0.9980
0.9992
1.0672
1.1049
1.1857
1.2373
1.2156
1.2929
1.2480
1.2847
1.4140

11b

0.0
0.2814
0.4700
0.5322
0.6039
0.7420
0.7552
0.8347
0.9780
0.9353
1.0104
1.0448
1.0369
1.2153
1.1537
1.2511
1.3040
1.2682
1.3609
1.3048
1.3427
1.5003

22~

0.0
0.2809
0.4287
0.5203
0.5939
0.6782
0./351
0.7955
0.8702
0.9053
0.9215
0.9586
0.9992
1.0574
1.0889
1.1094
1.1849
1.2156
1.2526
1.2523
1.2847
1.3126

22b

0.0
0.2814
0.4345
0.5268
0.6039
0.6930
0.7551
0.8171
0.8938
0.9353
0.9479
0.9893
1.0369
1.0932
1.1299
1.1472
1.2287
1.2682
1.3021
1.3025
1.3427
1.3626

Component
33

0.0
0.2982
0.4287
0.5203
0.6175
0.6887
0.7351
0.8143
0.8702
0.9393
0.9215
0.9855
1.0115
1.0574
1.1243
1.1162
1.2022
1.2607
2.2945
1.2513
1.3116
1.3126

22

0.0—0.0934
0.0—0.2058—0.1818—0.1142—0.1588—0.2063
0.0—0.2712—0.2)52—0.2209—0.2577—0.2142—0.3022—0.2167—0.2256—0.3629—0.3222—0.2834—0.3530
0.0

12b

0.0—0.2012
0.0—0.1122—0.1971—0.1215—0.1694—0,2228
0.0—0.2965—0.1243—0.2393—0.2791—0.2327—0.3298—0.1269—0.2459—0.3971—0.3521—0.3087—0.3858
0.0

23a

0.0
0.0
0.0—0.0582
0.0
0.0—0.1588—0.0790
0.0
0.0—0.0364
0.0—0.2815—0.2233—0.0876
0.0—0.0569
0.0
0.0—0.2250—0.1915
0.0

23~

0.0
0.0
0.0—0.1058
0.0
0.0—0.2588—0.1077
0.0
0.0—0.2252
0.0—0.1815—0.2142—0.2075
0.0—0.2248
0.0
0.0—0.2834—0.1915
0.0

a Reference 17. ~ Reference 18.

Equation (7.5) is not valid for $3
——0 but, through use of

the cubic symmetry relations, C&'&(p) can be found by
considering another direction. Inversion symmetry of
f 2 reduces the limits of integration to the range 0 to x.

Similarly, we get

C"'(p) =—
4Am'

nfl (efo(~ v))&(& i)

«fo(~ ~))l~-~.
4 dy . (7.7)

2M'' 0 ($y cosy+ b sing)'+$82

The operator 6 is 8'/Bp" expressed in terms of the
unprimed coordinates. These integrals were evaluated
by means of the 80-point Gauss formula. "

The angular variation of C&" and C'2& is shown in
Table IV. Note that C('& varies much more rapidly
than does C&'& and that it may also be larger, for ex-

ample, especially in the L1117 direction. Tables V and
VI compare the 6rst term and the erst two terms of the
asymptotic expansion (3.17) with the values of C& cal-
culated from (3.12) and (7.1) for the 11 and 12 com-
ponents, respectively. Kith few exceptions, for y& near
zero, as might be expected, and for y~ in the L1107
direction, including the second term ~p ' improves
agreement. Reference to Table IV show that the largest
values of C"& have opposite sign to C&'). If the asymp-
totic series were alternating, then

'C'"(" )+' 'C"'(e ) (7.8)

would be a better second approximation to C~ than
the 6rst two terms of (3.17). The last three columns
in Tables V and VI show the percentage deviations of
the 6rst and second approximations of (3.17) and of
(7.8), respectively, from the directly integrated values
of Cp&. Use of (7.8) improves agreement in the L1107

TasLE IV. Angular dependence of the Grst two terms of the asymptotic expansion (3.17) of Ci. Units are 10 IR cm'
t
= (0.767' 20 4)a'j.

The values are for T=315'K and the second and third columns would be proportional to T. The CP of Ref. 17 were used.

gg

400
410
420
430
440
441
442
443
444
433
422
411

C(1)Q )11

2.5350
2.6443
2.9174
3.1781
3.2555
3.2786
3.3259
3.3460
3.3014
3.3819
3.1726
2.7452

g(R)( $)11

0.3294
0.5544
1.0956
0.2347—0.7144—0.9249—1.8351—3.3619-3.8237—2.6396
1.2040
0.8289

Q(R) 11/Q(l) 11

0.1299
0.2096
0.3755
0.0738—0.2194—0.2821-0.5517—1.0047—1.1609—0.7805
0.3795
0.3019

g(1) (p$) IR

0.0
0.33/3
0.6986
1.0024
1.1089
1.1124
1.1123
1.0834
1.0072
0.9828
0.7368
0.3493

( (R)( 1)IR

0.0
0.2962
0.9009
0.2189—2.0425—22275—1.8675—2.8898—3.2675—1.8712
0.5584
0.2955

g(R) IR/g(I) IR

~ ~ ~

0.8780
1.2896
0.2184—0.9401—1.0944—1.6788—2.6672—3.2440—1.9039
0./579
0.8459

"M. Abramowitz and I. A. Stegun, IJandbook of Mathematical Functions (Dover Publications, Inc. , New York, 1965), p. 928.
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TABLE V. Comparison of the values of Cg" for T=325'K calculated as a Brillouin-zone integral {3.12) )or (7.2)g with the values

calculated from the asymptotic expansion (3.17). Units are 10 "cm'. The CP are taken from Ref. 17.The last three columns are the
percentage deviations (PD) of the first term of (3.27) and the first two terms of (3.17) and of (7.8) from the Brillouin-zone integral
respectively.

p~

200
220
222
400
420
422
440
442
600
620
622
444
640
642
800
644
820
660
822
662
840
842
664
844
860

1000

(3.17),
one term

1.2675
1.1510
0.9530
0.6338
0.6524
0.6476
0.5755
0.5543
0.4225
0.4306
0.4350
0.4765
0.4308
0.4274
0.3169
0.4065
0.3207
0.3837
0.3235
0.37/8
0.3262
0.3266
0.3566
0.3238
0.3178
0.2535

(3.17),
two terms

1.3087
f.1294
0.8608
0.6389
0.6646
0.6579
0.5716
0.5458
0.4240
0.4335
0.4391
0.4650
0.4329
0.4291
0.3175
0.4044
0.3217
0.3825
0.3249
0.3761
0.3277
0.3283
0.3532
0.3251
0.3180
0.2538

BZ integral
(3.12)

1.2792
2.1653
0.9000
0.6404
0.6601
0.6548
0.5762
0.5475
0.4242
0.4333
0.4385
0.4675
0.4324
0.4288
0.3175
0.4041
0.3217
0.3834
0.3249
0.3766
0.3275
0.3282
0.3536
0.3249
0.3181
0.2541

PDg

—0.9084—2.2254
5.8931—1.0386—1.2736—1.0899—0.2262
1.2457—0.3951—0.6269—0.8062
1.9327—0.3758—0.3165—0.2050
0.5877—0.3152
0.0837—0.4149
0.3253—0.4246—0.4641
0.8709—0.3370—0.0965—0.2182

PDg

2.3117—3.9355—4.3516—0.2347
0.6820
0.4742—0.8110—0.3062—0.0354
0.0563
0.1345—0.5328
0.0994
0.072f—0.0022
0.0624—0.0078—0.2212
0.0028—0.1269
0.0528
0.0506—0.2109
0.0569—0.0226—0.0882

PD8

—0./016
-2.5805

0.7707—0.6366—0.2458—0.3078—0.4686
0.4698—0.2152—0.2803—0.3358
0.6999—0.1382—0.1222—0.1036
0.3250—0.1615—0.0687-0.2062
0.0992—0.1809—0.2068
0.3800—0.1400—0.0596

-0.1531

direction. The asymptotic expansion works surprisingly
well, the first term alone agreeing to within 6% even
for small p~ and the values from (7.8) to within 3%.
Note, for example, that in the L100j direction agree-

ment improves as p~ increases out to y~=(8,0,0) and
worsens at y~= (10,0,0). This indicates that the volume
integrations Lin (7.1)j are becoming inaccurate be-
cause of the rapid oscillation of cos(sit y~).

TABLE UI. Comparison of the values of C&" for T=325'K calculated as a Brillouin-zone integral (3.22) t or (7.1)j with the values
calculated from the asymptotic expansion (3.2 7). Units are 10 "cm'. The CP are taken from Ref. 17. The last three columbus are the
percentage deviations (PD) of the first term of (3.17) and the first two terms of (3.17) and of (7.8) from the Brillouin-zone integral,
respectively.

p~

200
220
222
400
420
422
440
442
600
620
622
444
640
642
800
644
820
660
822
662
840
842
664
844
860

1000

(3 17)
one term

0.0
0.3921
0.2908
0.0
0.1562
0.1504
0.1960
0.2854
0.0
0.0722
0.0723
0.1454
0.2273
0.1248
0.0
0.1125
0.0409
0.1307
0.0412
0.1278
0.0781
0.0779
0.2170
0.0752
0.1002
0.0

(317)
two terms

0.0
0.3460
0.2122
0.0
0.1663
0.1552
0.1903
0.176S
0.0
0.0740
0.0/40
0.1356
0.1292
0.1258
0.0
0.1110
0.0414
0.1290
0.041/
0.2257
0.0794
0.0790
0.1139
0.0758
0.1005
0.0

BZ integral
(3.12)

0.0
0.3966
0.2446
0.0
0.1607
0.1527
0.1954
0.1788
0.0
0.0738
0.0738
0.1375
0.1284
0.1252
0.0
0.1107
0.04f4
0.1299
0.0417
0.1262
0.0791
0.0788
0.1143
0.0756
0.1003
0.0

PD1

~ ~ ~

—0.3881
5.1335

~ ~ ~

—0.6805—0.3476
0.1085
1.2009

~ ~ ~

—0.3837—0.3360
1.6762—0.2639—0.0917

0 ~ ~

0.4451—0.1644
0.2157—0.1493
0.4055—0.3144—0.2710
0.7801—0.1351—0.0311

~ ~ ~

PDQ

~ ~ ~

—4.3421—3.6003
~ ~ ~

0.8455
0.3778—0.8911—0.3783

~ ~ ~

0.0599
0.0450—0.4257
0.1792
0.1227

~ ~ ~

0.0698—0.0002—0.2296—0.0005—0.2442
0.0700
0.0597—0.0959
0.0476
0.0377

~ ~ ~

PD8

~ ~ ~

-2.3652
0.7666

~ ~ ~

0.0825
0.0151—0.3913
0.4113

~ ~ ~

—0.1619—0.1455
0.6253—0.0423
0.0155

~ ~ ~

0.2575—0.0823—0.0069—0.0749
0.1306—0.1222—0.1057
0.3422—0.0437
0.0033

~ ~ ~
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TAsLE VII. Thermal expansion codBcient of copper at T=300'K
(in 10 ''K '). p

5ttpe7s ——p o Nl&2~$~4(ci —c~+ )+1~(Q—c~„)1»
24

Experimental value'
Model I
Model II
Model III
Model IV

1.672
2.251
1.931
2.603
2.407

X (G—G+.)"'Ci ", (7 11)

5i1 apys — 1 p2 p & a|aga3& a4aga8(C C )a|a

X (4 C—w,)" (Ct. C—~+.,)"&

~ I. E. Leksina and S. I. NovUrova. Fix. Tverd. Tela 5. 1094 {1963)
LEnglish transl. :Soviet Phys. —Solid State 5, 798 {1963)g. X (Ci —Cv+,)"'(C~i —Ct+v)"" (7 12)

In each of Eqs. (7.9)—(7.12) one of the sums over
atoms, say, 1=(t&,l2, l&), can be restricted to the solid-

angle sector /&&/2&/3 by including a weight factor v&.

This sector contains a unique representative from each
atomic shell about the origin and v~ is the number of
atoms in the shell. Each atom /' in a shell is reached by
some symmetry rotation V which takes the representa-
tive atom 1 into it and, by reference to (3.3) (which
holds for both C~ andS~) and (A5) tor to (7.3b) for a11$,
we see that this is equivalent to the orthogonal trans-
formation T on the tensor indices while holding / fixed.
In M~ all tensor indices are contracted in pairs, giving
an invariant under T, so that the contributions for
each / are the same. For M2 the proof is similar but
requires also a change in variables e~, 2 ~ n~, 2 for each
/', so that, if V/=/', Vn=n'.

The uncontracted indices in 5K3,4»' modify the
above argument. Consider 5Rs (with tensor indices sup-
pressed for the moment) and let 5R3(l') be the contribu-
tion in (7.11) from an atom l' in the same shell as atom
/. Then

The advantage of using the asymptotic expansion
for small p~ also is the smaller computation time. To
compute C~ t' took 2-,'min per point y~, while to com-
pute C&'& & and C{ ) t' took 2 sec and 1 min per point.
respectively, on the IBM 7040.

Calculation of A~&armonic Contributions to
the Debye-Wailer Factor

Third- and fourth-order CP were obtained as follows.
The configurational potential energy can be separated
into long- and short-range parts, the long-range part
due to the electronically screened interaction between
ions and the short-range repulsive interaction resulting
from the interpenetration of the outer shells of nearby
ions. The repulsive part is usually described by the
Born-Mayer pair potential

(r) —ge B[(t ann) /san]

where A and 8 are parameters, the values of which have
been estimated semiempirically by serveral methods and
which are rather widely scattered. ""These values are
shown in Table I. Our basic assumption is that Vs, V4,
etc., which involve higher derivatives of the potential
energy than does V2, are predominantly determined by
q „~.This is supported by the estimate of Mann and
Seeger' of the relative contribution of the valence elec-
trons and p„~ to the derivatives of the'total energy with
respect to specific volume, namely, the valence electrons
contribute 23, 6, and 0.4'Po to the second, third, and
fourth derivatives, respectively. The anharmonic CP
can then be calculated (but not V2) as if there were
central forces.

The form of the CP for central forces is given in the
Appendix. %hen these CP are substituted into Eqs.
(4.19)—(4.22), the following equations result (with sums
over repeated indices);

5Ks —— Q 5Rs(l') .
l' in shell

Let Vg be such that V~/=/'. Then the procedure used
above for M& gives readily

5KB(l') = T(.5Rg(l),

where T transforms the tensor indices. Now we use the
special property of cubic symmetry that the nonzero
elements have indices aaPP, aPaP, or aaaa and that, for
example,

&&+f1—Qg f/QZ Z —Qg Z ZXZ
3 3

Also, T(aaPP) =a'a'P'P', and similar relations, so that

5E3(l') = 5R, (l)

and the v& factor is applicable. The argument clearly
applies also to the t sum in (7.12) for 5R4.

In calculating 5K4 it was expedient to calculate and
store the component sum

1P~2 P o~alalasa4(CO C~) aaa4+~alaI

+p2&2 p & ala%as& aca5ag

X(ct—Ct+. —C~.s+C~. +. ) '"

(7.9)

g(Qfle —Q Q o alCKga3(c) c( )CgQ

ct2i+g

X(C,-C„„)-e, (7.13)
(Q Q+ C~ +C(+ + )a%a'sB &am a s (7 10) in terms of which

X(ct p —Ci+p) ' ', (7.14)

cm' aPyb & P2 ~t'
V M C' agafya", eggs' K. Mann and A. Seeger J. Phys. Chem. Solids 12, 314 (1967).s' S. S. Jacal and L. A. Girifalco, J. Phys. Chem. Solids 28,

457 (1967).
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where the prime refers to restricting / to the reference
sector /1)/2&/3 or, equivalently, to the sum over atomic
shells.

In the machine calculations the relevant data, y~,

~~
' ",C~ &, S~ t'&, etc., were read in for / in the reference

sector only. Values needed for l outside were calculated
from the corresponding reference-sector values by use
of the transformations

(Qi )'"=(TiQ)'". (7.15)

"W. C. Overton, Jr., and J. GaGney, Phys. Rev. 98, 969 {1955)."P.A. Flinn, G. M. McManus, and J. A. Rayne, Phys. Rev.
123, 809 (1961).

Much time is saved because each T& has only three
nonzero elements.

The thermal expansion rI(T) is easily calculated from
Eqs. (5.9) and (5.13). The value of To is 300 K, since
the CP in Refs. 17 and 18 were determined at this
temperature. The isothermal compressibility is 80"
= 13.317X10"dyn cm 2. Table VII shows the calcu-
lated and experimental values of the thermal expansion
coefIicient. The variation among the 6rst three models
(see Table I) is due to the different Born-Mayer param-
eters. The difference of the last two values comes from
the harmonic CP. The experimental value of the ther-
mal expansion coeKcient was used to get the change in
M 0 (or Co") from Eq. (5.6).The singularity in (5.6) was
neglected, since this leads to a negligible error in the
D ebye-%aller factor.

Table VIII shows the various contributions to the
Debye-%aller factor for the models used. There is a
large cancellation of V3 and U4 contributions to the
mean-square displacement (»' terms) in the upper part
of the table. As a result, the 6rst quantum correction is
comparable with the anharmonic effect at the Debye
temperature. The Vq and V4 contributions add (nega-
tively) in the anisotropic term s'hmz&'&h&(R) and the
resultant is not very sensitive to the choice of potential.
To estimate the importance of the anisotropy, consider
Mo 1, or Ka 60 (minimum value for Bragg reflection
is xa=2vSs. 11). Then the anisotropic term has an
amplitude about 0.4% of mo.

The first quantum correction has been included in
Mo. The second quantum correction would be about
1/60 as large. The quantum corrections to the anhar-
monic terms are also negligible relative to Mo. However,
if they were signihcant, it would not be consistent to
calculate them by correcting Cps by using (3.5) in
(3.4), because comparable terms are neglected in re-
placing U(P) in (2.7) by e sv" (see Ref. 10).

Table IX shows a number of calculated values of the
mean-square displacement, including the present work,
and the values determined by x-rays by Flinn, Mc-
Manus, and Rayne. "Only in the present work are the
anharmonic contribution and the thermal expansion in-
cluded. The other calculated values are just for the
harmonic contribution (n2)0, based on (3.4), and include

TmLE VIII. Contributions to the Debye-Wailer factor
f=e ~ to order V4, VP.'

M =M0+M1+Mg+MI+M4b
Mo = (mal ~(T/8}Lmo+ma'(T —Tol+ moo (8/rl'j

Mf, g ——(aa)'(7/8)'m1, g, my+ma—=m~ "&

M3, 4= (~a)'(Tje)')m3, 4+mme, 4h7. (K)j
5(

mg+m4 —mz('&, amg+am4 —am~'4', h| =-~ Q
2&-

8=315'K, a=3.610X10 8 cm

(a) All entries to be multiplied by 10 '
odel m0' m0'('K) ' m0 ' m1'
I 2.794 6.65X10 ' 0.078 —0.368 0.316
II 2.794 5.42X10 ' 0.078 —0.197 0.294
III 2.794 7.47X10 ~ 0.078 —0.318 o.483
IV 2.734 7.04X10 ' 0.078 —0.279 0.448

(b) All entries to be multiplied by 10 '
Model ~3 h ~4 ~gc4) /ms ' bm4

I 3.63 —4.73 —1 ~ 10 —1.75 —1.31
II 1.94 —4.16 —2.22 —1.45 —1.28
III 3.13 —6.99 —3.86 —1.96 —2.06
VI 2.33 —5.01 —2.68 —1.60 —1.60

3)

5j

mgC'&

—0.053
0.098
0.165
0.169

m&C4)

—3.06
2 0 73—4.02—3.20

~ See Table I for potential models.
b Times on IBM 7040 for Ms, i ~1, 2, 3, 4, were 1.5, 8.5, 3.2, and 13

mm, respectnrely.
e mo =CA (T = e)/2a.
4 tno' hCP(T ~ 8)/2ao, Eq. (5.6), with q ~ deaf/dT ~1.672 X10 I

4 ~o~ = 51'/24k 8eMao Lsee Eq. (3.11)g.
& See Eqs. (4.19) and (7.9).
I See Eqs. (4.20) and (7.10).
& ~o,& =fL QK(e) o,&&+f 5K(e) o,&1oj/a&; see Eqs. (4.9), (4.10), (4.12),

(4.1S), (7.11},a d (4.12).
& hmo, o ~ f ( 5Ks,on —5Ko,41').

Mharmonic Contributions to the
Free Energy

Because of the similarity of FI and F4 to M& and M2
as mentioned at the end of Sec. VI, F3 is obtained from
(7.9) by the replacements —xsPx'~ x'X, B~~ C&, and
F4 is obtained from (7.10) by the replacements—I'2p'x'~ —1V/12hsT, B~~ C~. Table X gives the
calculated values of F3, F4, and FR=F3+F4 for the
four models. For each the net contribution is positive,
although F3 is necessarily negative. The anharmonic
contribution to the speci6c heat at constant volume is
given in this temperature range by

and is negative.

Cv, = —(2/&)&~, (7.16)

"R. K. DeWames, T. Wolfram, and G. W. Lehman, Phys. Rev.
131, 528 (1963).

quantum terms. It is not clear why the harmonic values
obtained by us do not agree better with those of Sinha"
and DeWames et a/. '4 for the same CP. The differences
could come about from the treatment of the singularity
in (3.12) at q=0.

At 300'K all of the calculations are consistent with
the experimental value, but at 400'I it is likely that
such consistency requires inclusion of the anharmonic
contributions and thermal expansion.
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TABLE IX. Mean-square atomic displacements in copper (in 10 ' cm').

&u')'

300'K
Anharmonic
contribution (u')'

400'K
Anharmonic Thermal
contribution expansion

Present work' I
II
III
IV

Sin hab
Lehman et al."
White
Jacobsen'
Leighton&

2.102
2.214
2.262
2.220

—0.043
+0.069

0.117
0.120

2.145
2.145
2.145
2.100
2.073
2.152
2.004
2.260
2.073

Experiment 2.142~0.138
10'(us)/~'= 1.644~0.105

2.843
2.843
2.843
2.762
2.725
2.833
2.635
2.981
2.734

—0.077
+0.123

0.208
0.214

0.066
0.053
0.074
0.070

3.100~0.247
10'(u')/u'= 2.379&0.189

2.832
3.019
3.125
3.046

a Includes first quantum correction, 0.064 for T =300 K, 0.047 for T =400'K. Ail the other calculations use the general form (3.4) for Con.
~ Reference 18.' Remaining values d-g were calculated by De%'ames, Wolfram, and Lehman (Ref. 24), using the CP taken from the designated references.
~ Reference. 17.
e H. C. White, Phys. Rev. 112, 1092 (1958).
f E. H. Jacobsen, Phys. Rev. 9'F, 654 (1955).
& R. B.Leighton, Rev. Mod. Phys. ?0. 165 (1948).
h Reference 23.

VIII. DISCUSSION

Although a simple correspondence is not to be ex-
pected, a comparison of the relative importance of the
anharmonic contributions to the Debye-Wailer factor
obtained here with those calculated by Maradudin and
Flinn for lead' is of interest. The relative individual
contributions of M~ and M2 to (u') at T= 0 are several
times larger here (Table IX): 7 to 17%%uz of Mo, as com-
pared with 3 to 6%%u~ in Ref. 2. After the cancellation of
M1 with M2 the results are comparable magnitude but of
opposite sign, except for model I.

The most striking diGerence is in the a4 terms, in
particular, in the anisotropic part which is the most
likely observable feature of them. Referring to Table
VIII, we get the ratio hteg'4'/mo —10 ' as compared
with the value of about —10 ' found by Maradudin
and Flinn. Consequently we think that this anisotropy
should be observable in copper, at least near the melting
point. The relative strengths of the cubic and quartic
anharrnonic coefIIcients are comparable in copper and
lead. If p&") denotes the nth derivative of the pair po-
tential between nearest neighbors, then the ratios qh ':
~('&:a'P(4) =1:—26:541 for lead and 1:—35:663 for
copper, where a is the cubic lattice constant. It is possi-
ble that part of the reason for the small value of the ~'
terms for lead is in the approximations used to simplify

TAsLE X. Anharmonic contributions to the vibrational free
energy per atom Lin 10 " (T/O~)'erg and for a=3.610X10 s
cm j.a

the M3 and M4 Brillouin-zone integrations. For ex-
ample, there is a large cancellation in their coefBcient
of the anistropy function h&(R), whereas Table VIII
shows that the V3 and V4 contributions reinforce one
another.

Of the potential models used here all but I, which
has the "hardest" Born-Mayer repulsion, give Debye-
Waller factors in Table IX which are consistent with
experiment. There is little to discriminate among the
other three, although Tables VII and X suggest that
analysis of calorimetric as well as x-ray data may
provide a basis for discrimination.

In the calculation of anharmonic contributions to the
free energy we, like Wallace, " obtain positive values
for each model and find that, for a given set of second-
order CP, the shorter-range anharmonic potentials give
larger contributions. What is perhaps surprising is that
the values obtained for models III and IV diGer so
much, which indicates that these quantities are quite
sensitive to small changes in the pair-displacement cor-
relation function or phonon spectrum.

The method developed here of combining lattice sums
and Brillouin-zone integrations is quite general. We
have used it for third- and sixth-neighbor models for
the harmonic spectrum. Noncentral third- and fourth-
order CP could be handled without extra difhculty if
they become available. It would be of interest to con-
sider the longer anharmonicities which result from the
Friedel oscillations of the screened ion pseudopo-
tentials. "

Model F~=FR+F4
APPENDIX: CP FOR CENTRAL FORCES

I
II
III
VI

0~ =315'K

—1.171—1.058—1.761—1.618

4,593
2.551
4.055
3.477

3.422
1.493
2.294
1.859

& Time on IBM 7040 was 6 min 13 sec for FI and 11 sec for Pa.

Suppose that V has the form

&=-', P v(r„„), r~„= ~r„—r„~.
mQn

(A1)

"D.C. Wallace, Phys. Rev. 131, 2046 (1963).
"See, for example, V. Heine and D. Weaire, Phys. Rev. 152,

603 (1966).
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Using the definition (2.12) and the relation

8f(r„„) Bf= (bi bi.—)
Br1 Br „

we get

« -i;"" '=v 2 v---"" 'II(gi; —a,.),
mgvs i~1

where

(A2)

(2.13c) implies that

vg„~~ "~~'— p T,p, T,v,v„s'"~~', (AS)
Pi

and, in particular, that

v '" i=(—1)'v„m'"~~' (A6)
(A3)

With the help of (A6) the CP with l, =0, which are
used in Sec. IV, can be written

(A4) Vi, ...&,op"'~-' ~= p v
'" i II (bi;0 bi,.).—(A7)

The b products in (A3) ensure that each / belongs to
one or the other of an interacting pair of atoms and
give appropriate signs. The separation of l and e factors
shows that the CP are now symmetric in upper and
lower indices separately. The transformation relation

The form of the derivatives (A4) for j&4 are given in

Eqs. (2.19) and (2.19a) of Ref. 8 and will not be re-

peated here.
The assumption of a central (Born-Mayer) potential

was used here only for getting Vv and V4 (Sec. VII).
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Localization of Wa~riier Functions in Copper

D. A. Gooozwos* AND R. HARRrsf

University of Sussex, Brf'ghton, Englund

(Received 16 September 1968)

The problem of constructing localized one-electron wave functions in metals having complicated band
structures is considered with reference to copper. The extent to which the Wannier functions are localized
depends critically on how the Bloch functions from which they are constructed are labeled with respect to
the band index and on the choice of the phase factor associated with each Bloch function. A practical
approach to the handling of these problems is described and calculations based on augmented-plane-wave
(APW) Bloch functions for copper are reported. The resulting Wannier functions are found to be poorly
localized. By relaxing the requirement of orthogonality, a set of pseudo-phase-factors can be determined
so as to maximize the probability at the central site. The non-orthogonal "localized" functions which
result have a definite symmetry within the central APW sphere, where they strongly resemble tight binding
functions. However, their localization is generally not much better than that of the Wannier functions.
The implications of our results for the Koster-Slater theory of dilute alloys and for recent developments in
understanding the band structures of transition metals are brieQy discussed.

1. INTRODUCTION

HE theory of impurity states in metals due to
Koster and Slater' presents the possibility of

carrying out accurate calculations of one-electron
energies and wave functions. However, the success of
this approach depends on the extent to which the
potential of the solute atom is localized and, perhaps
more crucially, on the degree of localization of the
Wannier functions of the host lattice. The investigations
by Kanamori' of iron-series alloys, by Clogston' of iron

* Present address: American University of Beirut, Beirut,
Lebanon. Address after July 1969: McMaster University, Hamil-
ton, Ontario, Canada.

t Present address: Physics Department, Imperial College,
London S.W.'7. England.' G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);
G. F. Koster, ibid. 95, 1436 (1954); G. F. Koster and J. C. Slater,
ibid. 96, 1208 (1954).' J. Kanamori, J. Appl. Phys. 36, 929 (1965).

dissolved in 4d-transition metals, and by Sokolo64 of
copper alloys rely on the assumption that the Wannier
functions fall off sufliciently rapidly that matrix ele-
ments of the impurity potential connecting Wannier
functions on sites separated by more than the 6rst- or
second-neighbor distance can be neglected.

The extent to which Wannier functions of transition
metals are localized is also important in the work of
Hubbard' and Kanamori' on the correlated motion of
d electrons. It is assumed in their investigations that
the matrix elements of the Coulomb interaction are
nonzero only between Wannier functions centered on
the same atom.

To our knowledge there have been few attempts to
' A. M. Clogston, Phys. Rev. 136, A1417 (1964).
4 J. Sokoloff, Phys. Rev. 161, 540 (1967).
~ J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).
6 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).


