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A method is presented for calculating anharmonic contributions to the Debye-Waller factor in the high-
temperature limit in terms of direct-space sums. These sums are simpler quantities than those resulting
from the phonon technique, in that there are no multiple integrals in reciprocal space and the frequencies
and polarization vectors do not appear. They also have the advantage that no extreme assumptions about
the form or range of the coupling parameters need be made. Calculations of anharmonic contributions to
the Debye-Waller factor and the free energy are carried out for four models of copper. The values obtained
for the mean-square displacement are compared with experimental values and with the calculations of

others.

I. INTRODUCTION

HIS work is primarily concerned with the calcu-
lation of anharmonic contributions to the Debye-
Waller factor for the scattering of x rays and neutrons
by a crystal at temperatures 7" where quantum correc-
tions are small. A number of calculations exist which
are based on the small-amplitude or harmonic approxi-
mation.! Maradudin and Flinn? have given expressions
for the anharmonic contributions in terms of multiple
phonon integrations over the Brillouin zone. They made
rough approximations to these formulas and estimated
for lead a term in 7% which isless than 109, of the har-
monic term proportional to T for 7=20, where O is
the Debye temperature. They also estimated the 7
terms, some of which are not isotropic, to be about 10~7
as large as the harmonic term. From the point of view of
experiment a more accurate evaluation of the 72 term
is desirable, and also of the anistropic term which may
be observable even when relatively small. The reason
for its smallness is that the amplitude of thermal motion
is small (~69, of the interatomic spacing; see Table IX)
at Debye temperature, so that the crystalline directions
of easy and hard motion are not very important. Never-
theless, the present work shows that the anisotropic part
is considerably larger than the estimate above and
might be seen.

The idea that motivated the present approach is that
anharmonicity is chiefly a short-range effect due to ion
repulsion in the lattice, so that a calculation using direct-
space sums would be better suited than reciprocal-space
integrations. It turns out that this is not true for all
terms of interest and the procedure developed is a
combination of reciprocal-space integration and direct-
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space summations. The situation is reminiscent of the
Ewald methods? for lattice fields in which only long-
range parts are calculated in reciprocal space. This pro-
cedure has several advantages over the complete recipro-
cal-space formulations.

First, there are no multiple integrals in reciprocal
space and a single type of integral over the Brillouin
zone must be done. This can be done quite accurately.
The frequencies and polarization vectors do not appear,
which also gives rise to considerable simplification.

Second, some of the analysis in Ref. 2 can only be
done for a system in which the harmonic forces are also
restricted to nearest-neighbor pairs, whereas experi-
mental work indicates that one must consider, for
example, interactions between at least third-nearest
neighbors for copper in order to describe the dispersion
curves. For aluminum,® interactions between the origin
atom and atoms in the eighth to fifteenth shells must be
taken into account. In the present calculation inclusion
of these additional interactions involves no additional
complications.

Third, calculation of those anharmonic terms which
are proportional to the fourth power of the scattering
vector presents no problem in direct space, whereas
Maradudin and Flinn were forced to approximations,
whose effects are difficult to determine, in order to esti-
mate them. It appears that a fortuitous large cancella-
ation may have come in as a result of their approxi-
mations.

The use of direct-space sums was first proposed by
Davies® for calculating anharmonic contributions to the
free energy. The preceding remarks about the advan-
tages of a combined reciprocal-space and direct-space
summation procedure apply also to the free energy,

# See, for example, C. Kittel, Iniroduction to Solid State Physics,
(John Wiley & Sons, Inc., New York, 1956), 2nd ed., Appendix A.

4S. K. Sihna, Phys. Rev. 143, 422 (1966).

$J. L. Yarnell and J. L. Warren, in La#tice Dynamics, edited by
R. F. Wallis (Pergamon Press, Inc., New York, 1965).

*R. O. Davies, Fluctuation, Relaxation and Resonance in Mag-
netic Systems (Oliver and Boyd, Edinburgh, 1961).
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and we have included here a calculation of the third-
and fourth-order anharmonicity contributions to the
vibrational free energy of copper.

Section II collects the relevant theory. Starting from
the cumulant expansion of the exponent of the Debye-
Waller factor in powers of scattering vector, the per-
turbation expansion of each cumulant is developed
along with a diagrammatic representation involving the
harmonic pair-displacement correlation function. It is
shown that only the “linked-cluster” subset of dia-
grams need be considered. Section III is devoted to
the pair-displacement correlation function, its sym-
metry properties, and its relation to the dynamical
matrix. Use of the pair-displacement function replaces
the need to calculate phonon frequencies and polari-
zations and is computationally economical. The asymp-
totic behavior of the pair-displacement function at large
separations is derived.

The particular sums needed in the third- and fourth-
order anharmonic contributions to the Debye-Waller
factor are enumerated in Sec. IV in terms of direct-
space sums according to the rules given in Sec. II, and
their convergence is studied. Section V develops briefly
the expression for the thermal-expansion contribution
to the Debye-Waller factor and Sec. VI does correspond-
ingly for the anharmonic contribution to the Helmholtz
free energy.

Numerical calculations are discussed in Sec. VII,
which also contains tabulations of the results. Those
include the harmonic pair-displacement correlation func-
tion, a comparison with its asymptotic expansion, and
the various contributions to the Debye-Waller factor
and to the vibrational free energy. The mean-square
displacement, which dominates the Debye-Waller fac-
tor, is compared with experimental values and with
other calculated values.

II. PERTURBATION EXPANSION

The Debye-Waller factor for atom / is the thermal
average

e Mi= (gix-ut)y=Tr[eFHeixu]/Tre#H, (2.1)
where H is the vibrational Hamiltonian, x is the wave
vector or scattering vector of the radiation involved,
and wu; is the displacement of the atom from its reference
position R;. This position will be assumed to be a center
of inversion symmetry, so that the average of odd
powers of w; vanishes and (2.1) is a real quantity.

For harmonic vibrations the distribution function of
the displacements is Gaussian. A convenient repre-
sentation of nearly Gaussian distributions of a random
variable X is by its cumulants or semi-invariants, which
are defined in terms of its moment generating function
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f(a) as follows?:
f=e=% Zaymen( £ S Jon
n=0 7! n=1 75!
=exp(e*T—Doum. (2.2)

The cumulants (X")cum can be expressed in terms of the
moments (X™) for m<n. The first four terms, which
are all that are needed here, are

Xeum=(X), (XPeum=(X*)—(X)*,

(X®)eum= (X*)— 3(X N (X2)+2(X)?,

(X )eum= (X*)— HX N (X?)—3(X?)?
+12(X)2(X2)—6(X)*.

For a Gaussian distribution f(a) is Gaussian, so that

{X)eum and {(X?)eym are the only nonzero cumulants.
Applying (2.2) and (2.3) to (2.1) gives

(e )= exp[ —3{(¢ W)*)oum+ (1/4) (@ W) )cum+ - - ]
=exp{— (- w)*)+ (1/4)[((x- w)*)
=3(G-w))*]+---}. (2.4)

The thermal averages in (2.4) will be calculated by a
perturbation expansion in H—H,, where H, is the
harmonic Hamiltonian defined by retaining only up to
the quadratic terms in the Taylor expansion of the
configurational potential energy V in powers of the
displacements. Thus

(2.3)

(0)=Trle#HU(B)0]/TrlePHUB)]  (2.5)
~(U@OX/U®), (26)

where
U(B)=ePHowg—8H | 2.7

and the superscript zero denotes the thermal average
for a system with the Hamiltonian H,. In order to
calculate the Debye-Waller factor to order «* in the
exponent, we need the following terms:

(e uo))=(U(B) - wo)")*/(UB))’,  (2.8)

for n=2 and 4. It will be seen later in this section
[Eq. (2.23)] that the linked-cluster expansion gives
directly the cumulants in the first line of (2.4) rather
than the individual averages on the second line.

We consider a Bravais lattice

=lla1+lza2+laa3 ) (29)

about which the configuration potential energy is ex-
panded in a Taylor’s series in the displacement com-
ponents %;%,

’)"_‘i Vi,

7=0

V(Il,rz, . (210)

"M. G. Kendall and A. Stewart, The Advanced Theory of
Statistics (Charles Griffen and Co., Ltd. , London, 1958), Chap 3.
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where
Vi=(GD™? X Va2 (2.11)
g
and
3V (Ry,Rs, - )
Vipeojrr i ——————— (2.12)

OR; - - - aRz,-“f

are the coupling parameters (CP) of jth order.
Invariance of the potential energy under rotations
and translations (both infinitesimal and those of the
discrete symmetries of the lattice) leads to relations be-
tween the CP.® The ones useful to us are listed here.
First, the CP are unchanged when any vertical pair
of indices is interchanged with any other pair. Invari-
ance under infinitesimal translation of all the atoms

leads to

Y Vieaerei=0. (2.13a)
i

Invariance under lattice translations gives
lela---lj—xljamz' eI = le'la’ ---lj-l’Oamz' srai-iaj ’ (213b)

with I/=L—1;,i=1, 2, ---, j—1. Finally, if 7 is a dis-
crete symmetry rotation with matrix T such that 7R,
=Ry, then, using the summation convention,

Tag’ e cap’ — .« e
Vll’lg'---l,-'al a2 = Tal’alTag’az

Taj'athlg-..llalaz. ei, (2.13(:)
The Hamiltonian is written
H=H+ V4, (2.19)
where
P2
Ho=Y —+Vot+V, (2.15)
1 2M
is the Hamiltonian for a harmonic crystal and
Va=3 V; (2.16)
=3

is the anharmonic part of H, which is treated as a
perturbation. Linear terms Vi would exist only for
atoms at the surface when there is an applied stress.

Perturbation Expansion in Terms of Harmonic
Pair-Displacement Correlations
(Wick Theorem)

Since anharmonic effects are significant mainly at
higher temperatures in the systems of interest to us
here, we shall consider them classically first. Quantum
effects will be considered later. Then

U(g)=eb74, 2.17)

8 G. Leibfried and W. Ludwig, Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1961),
Vol. 12, pp. 283-288.
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The kth term in the expansion in powers of V4 of the
numerator of (2.8) for, say =2, is a sum over j(1),

(“3)" Za KaK,
e
kU gL j(R) e Tiia

VJu---Ju‘(x) e V-’kl'""k;'(k)

X Wrythrie UrWe®uof)?.  (2.18)

Each J stands for an index pair

(7
l
and 7 is the order of the CP involved.

The harmonic thermal averages of products of dis-
placements in (2.18) can be written as the sum of
products of harmonic pair correlations.® For % even,

(rasy - ug )= X {wgur)® - (unusy)®, (2.19)

All pairings

the sum being over all partitions of Jy,: - -, J, into 3n
pairs, order being immaterial. For # odd, the average
on the left side of (2.19) vanishes. Equation (2.19) is the
analog of the Wick theorem in many-body theory? and
leads similarly to a diagram representation of the per-
turbation series. The distribution function p®(uy,uy,- - -)
is proportional to exp[—pBV2(u1,us,- - -)] and defines a
multivariate Gaussian distribution. Relations (2.19) is a
familiar property of such distributions which antedates
the Wick theorem for fermions and bosons by many
years.

When (2.19) is inserted into (2.18), each summand
can be represented in terms of the following elements:
(a) a pair correlation (#,u,)° by a line connecting the
points p and g; (b) a CP factor —8V s,...s, by a vertex
of order j containing the points Jy,- - -, J; (for simplicity
the vertex with its points will be shown as a heavy dot;
a line which connects two points of the same vertex
will appear as a bubble); and (c) the points

(). 1-()

and the associated factors k. and kg by a k-vertex, de-
noted by a cross. Higher-order « vertices [of order # in
(2.8) ] will be needed and will also be denoted by a cross.
This prescription defines a labeled diagram. As an ex-
ample, consider the diagram in Fig. 1(a). Since the
points comprising a vertex are not shown, the same
labeled diagram might be represented in apparently
different ways. For example, Figs. 1(a) and 1(b) are the
same. The contribution associated with this labeled dia-
gram is defined as the sum over all numerical values of

®A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1963).
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J, J[ xl
(a)
F16. 1. Example of a labeled diagram.
Figures (a) and (b) are the same diagram.
& X
) 3,
(b)

the vertex indices, namely,

-8
—_ Z KaKg Z V.thJa-h(uhqu)o

4! o8 J1J2J3ds
X (g mo®)uruef). (2.20)

Different pairings, that is, different labeled diagrams,
may have the same structure as, for example, when one
of the labels J,, J3, or J4 is interchanged with J; in
Fig. 1(a). These diagrams are topologically equivalent
when the labels are omitted and give the same numeri-
cal contribution, so that the contribution of a labeled
diagram needs only to be multiplied by the number of
equivalent diagrams which occur for that structure.
To determine this number, consider a general labeled
diagram with a « vertex of order jo, with m, bubbles
attached to it and with & V vertices, the ith vertex
being of order j; with m; bubbles attached toit, 1<:<k.
Permuting the labels of the points of a vertex leads to
diagrams of the same structure and to possibly different
pairings of the displacements in (2.18) or its generali-
zation. This introduces first the factor j;!for that vertex
(0<i<k), then the reduction factor (3)™ excluding
interchanges of the labels of each bubble and the factor
1/m;! for excluding permutations of the bubbles. Fur-
thermore, if P;; lines connect the vertex pair (5), there
is the reduction factor 1/P;;!.

If a vertex of order s(=3) occurs 7, times in a dia-
gram, the 7,! permutations among them will give new
pairings, with the possible reduction by a symmeiry
factor 1/ {,.

In the kth order of perturbation being considered, the
multinomial factor

kY IT 7!

>3

is the number of different ways in which the sets of 7,
vertex terms (3_.>3 s7,=k) occur in the expansion

(Va)k= (X Vo)~
>3
The r,! cancel out and k! cancels with 1/k! in (2.18).
The rules for finding the contribution from diagrams
of a given structure can be summarized!?:

10 These rules are consistent with those given by W. Gétze
[Phys. Rev. 156, 951 (1967)] for the diagrammatic expansion of
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(a) Each V vertex gives the factor (—8) times the
corresponding CP.
(b) Each line or bubble gives the factor (us,us,)°. If

J is on a V vertex,
J—(%
(L‘) ’

and if it is on a k vertex,

()

(c) For each point in (2) on a k vertex write kq.
(d) Sum over all nonfixed indices.
(e) Multiply by the factor

3
I ma I1 P jlomotmitestm f)=1

=0 (C9)]

(2.21)

where f is the product of the symmetry factors. The
symmetry factor fis 2 for Figs. 2(a), 2(c), 3(d), 3(f),
and 4(b). It is unity for the others.

In the diagram scheme above the quantity ((x- uo)#)°
will involve jo-order k vertices. An alternative scheme
is to represent each x-u, point as a one-point vertex or,
equivalently, as an external point. Then we may apply
the linked-cluster theorem®! in the forms

(eBV4Y0=exp(etV4—1)?,
(eFV4")0=exp(e~BV4'—1)¢.0,

where
_BVAIE —BV 4+ix-uy ,

and the subscripts C and C’ denote the restriction to
diagrams consisting of connected sets of vertices for V4
and V 4/, respectively. The connected diagrams for the
latter are of two types: (a) those with nox- u, vertex and

o =X

L
(a)

Fic. 2. Examples of unlinked or dis-
connected diagrams. Figure 2(a) is un-
linked and disconnected; Figs. 2(b) and
2(c) are linked and disconnected.

—

(b)

o X

(c)

the vibrational free energy and temperature Green’s functions
of an anharmonic crystal. At high temperatures 8= 1 /kBT is small
and his propagators (7" ,{uJ,(Squ(O)})", 0<7<p, are replaced
bjy the pair correlations used here, while each of his integrals

ofdr gives a factor 8. The points of the x vertex correspond to
external points in the Gétze article.

11].J. J. Kokkedee, in Lattice Dynamics, edited by R. F. Wallis
(Pergamon Press, Inc., New York, 1965).



178

X o X

(a) {b)

?<> 0
< T

(e) (f)

Fi16. 3. Lowest-order contributions to the Debye-Waller factor.
Figure 3(a) represents the harmonic part; Figs. 3(b) and 3(e)
are O(V4); Figs. 3(c), 3(d), and 3(f) are O(V,?), but 3(c) gives no
contribution.

(b) those with, which will be denoted by a subscript L.
Then

(e—ﬁ"A' 0— exp((e"""— 1)c°+ (e—ﬂVA+ix-uo_ l)C.LO)

and
(eix- uo> = (e—ﬁ V a+ix- no>0/ (e—ﬁ Va >0

=exp{ePV4—iew—1)¢ 1. (2.22)

Returning to our diagram scheme with higher-order «
vertices, we will call a diagram with a « vertex linked
(L) if all parts connect to the k vertex. A diagram with
or without a « vertex will be called connected (C) if it is
connected without the x vertex. Then (2.22) still holds
with the subscripts having their present meaning. For
example, Fig. 2(a) is unlinked and disconnected; Figs.
2(b) and 1(c) are linked and disconnected; Figs. 3 are
linked and connected.
By comparing the expressions (2.4) and (2.22) one
sees that
(i W) eum= {(ix- W) "¢ FV 4)¢ 1", (2.23)

which is the basis of the subsequent calculations. Fur-
thermore, diagrams with a part connected to other parts
by a single line give no contribution in the case of in-
version symmetry (see Sec. IV).

III. HARMONIC PAIR-CORRELATION
FUNCTIONS

Properties of the Pair-Correlation Function and
Relation to the Dynamical Matrix

Use of the symmetry properties of (u;,*%;,*?)° and
of its asymptotic properties for large separations re-

S—

(a) (b)

F16. 4. Lowest-order anhar- 8
monic contributions to the
Helmbholtz free energy.
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duces the perturbation series of the previous section
Displacement invariance gives
(w0, 101,22)0 = (sr™106)° (3.1)

where 1=I,—1,;, and inversion symmetry at an atom
site gives

(u;"‘uo“’)°= (u_laluoaz)o= (uoaxulm)O: (ulazuaax)o. (3.2)

Under symmetry rotations {%;,*%;,22) transforms like a
tensor, so that, if 7R,=R,,

3
(ureue)= 3
B1,82=1

TalﬁxTawz(“lﬂL“0m>0- (3.3)

In terms of the phonon variables,

€qj%€q™*

1
Crf= (uruf)’=—3_

i Mog;

E(we?; Te* R, (3.4)

2

where €,; and wy; are the polarization vector and fre-
quency of the mode q4, and

hg;
8(wqi?; T) =4y, coth
2ksT
© B,. hwq,- 2n
=ksT| 1—3 (=)™ (—) :I (3.5)
n=1 (2”)! ksT

is its mean energy. The Thirring expansion!? on the
second line of Eq. (3.5) converges for #wq;/ksT<2x.
The B, are the Bernoulli numbers, the first three of
which are

By=1/6, B;=1/30, B;=1/42. (3.6)

The fx:equencies and polarization vectors are eigenvalues
and eigenvectors of the dynamical matrix

Zﬂ D(‘l)aﬂeqiﬁ= €q%wqs?, (3.7

where

O e
=—M"1 Zt Vie*f[1—cos(q-R))]. (3.8)
The eigenvector representation of D(q)** leads to
W= foeted®, 39
so that Eq. (3.4) can be written

1
Caf=—_ D! aBgiq-R1
! Zq[ (@8(D(g))]Pe*sR:, (3.10)

* M. Blackman, Handbuch der Physik, edited by S. Fli
(Springer-Verlag, Berlin, 1955), p. 335.y ed by iigge
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Our calculations apply to the region T~® where the
quantum corrections are small but not negligible (see,
e.g., Table VIII). Then the first two terms of the ex-
pansion of &(w?) are sufficient, and Eq. (3.10) is more
convenient than Eq. (3.4) because it is not necessary
to solve the eigenvalue problem (3.7), nor to perform
the sum over j. At high temperatures,

ksT _
Cint —— —— ¥ D(g)oteis R
T~80 MN ‘g
%2
+ Saghi———- . (3.11)
12ksTM

The quantum correction to C;*® is a multiple of the
unit matrix and is needed only for the zeroth-order
term of (2.8), ((x-u)2)?, so that it will be ignored in the
subsequent discussion of the anharmonic contributions.
Then

kBTi)C .
d%g D (@) AR,
8m3M Jpz

Cieb= (3.12)

where 2, is the unit-cell volume. Since D! is real and
even in q, e*"®? can be replaced by cos(q-R;), and C;*#
is real.

Asymptotic Behavior of the Pair Correlation
for Large Separations

The behavior of C;*# for large I was considered first
by Davies,'® but the expression derived in this section
is much simpler than his. Afterwards we discovered that
Flinn and Maradudin'* had used the first term of the
asymptotic expansion in a different context involving
crystalline defects. The connection is that the integral
in (3.12) is the displacement Green’s function of zero
frequency and gives the static displacement response
at [ to a unit force applied at the origin. We will also
use the second term in the asymptotic expansion. Com-
parison with C;*# calculated using Eq. (3.12) will be
made in Sec. VII.

In what follows, the notation is for a cubic crystal,
but there is no restriction in principle to this symmetry.
We introduce the dimensionless variables k=aq/2r and
0:=2R,/a where a is the cube edge. A 3X3 matrix
notation will be used for C*# and D<A. Since D is even
in k and is proportional to k* as £— 0, D! can be
wriiten in the form

D—l(%rk)= Y fon(B)in.

ne=—1

(3.13)

The matrices f;, depend on the direction of k. Inserting

13R. 0. Davies and A. V. Reader, in Proceedings of the Eighth
International Conference on Low Temperature Physics, London,
1962, edited by R. O. Davies (Butterworths Scientific Publications
Ltd., London, 1963).

4P, A, Flinn and A. A. Maradudin, Ann. Phys. (N. Y.) 18,
81 (1962).
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this expression into Eq. (3.12) and changing variables
to a set with &5’ along p; gives

EsT
C=— 3 [d (k)
Mn-—l
K (k')
X%/ dE k2rt2eivko’
—K ()
kBT © a2n+2
=— Y |49 f2a(B)
AM ne1 2(impy) 2t gu/2n+?

K (k")
X / dkeikew’ | (3.14)

A
—K (k")

Here K (%) is the length of the vector from the origin
to the Brillouin-zone boundary in the direction %/, 9
is the element of solid angle, and u’=cos(%’-8). Using
the asymptotic relation

K 1 Kp 2

f eiTkerdl = — f e ixdX —— —d(u)  (3.15)
—K P J—Kp ~*p

and, for 4 and B positive,

B daré(X darf(x
/ 100 ( )dx=(-—1)" JX)
_A axn axn»

(3.16)

x=0

in (3.14) gives
C —*“_m p’_lc(l)(ﬁz)+pz‘3c(2)(ﬁz)+0(pr5) . (3.17)

where

cw kBdenf *)
=—— [ 49 f_o(F)o(’ 3.18
Y 2(k")o(w") (3.18)
and ksT 2o(E")
B 9 !
Co=— dY——"5().  (3.19)
AnM ou'?

The replacement of the X integral in (3.15) by 8(u’)
neglects the p dependence coming from the limits of
integration. In the original integral this is the Brillouin-
zone surface. Surface discontinuities can give an oscil-
latory term like =7 cos(wK-p), where p is some power.
Such terms occur, for example, in the x-ray scattering
factor for a particle of uniform electron density and
could alter the asymptotic expansion (3.17) after the
first term. However, the Brillouin-zone boundary is
not a discontinuity for the r=R; (o=g,), since the k
integral is then periodic in % space and the choice of
the period-cell boundary is immaterial. The same applies
to the neglect of the derivatives of the limits of integra-
tion in (3.14).

The matrices fs, introduced in Eq. (3.13) are found
as follows: Expand the matrix D in a power series:

D=3 D,

n=1

(3.20)
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where D,, is proportional to £2%. Then

D= (3 Dyu)!

n=1

=(14+Di 3 Do) Dy

n=2

=[1—D2_1 i 41)2114'(])2_l f Dzn)z_' ot

. ]D2—1
n=2 n=2
=Dy 1— Dy 1D Dy 140 (k2)
= o /R O(R?). (3.21)
Since Ds, < k27, it follows that
f ,=k2D;1 (3.22)
and
fo= —D2~1D4D2_'1. (323)

IV. DEBYE-WALLER ANHARMONIC TERMS
FOR A CUBIC CRYSTAL

Enumeration of the Linked-Cluster Sums Needed

Only connected linked diagrams contribute to the
cumulants (k- o) *)eum (see Sec. II). Each such diagram
will be denoted by £, so that the Debye-Waller factor
(2.4) contains

((“'“0)2n>cum=Z(e_ﬂVA(“'uo)h).eo, n=12,---. (4.1)
£

The first terms in the perturbation expansion are ob-
tained from terms in V4 and V32 which give contribu-
tions of the same order of magnitude. The question
arises as to which are larger, the first-order contribu-
tions to «* or the higher-order, i.e., Vs and V3V, con-
tributions to 2. An estimate can be based on the as-
sumption that V. o~ (u"/d")V,, where d is a length
which characterizes the rate of change, of say, the
repulsive interaction. (For a Born-Mayer potential,
d~+15Run, where Ry, is the nearest-neighbor distance.)
Thus (u?)?/d? is the perturbation parameter and one
obtains the following expansions:

%K2<u02>~%xz<u.,2>o(1+/4 r

a2 a4

PR )

K4 4 2\2 3K4 210)2 /<u02>0
=3y I~ (a4
+ g +) (4.2)
d2

The coefficients 4, A’, B, and B’ are presumed to be
of order unity. The ratio of the «? terms of higher order
to the «* terms of first order is 4B/A’k?d?. When «2(uo?)°
~1, as it must be if the Debye-Waller factor is to be
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important, then x2d2~20 and the ratio becomes B/54’,
so that these terms are about the same order of mag-
nitude. Since part of the «* terms are nonisotropic, an
effect which cannot be cancelled out by the «* terms of
second, order we have chosen to calculate, besides the
«? terms of first order, the x* terms of first order. In the
numerical work V4 then, was restricted to be Vs+ V.

We will now restrict ourselves to the consideration of
cubic crystals. Expanding the exponential in Eq. (4.1)
and keeping terms of order V4 and V32, one obtains for
n=1

3((x o) eum=3[((x-u0)%)°— B % (V 4k u0))e®

+382 2 (Vai(x-u0)?)e"]

£
EM0+M1+M2 ) (43)

respectively. For a cubic crystal {(x-uo)?) may be re-
placed by 3x*(ug?).

The diagram associated with M, is shown in Fig.
3(a) and its contribution is

3 3 Kakp(uo®uoP)0= 3x2(uo?)°. (4.4)
af

The M, diagram is shown in Fig. 3(b), and the as-
sociated contribution is,

p— 1 2 (' (' (
Ml —_BK2 I}l 1slsl ajazagzad, 1 ail, 1 azl 7 laaad
— 1 2 E I) (
___.6" lilglsl ajazagay 7 alp

xclgam‘cl'—-l‘asa" (4'5)

The sum in the second line runs over all repeated
indices.

With M, are associated the diagrams in Figs. 3(c)
and 3(d). The contribution of the diagram of Fig. 3(c)

is zero because of inversion symmetry. To see this,
consider

Z lelzlaamzaaVhlsloammsch—lzamzclr-ltam‘

XC25'Cret.  (4.6)

Displacement invariance [Eqgs. (2.13a) and (3.1)] per-
mits replacing the first and third factors in (4.6) by

Vipigo®e2@iCop_ypre2 . 1/ =1—13, i=1,2
which, together with the relations
Coqy—1g) 12 =Ciy_yy i
and
V—-ll’ —ly’ otlezas= — Vll’ Iy gola2as

from (3.2) and (2.13c), respectively, shows that the
I/, 1y’ sum in (4.6) gives zero. This argument holds for
any diagram containing a part joined to the rest by a
single line, since all other points in that part may be
measured from the point of attachment of the line
and these other points, being end points of lines, are
even in number.
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The contribution associated with Fig. 3(d) is, for a
cubic crystal,

Mo=756% 20 Vigtay 12V 15042425°0C 1,14
Xclg—lsazascl;aa“clga”‘- (4'7)

The «* term is

((x-u.)‘)m=}§ (ePV 4(x-ue) )

=—8 % (Valx-ug)*)e”
+36° % (V- uo)*)c®

EM 3+M 4, (4'8)
since {(x-u)*)°.um="0 for n>2 according to the remark
below Egs. (2.3). Again, only terms containing V4 and
V3? are kept.

The diagram associated with M ; is shown in Fig. 3(e),
and the contribution is

B
M =0 2 Kakgryks( Vigtgrgr 21000804y 10

X C1y®Ce7Ci29).  (4.9)

The k sum can be simplified for a cubic crystal. We write
M3=3" kaxghoyks N3*F73,

with 9173287® equal to the term in parenthesis of Eq.
(4.9), and note that (a) 9M; is symmetrical in its four
indices, (b) the transformation x — —x requires that a
Cartesian index occur an even number of times, and (c)
all cubic symmetry operations permute tensor indices
with possible sign changes. Therefore, the two distinct
nonzero elements of 93 are of the form Nz*ef8
(=928, etc.), apB, and INz=2e=, If we define

malls Nigrace , msuz smsaaﬂﬂ , (4 10)
then M; can be written
M= M3 3 ka?+ M52 Y kokp2, (4.11)
a af

where the prime on the summation means to omit those
terms for which a=p. Alternatively, M; can be written
as the sum of an isotropic part and of a part propor-
tional to the invariant cubic harmonic, 71=% (3_ . ka*/x*
—$), which averages to zero over solid angle and gives
the deviation from isotropy,

M =L F(IM1 - 3NT612) + 5 (M1 — M52 By . (4.12)

The diagram associated with M, is shown in Fig. 3(f).
Its contribution is

M= —iﬁz Z "a"ﬁ"‘y"é(lelzllamm’Vhlsloams“
X CuamChamChawcls“scla-—lan“)

=3 KakgKyksIM4oB78, (4.13)
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Although 9m,87% defined by the sum in parentheses in
(4.13) is not symmetrical in its four indices, only the
quantities

N M= g eaee | 9IT,12= I 2BP+ 291,988 (4.14)

are needed and
M‘.__. m411 Z K¢2+m412 Z' Ka2Kp2,
a af

= k[ B(IMMH-29M412)+ (M1 — MDA ], (4.15)

Convergence Rates of Sums

The sums involved in calculation of the anharmonic
contributions to the Debye-Waller factor can be written
in a way which makes their convergence properties more
apparent. The greatest contribution to the anharmonic
coupling parameters comes from the short-range part
of the potential, so that each third- and fourth-order
CP decreases rapidly as the difference |1—1'| for any
two arguments becomes large. The sums can be re-
written so that each CP has an argument /=0 and the
other arguments are then restricted to a neighborhood
of zero.

The M, sum (4.5) becomes

My=—156" 3 Viggrgo™27324C,704

l,2,3
a1,2,3,4

X Z Ch+l4a1“Clz+lqa2“c (416)

la,p

The sum over /4 is not absolutely convergent because
Cuii~p! asymptotically, but it can be made to
converge by replacing the inner sum by —Bj_;,*1*,
where

By, = z (Cz‘“”‘Cua"‘—Cll+t4°‘“'clﬁ.t4°‘2”)
lp

=2 [C12#Cr 2 — 3 (Crrp 12 Crgy1

lap

+C—ll+14awc—lz+l4aw)]7 (4.17)
where use has been made of the symmetry (3.2). The
summand on the last line of (4.17) decreases as p;~*
for large p;,. This can be seen by expanding it in a
Taylor series about /;=1I,=0. Introducing (4.17) into
(4.16) does not change the latter value because the sum
over 1, using (2.13a), shows that the added term is zero.

Even with the p;~* dependence in (4.17) the sum
over I, would have to be taken to p;,~100 for 19,
accuracy. It proved more expedient to evaluate B; as a
Brillouin-zone integral. Using the first term on the
right side of (3.11) for C; and the relation

‘l‘: exp[i(qit+qz) - Ri J=Nbgy—q,
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for qi,2 inside the Brillouin zone, we obtain

Bloua:=

ar qZ}‘[D‘ @) J D g J=

X[1—cos(q-Ry)]

(ksT)?
= f d% [1—cos(rk- 1) ]

4aM?

[ T

The integrand has a k=2 singularity at k=0, so that
the same integration procedure was used as for the
evaluation of C; from Eq. (3.12). The convergence of
the sum

—_1
Mi=758 3 Vigggo®2edCresaie4B,y

(4.18)

alaz

(4.19)

is determined by the (short) range of Vi,1,150.

Similar convergence techniques are needed for the
sum (4.7) for M,, where neither the /; nor /s sums are
absolutely convergent. After the transformations
11,2—la—> l],z, l4,5—lc—> l4,5, and l3—1lg— ls, and doing
the lg sum using (4.17), we get

-— 1
M= =158 3 Viggo® @3V 1g040590Cy 4 1,1%
XCz,_z,+z,““‘Bz.“‘“ .

(4.20)

Here the indices /, l2, 14, and I5 are restricted by the
CP to a region about the origin and the convergence
rate of the summand is determined by the /3 sum. To
determine this rate we first note that the asymptotic
dependence of B, on py, is determined by those terms
of D! in the integrand of Eq. (4.18) which are pro-
portional to 272, It will be shown in Sec. VII that
Bi~p; for large p;. Next, the product Ci—1,+1,Cry—15+1
is expanded in a Taylor series about g;,= g1, =p1,=01,=0.
The only terms in this expansion which give a nonzero
contribution to M, are those for which each of the
expansion variables py,% p1,% p1,% and pi® appears at
least once, since otherwise the condition (2.13a) would
give zero. On the other hand, Vi0=—V_;_1,0 [see
Eq. (2.13c)], so that the sum of the exponents of p;,*
and p;,? must be odd for the summand to be even. The
same applies to p;,* and p;. Therefore, the number of
partial derivatives with respect to components of g;,
must be even so that the resulting function is even in
01, (note that By, is even in g;,). The first term to give
a nonvanishing result occurs when the sum of the ex-
ponents of p;,* and p;,f is 3. The same holds true for
p1,® and p;f. The products of the third derivatives of
the asymptotic expression for C result in a term of order
pun®p1,~® and multiplication by B, gives pan®0i~7, where
pon refers to the nearest-neighbor distance.

If the /; sum is taken over all points within a radius
po, the neglected part will be of order pnn®p. 4. For ac-
curacy of about 1%, p. =~ 3.2pnn*/2~5.4 for an fcc crystal.

ANHARMONIC CONTRIBUTIONS TO DEBYE-WALLER FACTOR

1179

Writing 913878 so that the fourth-order CP has a
zero argument, one obtains

msaﬂ'ﬁ - EZ Z thlgz,o" 1a3a3a4ch+“a 1a

X Cip412%Craa@7Cr2e. (4.21)

(All'indices except a, B, v, and & are summed.) The
convergence rate with respect to /4 is determined by
expanding each of the Cy,41,, i=2, 3, 4, in a Taylor series
about the point g;;=0. Here each of the p;;¢, i=1, 2, 3,
must appear, and since Vyy1y50=V_1,—1,—150, the sum of
the exponents of the p;;* must be even. The lowest-
order term which contributes is of order panp:,~7 and
the neglected part is of order pan®ps,~*. For accuracy of
about 19, one should choose p.=3.2pan~4.5 for an fcc
crystal.

The arguments used here are similar to those used for
calculating the electrostatic potential in an ionic crystal,
which also involves conditionally convergent series. Be-
cause of the vanishing of the sum (2.13a), the CP are
like neutral multipoles. The introduction of B;**2 into
(4.16) corresponds to replacing the potentials of the
individual charges in a cell by the potential of a
multipole.

The most complicated sum, among those considered,
for discussing convergence is that for 9174 in (4.13) which
can be written

m4aﬂya= _%52 Z Vllhoamzaa Vl;lsoammuclﬁl.ma

XCiat1,°PC 144157 Cry 160 C a5, (4.22)

The change in variables l4,5,6— —/4,5,6, together with
V_1,—150= — Vi, leads to the replacement in (4.22),

Cla—ls - %(Cl,—l,"' Cl,+l,) . (4.23)

The double sum over /; and /g in (4.22) is unrestricted
in range by the CP and corresponds in Fig. 3(f) to each
of the V vertices being arbitrarily far from the « vertex.
For purposes of estimation the sum may be replaced
by an integral (pi; o> pnn) equal to twice that over the
region p;<pi,, and we consider the error in cutting off
the g, integration at p,. Using the asymptotic form of
the C’s and the Taylor expansion in py, , , ;* as for s
leads to the relative error in the p. cutoff of order

dpy; [Pl d3py 1 1
ann / / ( )'
v P’ Jom p1s® 2\ —01s| |01 t016

The region |1, F@is| ~pan makes a contribution to the
o1, integrand of order pnap15~"%, so that the relative error
is of order (pnn/pc)’. In the remaining region, approxi-
mating the expression in parentheses by 2p,/p0;,? gives
a gy, integrand ~2p,,%0;,7 and the larger cutoff error
of order ¥ (pun/p.)*. To keep this to less than 19 requires
summing to p.>2.7pnm=4 for an fcc crystal. Machine
calculations show that the estimates above are quite
reliable.
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V. THERMAL EXPANSION
The treatment follows closely that of Maradudin.!®
The equilibrium positions R; are for some reference
temperature T,. Changing T causes strains n.s and

changes in R;:
£z°‘=§ napRiP. (5.1)

The changes are due to the anharmonic potential and
are proportional to V3 or V4, so that, to the order of
perturbation V4 or V3%, only the change in M, need be
considered. Under the combined displacements w+§&,
which is equivalent to the displacements u; from the
new equilibrium positions, the potential energy is

w 1
V=X Vf(“)‘*‘; 20 Viatar® 123y, 10,200,

=0
+5 Z Vlllihlla‘azuaa‘gllaluliamlla‘u“a‘
) +---+termsin £24---. (5.2)

The terms linear in both ¢ and « vanish, since R;4 &
are still equilibrium positions. The term in fwuu van-
ishes on the average and can only enter squared in a
perturbation expansion, so that it is ignored. The new
harmonic CP are

V¥ 194 30 Vi 21oesg,,os

13,03

=V 3 Vi 13,0 — £1,%%)

i3,a3

(5.3)

where we have made use of (2.13a).
This changes the dynamical matrix (3.8) by
AD(q)*f= Z;. a(q)*F"*nys, (54)
k4
where

1
d(q)*Fri= Y 2 ViR, [1—cos(q-Ry,)].

11,12

(5.5)

The change in M is proportional to ACo=e, which, by
(3.12), (5.4), and (5.5), is

kBTZJ,: Z Z D s
7 d3 —1\a
8w3M s 76/;z 7 8 ( )

ACoua =

Xd# 1 (D1)fe, (5.6)

For the cubic symmetry n4s=8asn(T).

The thermal expansion n(7T) can be taken from experi-
ment or calculated directly. For the latter, we expand
the Helmholtz free energy in 7. and T—T, i.e.,

F=F0+F0T(T_ T0)+Z FOaﬁ;TﬂaB(T_ To)
af
+% ﬂza F()aﬂ‘ybﬂaﬂﬂ'yl"" Y (5.7)
afy

(1;6({5 C. P. Miller, Math. Comp. (Formerly: MTAC) 14, 130
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where Foagqys are isothermal elastic compliance coeffici-
ents. Minimizing (5.7) with respect to 74s leads to

FﬁaB:T(T— T0)+Z Feaﬂ'ﬂ’?*/ﬂ:o ’ (58)
vé
and, abbreviating the argument about cubic symmetry
(see Ref. 15), we get
(Z—=To)Fou;r
1(D=———7>
39030“3
where Qo is the crystal volume and By* is the isothermal

bulk modulus at temperatures T'o.
To find

(5.9)

0
01as0T

(5.10)

Foupir= ’

To,Ry
we use the relation?

oF = (8H )+ O0{(3H)*},
and restrict ourselves, for the accuracy required, to

thum:
thnrm

Fhum.aBE

0Mep |70,R:

AV 1,102
=% E ———_C(T)h—lgulaz- (5.11)

078

The derivative on the right side can be read from (5.1)
and (5.3) and is

OV %12
—=2 Viua,***** Ry, 0°. (5.12)
anap 4]
Since, for high temperatures, C(T); < T,
Foagir=(M/2T)3 Vi, 2R fCryi1e2. (5.13)

InEqs. (5.11)-(5.13) the sums are over repeated indices.
The sum in (5.13) is determined by the range of V;
and is much more convenient than the g-space form in
Ref. 15.

VI. ANHARMONIC CONTRIBUTIONS
TO THE FREE ENERGY

The Helmholtz free energy is given by
F=—FkpT In(TrePE)

= Fuarm—E5T In{e#74)0,

6.1)
6.2)

where the second equality involves neglect of quantum
effects in the anharmonic terms. The linked-cluster
theorem [Sec. III above Eq. (2.22)] gives

F= Fh”m—kBT@—ﬁVA— 1>co, (63)

of which the terms proportional to V4 and Vg are
represented in Figs. 4(a) and 4(b), respectively, and are
(sums over repeated indices)

Fy=3N 3V ey g anCyaias (6.4)
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and

Fy=— 2 Vigge® 1223V g0 esee

12kpT
(6.5)

X Cl;—-l4+lza ‘“‘Clg—lsq—lsazasclzaa“ .

The range of the sums for F4 is determined by the CP,
while in F; the arguments used in Sec. IV show that the
I3 summand is O(p;;~?) in the asymptotic region, so that
it converges well. Note that the structures of F, and
M are the same if C;,_;, is replaced by B;,_;, in the
latter, and likewise for F3 and M, if C;, is replaced by
B,..

VII. NUMERICAL CALCULATIONS AND RESULTS
Calculation of C;*f and B;*#

In this section we discuss the evaluation of the singu-
lar Brillouin-zone integrals, (3.12) for C; and (4.18) for
B,, and give numerical results. Values of B, for larger
p1 are not needed and values of C, for larger p, are calcu-
lated using the asymptotic forms. The latter values of
C, are not needed in the calculation of M1, M3, and M,
while in the calculation of M, neglect of terms which
contain a C; with p;> 6 leads to an error of about 49 as
compared to an error of about 19, when not neglected.
If one were to try to evaluate the M; and M, sums
without evaluating B, in reciprocal space, the contribu-
tions of C; for p;>6 would be significant. The slow
convergence of this latter method is mainly in the parts
giving the propagation from the place of perturbation
(V vertices) to the origin, as shown in Figs. 3(b) and
3(d). The rearrangements [Egs. (4.19) and (4.20)]
which introduce B;, together with the q form of B,
[Eq. (4.18)], in effect describe this propagation in the
phonon representation. The remaining direct-space sums
converge much more quickly.

The calculation of C; and B; are discussed together,
since their integrands both have the ¢~? singularity
which gives rise to the principal difficulty in their
numerical integration. One method of treating this
singularity is to ignore it, that is, to use a numerical
integration formula in which none of the evaluation
points coincides with the singular point. Another
method is to substract off the singular part and inte-
grate it separately. (The dimensionless variables intro-
duced in Sec. III will be used.) For C; the unbounded
singular part is the term f_,(£)/%* in Eq. (3.13). We
write

ot

+/ a3k D~1(k) cos(vrk-gz)]
BZ-Ro

) cos(mk- g1)

sin[rK(k)-g:]

, (11
o (7.1)

ksT .
+— /dQ f.(k)
aM
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where ®Ro is a region of the Brillouin zone about the
origin, K is a vector from the origin to the point on the
boundary surface of ® in the direction %, and dQ is
the element of solid angle. In the last term on the right
side in Eq. (7.1) the radial % integration has been done.
The function D—'—f_,/k? is now bounded, although
still nondifferentiable at the origin. This singularity
presents no difficulty analytically. The method of sub-
tracting the singularity is used to compute the values
used in subsequent calculations, since it was found to
be more accurate (<0.29, error as compared to >29%,
error when the singularity was neglected). The addi-
tional computer time required for the two-dimensional
integral in Eq. (7.1) is small.
The corresponding expression for B; is

B (’;MT )[ /m o (arl)z— (i;j)z)tl—cos@k-eoj

+ d% (D~1)?2[1—cos(rk- ez)]]

BZ—Ro
(kT)? cos(wK-p,)—1
e ) / aQ (f_z)2(~————(7r 2
402 K
7K-01 [*Xrisiny
—dx), (7.2)
K 0 X

where (D—1)? and f_,? are matrix products. Neglect of
this singularity gives less accurate results than those
obtained for C; because of the more complex angular
variation near k=0. The asymptotic behavior B;~p;
is determined by the K-g; factor on the last line of
(7.2).

The Brillouin-zone volume integrations were done by
subdividing q (or k) space into cubic integration cells
and using in each cell a 27-point numerical integration
formula due to Miller,'® which is suitable for three-
dimensional integrals. The vertices of the cubic grid
used were obtained by dividing the distance from the
origin to the centers of the square faces, k=(1,0,0)
etc., into eight equal parts. Thus the origin is the vertex
of eight cells which comprise the region ®, in (7.1) and
(7.2) where the singularity is subtracted out, while the
square faces of the zone lie in faces of the cells. The
hexagonal faces of the zone can intersect cells but, be-
cause the integrands are periodic, it is sufficient to
integrate over all cells whose centers are in the interior
of the zone. That part of a cell which protrudes through
a hexagonal face corresponds to an equivalent interior
volume at the opposite hexagonal face of a cell whose
center is outside the zone. A factor 1 is needed for cells
whose center lies on a hexagonal face.

If the integrand has cubic symmetry also, then a
further reduction is achieved by integrating only over

8 A. A. Maradudin, Phys. Status Solidi 2, 1493 (1962).



1182

each cell which intersects the sector S; defined by
¢12¢22>¢s and multiplying the contribution of that cell
by 48/u, where u is the number of sectors Sy, -+, Sus
which it intersects. The factor 1/u comes from the fact
that, if this procedure were applied to all 48 sectors
and the results added up, the contribution of each re-
gion of cell 2 would be counted u; times. The volume
integrands in (7.1) and (7.2) are of the form F(k)
Xcos(wk-g;), where F carries tensor indices. Because of
the tensor indices and the g;, each component does not
have cubic symmetry. It is possible, however, to intro-
duce a function of cubic symmetry which permits evalu-
ating the integral by using only the cells which inter-
sect S1. We make use of the symmetry property which
may be verified for all of the tensor functions that we
encounter here, namely,

F(7k)=(TF)(k), (7.3a)
é(To)=(T¢)(er), (7.3b)

where TF or T'¢ denotes the matrix transformation on
all of the tensor indices and the right-hand members
are to be evaluated for the original arguments. Equa-
tions (2.13c) and (3.3) are examples of (7.3b). Now

f a3k F(k) cos(rk-g;)= :‘:8 d?*k F(k) cos(rk- g;)

t=1 St

=/ 43k is F(7k) cos[x(T:k)- 0]
S1

t=1

= / @ F'(K),
S1

where 7 is the transformation which takes S; into S..
Because f runs over the entire cubic group (48 elements),
it is easily verified that F'(7k)=F'(k), which means
that each component of F’ can be extended from S
throughout the Brillouin zone as a symmetric function
of k. The final integration formula for a second-rank
tensor which was used is

/ % Fab(k) cos(rk- 1)
BZ

24 1
=22 2 TweTuy X — |d%
t=1 a’,p’ cells ¢ which u*
intersect S1

XFe# (k) cos(rk- T 1), (7.4)

where the first sum is restricted to proper transforma-
tions. For the mesh size used there are 60 cells 3.

The singularity in (7.1) and (7.2) was subtracted out
in the volume ®, of the eight cubes about the origin.
The remaining two-dimensional solid-angle integral was
converted to an integral over the surface of ®,. The
surface was subdivided into a square mesh by dividing
the distance from the center of a square face to the
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center of an edge into eight equal parts. Again only the
cells intersecting 1/48 of the integration region need be
used. There are 55 for the mesh used. In each cell a
nine-point integration formula due to Miller'® was used.

For each value of g; the computation time on an IBM
7040 was about 2 min for the volume integral and 3 min
for the surface integral. The volume integration was
tested in several ways. For the integrable functions,
fk)=1, cos(wk-p), cos’(rk-p), where p=(4,4,0), the
mesh used gave agreement to six decimal places. A %
reduction in the linear dimension of the integration mesh
made a 0.0029, further change in the value of C;*! for
0:=(6,0,0) calculated by the singularity subtraction
method of Egs. (7.1) and (7.2). In Miller’s integration
formula none of the points is at the cube vertices, so
that (3.12) and (4.18) for C; and By, respectively, can
be used directly by ignoring the singularity. For the
mesh size used C;'! was 29, too large for g;=(6,0,0)
and the mesh refinement did not reduce the error much,
presumably because the integration points move nearer
to the singularity. Neglect of the singularity is more
serious for B; because of the more complex angular
variation near k=0.

About 959, of the contribution to C;!' for g;=(6,0,0)
comes from the region ®o, where the integrand is vary-
ing more rapidly than elsewhere in the Brillouin zone,
and the principal source of error is the integration in
(7.1) over the surface of ®, because of the rapid angular
variation. For the smooth function f(k)=1 even a much
coarser surface mesh than the one used gives the in-
tegral to seven decimals. To test the rapid angular
variation, the integral

1/m\1/2 2 mp
_(_) fdQ e (7 co0sd)2/da — _ erf
2\a p 222

was done for p=6, a=%. For the mesh used the value
was 1.048305 as compared with the correct value of
1.047198, a difference of 0.19. Reducing the mesh
dimension by two gave agreement to 0.0029,. Errors
of 2 or 3%, in each C; or B; could lead to serious errors
in M; because of the subtractions and multiplications
involved [see Egs. (7.9) to (7.12)]. The tests above
show that much smaller errors are made in the inte-
grations used and, since even these errors are for large
01, they are negligible compared with truncation errors
in the M ; sums.

The calculations were done with two sets of CP for
copper. The first is that of Lehman, Wolfram, and
DeWames,!” and is based on a third-neighbor central-
force model. The CP were found by fitting to x-ray—
determined phonon dispersion curves and to elastic
constants, both at 300°K. The second set was given by

7G. W. Lehman, T. Wolfram, and R. E. DeWames, Phys.
Rev. 128, 1593 (1962). The CP in Table III of this reference are
incorrect and are corrected in the errata of Phys. Rev. 130, 2598
(1963). The corrected values are used in Ref. 24.
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Sinha,'® who fitted a sixth-neighbor tensor-force model
to neutron dispersion curves and elastic constants at
300°K. The CP are listed in Table I and the values of
C/a? (a=3.610X10"8 cm) are shown in Table II. The
values of C obtained from Lehman’s model are some-
what larger than those obtained from Sinha’s model.
Table III gives B; for 9;<6. The values obtained for
B, using Sinha’s CP are generally larger than those ob-
tained using Lehman’s CP, although the former give
smaller values for C,.

Test of the Asymptotic Expansion for C;*?

The integrals (3.18) and (3.19) for the first two terms
of the asymptotic expansion of C; can be reduced to
one-dimensional form because of the & functions. The
integration variables used in Eq. (3.18) have the k5’
axis along g;. Transforming back to the original vari-
ables k and carrying out the 6 integration leads to

cog=2L / 42 £ (s, 0)(k-p)
aM 2\K, @ P

kT 4 f_o(uo(e), @)
- f de : , (19)
2M Jo  (k1coset £ sing)H-£5°
where u=cosf, po=—cosbo(¢), £&;=p./p, and
0o(p)=—tan"'[ps/ (o1 cosp+p2sing)].  (7.6)

In Eq. (7.5) use was made of the property that, if g(x)
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TasLe I. Parameters of the potentials used. The harmonic
CP are taken from Lehman, Wolfram, and DeWames® and from
Sinha,> both sets essentially from phonon data at 300°K. The
anharmonic CP are assumed to be determined by the repulsive
Born-Mayer pair potential. Four combinations, models I-IV, are
used in the calculations of anharmonic effects.

Harmonic CP (dyn/cm)

9' (Xﬂ —_ Vaﬁb —_ VaB a o aﬂ — Vaﬂ b
110 11 11240 13 478 220 11 267
33 —105 —1215 33 -32
12 11 250 14982 12 —-36
200 11 -227 18 310 11 —110
22 105 —48 22 —203
211 11 1122 507 33 37
22 35 239 12 18
23 363 159 222 11 —157
12 725 378 12 —58

Born-Mayer parameters, ¢rep=A exp[ —B(r—Run)/Ron]

Cohesive energy,

1 Pressure dependence lattice parameter,
Shear modulic  of shear moduli® compressibilityd
A (eV) 0.0408 0.1081 0.0958
B 16.6 11.75 13.34

Models used for anharmonic calculations

I Harmonic CP# and 4,, B,
II Harmonic CP# and 43, B,
III Harmonic CP® and 43, Bs
IV Harmonic CPP? and 43, Bs

» Reference 17. b Reference 18. © Reference 20. d Reference 21.

has only simple zeros at x=x,,

3= — )
8 n l(dg/dx)n-zni.

TasLE II. Pair-displacement correlation functions C;2# for copper (I'=®=2315°K). The units are 10~a*=1.303X107!° cm?, where
2=3.610X1078 cm is the cubic lattice constant. Columns marked “a” are based on the CP of Lehman, Wolfram, and DeWames* and
those marked “b” are based on the CP of Sinha.b Not all of the latter values are given.

Component

o 11a 110 22s 22b 33e 12e 12b 23s 13
000 5.5878 5.4688 5.5878 5.4688 5.5878 0.0 0.0 0.0 0.0
110 1.7289 1.7659 1.7289 1.7659 1.4206 0.5261 0.5879 0.0 0.0
200 0.9815 0.9468 1.0249 1.0221 1.0249 0.0 0.0 0.0 0.0
211 1.0101 1.0166 0.8991 0.9257 0.8991 0.2239 0.2222 0.1381 0.2239
220 0.8942 0.9537 0.8942 0.9537 0.7088 0.3043 0.3394 0.0 0.0
310 0.6706 0.6654 0.6866 0.6973 0.6394 0.1148 0.1097 0.0 0.0
222 0.6906 0.7031 0.6906 0.7031 0.6906 0.1877 0.1861 0.1877 0.1877
321 0.6634 0.6813 0.6348 0.6551 0.5583 0.1917 0.1996 0.0882 0.1049
400 0.4914 0.4894 0.5202 0.5321 0.5202 0.0 0.0 0.0 0.0
330 0.5918 0.6251 0.5918 0.6251 0.4567 0.2015 0.2250 0.0 0.0
411 0.5023 0.5029 0.4976 0.5115 0.4976 0.0654 0.0652 0.0302 0.0654
420 0.5065 0.5090 0.5099 0.5238 0.4437 0.1233 0.1246 0.0 0.0
332 0.5317 0.5440 0.5317 0.5440 0.4819 0.1659 0.1696 0.1248 0.1248
422 0.5024 0.5150 0.4577 0.4719 0.4577 0.1172 0.1219 0.0823 0.1172
431 0.4869 0.5025 0.4776 0.4949 0.3941 0.1520 0.1614 0.0535 0.0576
510 0.3950 0.3946 0.4163 0.4276 0.4053 0.0414 0.0418 0.0 0.0
521 0.4038 0.4065 0.4028 0.4146 0.3753 0.0811 0.0826 0.0297 0.0416
440 0.4422 0.4626 0.4422 0.4626 0.3373 0.1499 0.1645 0.0 0.0
530 0.4024 0.4083 0.4022 0.4152 0.3345 0.1119 0.1160 0.0 0.0
433 0.4364 0.4471 0.4098 0.4212 0.4098 0.1228 0.1265 0.1049 0.1228
442 0.4201 0.4325 0.4201 0.4325 0.3571 0.1372 0.1434 0.0816 0.0816
600 0.3255 0.3249 0.3495 0.3595 0.3495 0.0 0.0 0.0 0.0

b Reference 18.

18 S, K. Sinha, Phys. Rev. 143, 422 (1966).

s Reference 17.
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TaBLE III. Values of the function B;*# of Eq. (4.18), for copper. Units are 10~%a*=1.698X10~% cm¢. All the calculated values for
the coupling parameters of Lehman et a/.* are shown and only some of the values for the coupling parameters of Sinha.b (T'=©.)

Component
o 11s 110 22 22 33 122 12b 23 13+
000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
110 0.2809 0.2814 0.2809 0.2814 0.2982 —0.0934 —0.1012 0.0 0.0
200 0.4532 0.4700 0.4287 0.4345 0.4287 0.0 0.0 0.0 0.0
211 0.5193 0.5322 0.5203 0.5268 0.5203 —0.1058 —0.1121 —0.0582 —0.1058
220 0.5939 0.6039 0.5939 0.6039 0.6175 —0.1818 —0.1971 0.0 0.0
310 0.7134 0.7420 0.6782 0.6930 0.6887 —0.1142 —0.1215 0.0 0.0
222 0.7351 0.7551 0.7351 0.7551 0.7351 —0.1588 —0.1694 —0.1588 —0.1588
321 0.8063 0.8347 0.7955 0.8171 0.8143 —0.2063 —0.2228 —0.0790 —0.1077
400 0.9326 0.9780 0.8702 0.8938 0.8702 0.0 0.0 0.0 0.0
330 0.9053 0.9353 0.9053 0.9353 0.9393 —0.2712 —0.2965 0.0 0.0
411 0.9643 1.0104 0.9215 0.9479 0.9215 —0.1152 —0.1243 —0.0364 —0.1152
420 0.9980 1.0448 0.9586 0.9893 0.9855 —0.2209 —0.2393 0.0 0.0
332 0.9992 1.0369 0.9992 1.0369 1.0115 —0.2577 —0.2791 —0.1815 —0.1815
422 1.0672 1.1153 1.0574 1.0932 1.0574 —0.2142 —0.2327 —0.1233 —0.2142
431 1.1049 1.1537 1.0889 1.1299 1.1243 —0.3022 —0.3298 —0.0876 —0.1075
510 1.1857 1.2511 1.1094 1.1472 1.1162 —0.1167 —0.1269 0.0 0.0
521 1.2373 1.3040 1.1849 1.2287 1.2021 —0.2256 —0.2459 —0.0569 —0.1148
440 1.2156 1.2682 1.2156 1.2682 1.2607 —0.3619 —0.3971 0.0 0.0
530 1.2929 1.3609 1.2516 1.3021 1.2945 —0.3222 —0.3521 0.0 0.0
433 1.2480 1.3048 1.2513 1.3025 1.2513 —0.2834 —0.3087 —0.2250 —0.2834
442 1.2847 1.3427 1.2847 1.3427 1.3116 —0.3530 —0.3858 —0.1915 —0.1915
600 1.4140 1.5003 1.3126 1.3626 1.3126 0.0 0.0 0.0 0.0

s Reference 17. b Reference 18.

Equation (7.5) is not valid for £,=0 but, through use of
the cubic symmetry relations, C®(3) can be found by
considering another direction. Inversion symmetry of
f_» reduces the limits of integration to the range O to .

Similarly, we get
ksT

4AMr?

_ ksT f (ofo(k,¢)) | 6=t0
2M~? ? 0 ¢ (&1 cosp+ &2 sing) 2+ {532.

Co )= — f 42 (Ofa(u,))3(k-5)

(1.7

The operator O is 82/9u’? expressed in terms of the
unprimed coordinates. These integrals were evaluated
by means of the 80-point Gauss formula.®?

The angular variation of C® and C® is shown in
Table IV. Note that C® varies much more rapidly
than does C and that it may also be larger, for ex-

ample, especially in the [111] direction. Tables V and
VI compare the first term and the first two terms of the
asymptotic expansion (3.17) with the values of C; cal-
culated from (3.12) and (7.1) for the 11 and 12 com-
ponents, respectively. With few exceptions, for g; near
zero, as might be expected, and for g; in the [110]
direction, including the second term « 3 improves
agreement. Reference to Table IV show that the largest
values of C® have opposite sign to C®. If the asymp-
totic series were alternating, then

P CO(3)+1pmC () (7.8)

would be a better second approximation to C; than
the first two terms of (3.17). The last three columns
in Tables V and VI show the percentage deviations of
the first and second approximations of (3.17) and of
(7.8), respectively, from the directly integrated values
of C;%. Use of (7.8) improves agreement in the [110]

TABLE IV. Angular dependence of the first two terms of the asymptotic expansion (3.17) of C;. Units are 10~ cm? [ = (0.767 X 10~4)a?].
The values are for 7=315°K and the second and third columns would be proportional to 7. The CP of Ref. 17 were used.

o CO(p)n Ccop)n c@u/cmu CO (g CO(p)12 caiz/cmne
400 2.5350 0.3294 0.1299 0.0 0.0 oo
410 2.6443 0.5544 0.2096 0.3373 0.2962 0.8780
420 29174 1.0956 0.3755 0.6986 0.9009 1.2896
430 3.1781 0.2347 0.0738 1.0024 0.2189 0.2184
440 3.2555 —0.7144 —0.2194 1.1089 —1.0425 —0.9401
441 3.2786 —0.9249 —0.2821 1.1124 —1.2175 —1.0944
442 3.3259 —1.8351 —0.5517 1.1123 —1.8675 —1.6788
443 3.3460 —3.3619 —1.0047 1.0834 —2.8898 —2.6672
444 3.3014 —3.8237 —1.1609 1.0072 —3.2675 —3.2440
433 3.3819 —2.6396 —0.7805 0.9828 —1.8712 —1.9039
422 3.1726 1.2040 0.3795 0.7368 0.5584 0.7579
411 2.7452 0.8289 0.3019 0.3493 0.2955 0.8459

19 M. Abramowitz and I. A. Stegun, Handbook of M athematical Functions (Dover Publications, Inc., New York, 1965), p. 918.
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TaBLE V. Comparison of the values of C;!! for 7=315°K calculated as a Brillouin-zone integral (3.12) [or (7.1)] with the values
calculated from the asymptotic expansion (3.17). Units are 10~1° cm?. The CP are taken from Ref. 17. The last three columns are the
percentage deviations (PD) of the first term of (3.17) and the first two terms of (3.17) and of (7.8) from the Brillouin-zone integral

respectively.
3.17), 3.17), BZ integral
o one term two terms (3.12) PD, PD:. PD;
200 1.2675 1.3087 1.2791 —0.9084 2.3117 —0.7016
220 1.1510 1.1194 1.1653 —1.2254 —3.9355 —2.5805
222 0.9530 0.8608 0.9000 5.8931 —4.3516 0.7707
400 0.6338 0.6389 0.6404 —1.0386 —0.2347 —0.6366
420 0.6524 0.6646 0.6601 —1.1736 0.6820 —0.2458
422 0.6476 0.6579 0.6548 —1.0899 0.4742 —0.3078
440 0.5755 0.5716 0.5762 —0.1262 —0.8110 —0.4686
442 0.5543 0.5458 0.5475 1.2457 —0.3061 0.4698
600 0.4225 0.4240 0.4242 —0.3951 —0.0354 —0.2152
620 0.4306 0.4335 0.4333 —0.6169 0.0563 —0.2803
622 0.4350 0.4391 0.4385 —0.8062 0.1345 —0.3358
444 0.4765 0.4650 0.4675 1.9327 —0.5328 0.6999
640 0.4308 0.4329 0.4324 —0.3758 0.0994 —0.1382
642 0.4274 0.4291 0.4288 —0.3165 0.0721 —0.1222
800 0.3169 0.3175 0.3175 —0.2050 —0.0022 —0.1036
644 0.4065 0.4044 0.4041 0.5877 0.0624 0.3250
820 0.3207 0.3217 0.3217 —0.3152 —0.0078 —0.1615
660 0.3837 0.3825 0.3834 0.0837 —0.2212 —0.0687
822 0.3235 0.3249 0.3249 —0.4149 0.0028 —0.2061
662 0.3778 0.3761 0.3766 0.3253 —0.1269 0.0992
840 0.3262 0.3277 0.3275 —0.4146 0.0528 —0.1809
842 0.3266 0.3283 0.3282 —0.4641 0.0506 —0.2068
664 0.3566 0.3532 0.3536 0.8709 —0.1109 0.3800
844 0.3238 0.3251 0.3249 —0.3370 0.0569 —0.1400
860 0.3178 0.3180 0.3181 —0.0965 —0.0226 —0.0596
1000 0.2535 0.2538 0.2541 —0.2181 —0.0882 —0.1531

direction. The asymptotic expansion works surprisingly
well, the first term alone agreeing to within 69, even
for small p; and the values from (7.8) to within 39.
Note, for example, that in the [100] direction agree-

ment improves as p; increases out to g;=(8,0,0) and
worsens at g;=(10,0,0). This indicates that the volume
integrations [in (7.1)] are becoming inaccurate be-
cause of the rapid oscillation of cos(wk-g;).

TaBLE VI. Comparison of the values of C;* for T=315°K calculated as a Brillouin-zone integral (3.12) [or (7.1)] with the values
calculated from the asymptotic expansion (3.17). Units are 1071 cm?. The CP are taken from Ref. 17. The last three columns are the
percentage deviations (PD) of the first term of (3.17) and the first two terms of (3.17) and of (7.8) from the Brillouin-zone integral,

respectively.
3.17), 3.17), BZ integral
o one term two terms 3.12) PD, PD,; PD;
200 0.0 0.0 0.0 e e e
220 0.3921 0.3460 0.3966 —0.3881 —4.3421 —2.3651
222 0.2908 0.2122 0.2446 5.1335 —3.6003 0.7666
400 0.0 0.0 0.0
420 0.1562 0.1663 0.1607 —0.6805 0.8455 0.0825
422 0.1504 0.1552 0.1527 —0.3476 0.3778 0.0151
440 0.1960 0.1903 0.1954 0.1085 —0.8911 —0.3913
442 0.1854 0.1768 0.1788 1.2009 —0.3783 0.4113
600 0.0 0.0 0.0
620 0.0721 0.0740 0.0738 —0.3837 0.0599 —0.1619
622 0.0723 0.0740 0.0738 —0.3360 0.0450 —0.1455
444 0.1454 0.1356 0.1375 1.6762 —0.4257 0.6253
640 0.1273 0.1292 0.1284 —0.2639 0.1792 —0.0423
642 0.1248 0.1258 0.1252 —0.0917 0.1227 0.0155
800 0.0 0.0 0.0 ‘e ‘e e
644 0.1125 0.1110 0.1107 0.4451 0.0698 0.2575
820 0.0409 0.0414 0.0414 —0.1644 —0.0002 —0.0823
660 0.1307 0.1290 0.1299 0.2157 —0.2296 —0.0069
822 0.0412 0.0417 0.0417 —0.1493 —0.0005 —0.0749
662 0.1278 0.1257 0.1262 0.4055 —0.1442 0.1306
840 0.0781 0.0794 0.0791 —0.3144 0.0700 —0.1222
842 0.0779 0.0790 0.0788 —0.2710 0.0597 —0.1057
664 0.1170 0.1139 0.1143 0.7801 —0.0959 0.3421
844 0.0752 0.0758 0.0756 —0.1351 0.0476 —0.0437
1000 0.0 0.0 0.0

—0.0311 0.0377 0.0033
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TasLE VII. Thermal expansion coeﬂia;ant of copper at 7=300°K
°K™1

(in 10°8
Experimental values 1.672
Model I 2.251
Model II 1.931
Model IIT 2.603
Model IV 2.407
Leksina and S. I. Novikova, Fiz. Tverd. Tela 5, 1094 (1963)

[Enghsh transl.: Soviet Phys.—Solid State 5, 798 (1963)]

The advantage of using the asymptotic expansion
for small p; also is the smaller computation time. To
compute C;*® took 23 min per point g;, while to com-
pute CMaf and C®ef took 2 sec and 1 min per point.
respectively, on the IBM 7040.

Calculation of Anharmonic Contributions to
the Debye-Waller Factor

Third- and fourth-order CP were obtained as follows.
The configurational potential energy can be separated
into long- and short-range parts, the long-range part
due to the electronically screened interaction between
ions and the short-range repulsive interaction resulting
from the interpenetration of the outer shells of nearby
ions. The repulsive part is usually described by the
Born-Mayer pair potential

(Prep(r) = Ag"B[(f"‘Rnn) /Rax] ,

where A and B are parameters, the values of which have
been estimated semiempirically by serveral methods and
which are rather widely scattered.?-?! These values are
shown in Table I. Our basic assumption is that Vs, V,,
etc., which involve higher derivatives of the potential
energy than does V,, are predominantly determined by
¢rep. This is supported by the estimate of Mann and
Seeger?® of the relative contribution of the valence elec-
trons and ¢rep to the derivatives of the/total energy with
respect to specific volume, namely, the valence electrons
contribute 23, 6, and 0.4%, to the second, third, and
fourth derivatives, respectively. The anharmonic CP
can then be calculated (but not V,) as if there were
central forces.

The form of the CP for central forces is given in the
Appendix. When these CP are substituted into Eqs.
(4.19)-(4.22), the following equations result (with sums
over repeated indices);

Mi=—3}p ¥ ymmasa(Co—C)masBmar,  (7.9)
My=— o3 T vyyeieinsy, simsas
X (Cr=Cm—Cuynst Crinyin) 124
X(Cr=Cryn— CringtCrpnpng) 2 Byses,  (7.10)

20 E. Mann and A. Seeger, J. Phys. Chem. Solids 12, 314 (1967).

21§, S. Jaswal and L. A. Girifalco, J. Phys. Chem. Solids 28,
457 (1967).
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Np2B18= E 3 pp1090364(C— Ciy ) 419(Cr— Crpn) 38
# X(Cr—Cryn)¥Co®, (7.11)
M@Y= — 523 v, 219305y, @4a3526(Cr— Cpy ) 219
X (C1r—Ciyny)*B(Crr—Crryng) Y
X(Cr—=Crryng)®(Crp— Cryr)*ss. (7.12)

In each of Egs. (7.9)-(7.12) one of the sums over
atoms, say, l=(l3,ls,ls), can be restricted to the solid-
angle sector /3>0,>1; by including a weight factor »,.
This sector contains a unique representative from each
atomic shell about the origin and »; is the number of
atoms in the shell. Each atom /' in a shell is reached by
some symmetry rotation 7 which takes the representa-
tive atom [/ into it and, by reference to (3.3) (which
holds for both C; and B;) and (A5) [or to (7.3b) for all],
we see that this is equivalent to the orthogonal trans-
formation T on the tensor indices while holding ! fixed.
In M, all tensor indices are contracted in pairs, giving
an invariant under T, so that the contributions for
each / are the same. For M, the proof is similar but
requires also a change in variables 71,2 — 7y o for each
U, so that, if Ti=0, Tn=n'.

The uncontracted indices in NM3,4%¥7® modify the
above argument. Consider 913 (with tensor indices sup-
pressed for the moment) and let 9173(/’) be the contribu-

tion in (7.11) from an atom / in the same shell as atom
l. Then

M= Z ms(ll) .

1" in shell
Let 7v be such that 73/=1'. Then the procedure used
above for M, gives readily
m3(ll) = Tl' sn3(l) ’

where T transforms the tensor indices. Now we use the
special property of cubic symmetry that the nonzero
elements have indices ae38, afeB, or accc and that, for
example,

S’rlszzyy= E)’]zsyyzz= mszz:r.
Also, T(aafB)=d'd’f'#’, and similar relations, so that
NG(@) = (@)

and the »; factor is applicable. The argument clearly
applies also to the / sum in (7.12) for N..

In calculating 917, it was expedient to calculate and
store the component sum

Smeb=Y" ¥ g,mea(C,—Cyy,) e

n az,a3
X (Cz—CH.n)‘"ﬂ , (7.13)
in terms of which
M Bre= —FeB2 37 v, 3 521968, avd
) I
X(Crv—Crr)aer, (7.14)
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where the prime refers to restricting ! to the reference
sector [;>1,>13 or, equivalently, to the sum over atomic
shells.

In the machine calculations the relevant data, g,
v, Ci%8, §,%87 etc., were read in for [ in the reference
sector only. Values needed for / outside were calculated
from the corresponding reference-sector values by use
of the transformations

(Ql')a' e (TUQ)Q. -

Much time is saved because each T, has only three
nonzero elements.

The thermal expansion 7(7) is easily calculated from
Eqs. (5.9) and (5.13). The value of T is 300°K, since
the CP in Refs. 17 and 18 were determined at this
temperature. The isothermal compressibility is Bo'®
=13.317X 10" dyn cm~2.22 Table VII shows the calcu-
lated and experimental values of the thermal expansion
coefficient. The variation among the first three models
(see Table I) is due to the different Born-Mayer param-
eters. The difference of the last two values comes from
the harmonic CP. The experimental value of the ther-
mal expansion coefficient was used to get the change in
M (or Co't) from Eq. (5.6). The singularity in (5.6) was
neglected, since this leads to a negligible error in the
Debye-Waller factor.

Table VIII shows the various contributions to the
Debye-Waller factor for the models used. There is a
large cancellation of V3 and V4 contributions to the
mean-square displacement (xk* terms) in the upper part
of the table. As a result, the first quantum correction is
comparable with the anharmonic effect at the Debye
temperature. The V; and V4 contributions add (nega-
tively) in the anisotropic term x*Am,@hy(k) and the
resultant is not very sensitive to the choice of potential.
To estimate the importance of the anisotropy, consider
My~1, or ka~60 (minimum value for Bragg reflection
is ka=2V3r~11). Then the anisotropic term has an
amplitude about 0.4, of m,.

The first quantum correction has been included in
M,. The second quantum correction would be about
1/60 as large. The quantum corrections to the anhar-
monic terms are also negligible relative to M. However,
if they were significant, it would not be consistent to
calculate them by correcting C;*® by using (3.5) in
(3.4), because comparable terms are neglected in re-
placing U(B) in (2.7) by e=#V4 (see Ref. 10).

Table IX shows a number of calculated values of the
mean-square displacement, including the present work,
and the values determined by x-rays by Flinn, Mc-
Manus, and Rayne.?? Only in the present work are the
anharmonic contribution and the thermal expansion in-
cluded. The other calculated values are just for the
harmonic contribution (u?)?, based on (3.4), and include

(7.15)

22 W. C. Overton, Jr.,and J. Gaffney, Phys. Rev. 98, 969 (1955).

23 P, A. Flinn, G. M. McManus, and J. A. Rayne, Phys. Rev.
123, 809 (1961).
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Tasre VIII. Contributions to the Debye-Waller factor
f=e¢M to order Vy, Vi

M=M+M+Ms+Ms+M>
Mo= (xa)*(T/©)[mo+my' (T —To)+m?(0/T)*]
M= (xa)*(T/©)*my,s, mitm=ms®
M, = (ka)*(T/©)*[1hs, «+Ama, ih1 ()]

5 k! 3
ma‘*-m.;EmA“), Am;+AM4EAm4“), h=-{ % ——")
2\ 4 S
®=315°K, ¢=3.610X10"%cm
(a) All entries to be multiplied by 1074
Model moe mo (CK)14 mQe ot me®  ma®
I 2.794 6.65X10~% 0.078 —0.368 0.316 —0.053
II 2.794 542X10°5 0.078 —0.197 0.294 0.098
III  2.794 7.47X10°5 0.078 —0.318 0.483  0.165
IV 2734 7.04X10% 0.078 —0.279 0.448 0.169
(b) All entries to be multiplied by 1071°
Model 7m3h Mad MA@ Amgi Amgi Ama®
I 363 —473 -—110 -—-175 -—131 —-3.06
II 194 —416 —222 —145 —128 -=2.73
I 313 —-699 —38 —196 —206 —4.02
Vi 233 -501 -—-268 —1.60 —1.60 —320

» See Table I for potential models.
b Times on IBM 7040 for Mji, i=1, 2, 3, 4, were 1.5, 8.5, 3.2, and 13
min, respectively.
° mo =Co“(T=6)éZa’.
oi’{mol’=ACo"(T= )/2a?, Eq. (5.6), with »n —dn/dT =1.672 X1078
e moQ =#2/24k pOMa? Esee Eq. (3.11)].
t See Egs. (4.19; and (7.9).
& See Eqs. (4.20) and (7.102.
b g, =4[ IM(O)s,! +3 M(B)s,412]/a2; see Eqs. (4.9), (4.10), (4.12),
(4.15), (7.11), and (4.12).
b Ams,e=§( M, — Ms,2).

quantum terms. It is not clear why the harmonic values
obtained by us do not agree better with those of Sinha!8
and DeWames et al.2* for the same CP. The differences
could come about from the treatment of the singularity
in (3.12) at q=0.

At 300°K all of the calculations are consistent with
the experimental value, but at 400°K it is likely that
such consistency requires inclusion of the anharmonic
contributions and thermal expansion.

Anharmonic Contributions to the
Free Energy

Because of the similarity of F3 and F4 to M, and M,
as mentioned at the end of Sec. VI, Fj; is obtained from
(7.9) by the replacements — 82— 3N, B,— C;, and
F4 is obtained from (7.10) by the replacements
—15B%*— —N/12kpT, B,— C;. Table X gives the
calculated values of F;, Fs, and F4=F;+F,4 for the
four models. For each the net contribution is positive,
although F; is necessarily negative. The anharmonic
contribution to the specific heat at constant volume is
given in this temperature range by

Cva=—(2/T)F4, (7.16)

and is negative.

# R. E. DeWames, T. Wolfram, and G. W. Lehman, Phys. Rev.
131, 528 (1963).
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TaBLE IX. Mean-square atomic displacements in copper (in 1078 cm?).

300°K 400°K
Anharmonic Anharmonic Thermal
(uz)® contribution (u?) (u2)® contribution expansion (u?)

Present works I 2.145 —0.043 2.102 2.843 —0.077 0.066 2.832

II 2.145 +0.069 2.214 2.843 +0.123 0.053 3.019

III 2.145 0.117 2.262 2.843 0.208 0.074 3.125

v 2.100 0.120 2.220 2.762 0.214 0.070 3.046
Sinha? 2.073 2.725
Lehman et al.cd 2.152 2.833
Whitee 2.004 2.635
Jacobsenf 2.260 2.981
Leightone 2,073 2.734

Experiment? 2.14240.138 3.100+0.247

10%(u?)/a?=1.644-£0.105

10%(u?)/a?=2.3794-0.189

s Includes first quantum correction, 0.064 for T =300°K, 0.047 for T =400°K. All the other calculations use the general form (3.4) for Colt.

b Reference 18.

° Remaining values d-g were calculated by DeWames, Wolfram, and Lehman (Ref. 24), using the CP taken from the designated references.

d Reference. 17.

e H. C. White, Phys. Rev. 112, 1092 (1958).

f E. H. Jacobsen, Phys. Rev. 97, 654 (1955).

s R. B. Leighton, Rev. Mod. Phys. 20, 165 (1948).
b Reference 23.

VIII. DISCUSSION

Although a simple correspondence is not to be ex-
pected, a comparison of the relative importance of the
anharmonic contributions to the Debye-Waller factor
obtained here with those calculated by Maradudin and
Flinn for lead? is of interest. The relative individual
contributions of M and M, to (u?) at 7= © are several
times larger here (Table IX): 7 to 179, of M, as com-
pared with 3 to 6%, in Ref. 2. After the cancellation of
M, with M, the results are comparable magnitude but of
opposite sign, except for model 1.

The most striking difference is in the «* terms, in
particular, in the anisotropic part which is the most
likely observable feature of them. Referring to Table
VIII, we get the ratio Am 4 /m¢~—10~¢ as compared
with the value of about —10~° found by Maradudin
and Flinn. Consequently we think that this anisotropy
should be observable in copper, at least near the melting
point. The relative strengths of the cubic and quartic
anharmonic coefficients are comparable in copper and
lead. If ¢ denotes the nth derivative of the pair po-
tential between nearest neighbors, then the ratios ¢®:
ap®: a2 @ =1:—26:541 for lead and 1:—35:663 for
copper, where @ is the cubic lattice constant. It is possi-
ble that part of the reason for the small value of the «*
terms for lead is in the approximations used to simplify

TaBLE X. Anharmonic contributions to the vibrational free

ene]rgy per atom [in 107 (7//@)%erg and for a=3.610X1078
cm].e

Model F; F4 FA=F:+F4
I —1.171 4.593 3.422
II —1.058 2.551 1.493
III —1.761 4.055 2.294
VI —1.618 3.477 1.859
0=315°K

* Time on IBM 7040 was 6 min 13 sec for F3 and 11 sec for Fq.

the M; and M, Brillouin-zone integrations. For ex-
ample, there is a large cancellation in their coefficient
of the anistropy function #:(k), whereas Table VIII
shows that the V3 and V4 contributions reinforce one
another.

Of the potential models used here all but I, which
has the “hardest” Born-Mayer repulsion, give Debye-
Waller factors in Table IX which are consistent with
experiment. There is little to discriminate among the
other three, although Tables VII and X suggest that
analysis of calorimetric as well as x-ray data may
provide a basis for discrimination.

In the calculation of anharmonic contributions to the
free energy we, like Wallace,?® obtain positive values
for each model and find that, for a given set of second-
order CP, the shorter-range anharmonic potentials give
larger contributions. What is perhaps surprising is that
the values obtained for models III and IV differ so
much, which indicates that these quantities are quite
sensitive to small changes in the pair-displacement cor-
relation function or phonon spectrum.

The method developed here of combining lattice sums
and Brillouin-zone integrations is quite general. We
have used it for third- and sixth-neighbor models for
the harmonic spectrum. Noncentral third- and fourth-
order CP could be handled without extra difficulty if
they become available. It would be of interest to con-
sider the longer anharmonicities which result from the
Friedel oscillations of the screened ion pseudopo-
tentials.2®

APPENDIX: CP FOR CENTRAL FORCES
Suppose that V has the form

V=% Z Sa(rmn), Tmn= Irm"rnl . (Al)

mn

2 D. C. Wallace, Phys. Rev. 131, 2046 (1963).
%8 See, for example, V. Heine and D. Weaire, Phys. Rev. 152,
603 (1966).
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Using the definition (2.12) and the relation

3f(rmn) af
—_— = (6lm_5ln) ) (A2)
ar© 0 mn®
we get
J
le- l,a‘ a =% ] H (511‘"‘_ 611'”) ) (A3)
mn te=]
where
3
'Unaln'ai= (A4)

oret. . . Jrei Ra

The § products in (A3) ensure that each ! belongs to
one or the other of an interacting pair of atoms and
give appropriate signs. The separation of / and « factors
shows that the CP are now symmetric in upper and
lower indices separately. The transformation relation
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(2.13c) implies that

i = Taspr -+ Taganft" P,  (AS)
ﬁl- .o .'ﬁ’-
and, in particular, that
v_nal...ai=(_ 1)"-‘1)"“1""’1'. (A6)

With the help of (A6) the CP with /;=0, which are
used in Sec. IV, can be written

-1
Vigetj_go®t rim1i= S pyerceai H (51‘.0—5“,‘), (A7)
0 =1
The form of the derivatives (A4) for j<4 are given in
Eqgs. (2.19) and (2.19a) of Ref. 8 and will not be re-
peated here.

The assumption of a central (Born-Mayer) potential
was used here only for getting V3 and V4 (Sec. VII).
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Localization of Wannier Functions in Copper
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The problem of constructing localized one-electron wave functions in metals having complicated band
structures is considered with reference to copper. The extent to which the Wannier functions are localized
depends critically on how the Bloch functions from which they are constructed are labeled with respect to
the band index and on the choice of the phase factor associated with each Bloch function. A practical
approach to the handling of these problems is described and calculations based on augmented-plane-wave
(APW) Bloch functions for copper are reported. The resulting Wannier functions are found to be poorly
localized. By relaxing the requirement of orthogonality, a set of pseudo-phase-factors can be determined
so as to maximize the probability at the central site. The non-orthogonal “localized” functions which
result have a definite symmetry within the central APW sphere, where they strongly resemble tight binding
functions. However, their localization is generally not much better than that of the Wannier functions.
The implications of our results for the Koster-Slater theory of dilute alloys and for recent developments in
understanding the band structures of transition metals are briefly discussed.

1. INTRODUCTION

HE theory of impurity states in metals due to

Koster and Slater! presents the possibility of
carrying out accurate calculations of one-electron
energies and wave functions. However, the success of
this approach depends on the extent to which the
potential of the solute atom is localized and, perhaps
more crucially, on the degree of localization of the
Wannier functions of the host lattice. The investigations
by Kanamori? of iron-series alloys, by Clogston? of iron

* Present address: American University of Beirut, Beirut,
Lebanon. Address after July 1969: McMaster University, Hamil-
ton, Ontario, Canada.

t Present address: Physics Department, Imperial College,
London S.W.7. England.

! G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);
G. F. Koster, ibid. 95, 1436 (1954); G. F. Koster and J. C. Slater,
ibid. 96, 1208 (1954).

2 J. Kanamori, J. Appl. Phys. 36, 929 (1965).

dissolved in 4d-transition metals, and by Sokoloff* of
copper alloys rely on the assumption that the Wannier
functions fall off sufficiently rapidly that matrix ele-
ments of the impurity potential connecting Wannier
functions on sites separated by more than the first- or
second-neighbor distance can be neglected.

The extent to which Wannier functions of transition
metals are localized is also important in the work of
Hubbard® and Kanamori® on the correlated motion of
d electrons. It is assumed in their investigations that
the matrix elements of the Coulomb interaction are
nonzero only between Wannier functions centered on
the same atom.

To our knowledge there have been few attempts to

3 A. M. Clogston, Phys. Rev. 136, A1417 (1964).

4 J. Sokoloff, Phys. Rev. 161, 540 (1967).

& J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).

¢ J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).



