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A simple model of a disordered substitutional alloy, similar in some respects to transition-metal alloys, is

studied in several approximations. A formalism is presented in which the Green's function for the alloy is

represented in the form of an infinite perturbation series, the lowest term of which is the coherent-potential

approximation introduced earlier. The average density of states for several model alloys is investigated, and

it is found that corrections to the rigid-band model can be significant even in situations in which the con-

stitutents are not very dissimilar. Study of certain terms in the perturbation series suggests that the co-

herent-potential approximation is adequate in many situations. The density of states localized about a
particular type of atom is shown to bear little resemblance to the average density of states. It can be a
strong function of the environment, but if an average environment is taken, the coherent-potential scheme

gives good results. The variation of average and local state densities as a function of concentration is studied

for a particular model.

I. INTRODUCTION

HIS paper presents the results of an analysis of
some of the electronic properties of a simple model

of a disordered substitutional alloy. The fundamental

di%culty in such an analysis is that no exact solution of
the Schrodinger equation for a disordered system is

obtainable, a situation which strongly discriminates
studies of ordered and disordered systems. One of the
objects of the present work is, therefore, to study the
techniques used in the analysis, with the aim of
minimizing the occurrence of uncontrolled approxi-
mations. An analysis of the model becomes meaningful

only after the limits of the approximations are
established.

A considerable body of theoretical literature exists in

this 6eld. Early work involved the so-called rigid-band

assumption, ' in which it is posited that the density of
electronic states is an alloy of two elements is the same

as the density of states in either of the pure materials.
This assumption is frequently invoked in analyses of
experimental work. %e shall attempt to see if it is a
reasonable one. Similar in some cases to the rigid-band
assumption is the virtual-crystal approximation. This
assumes that the electrons in an alloy behave identically
to the electrons in a hypothetical ordered material in
which the crystalline potential is the average of the
potentials of the pure materials. The virtual-crystal
approximation represents the lowest-order term in a
perturbation series and may be extended by including
more terms. However, as has been discussed by Stern, '
the usefulness of low-order perturbation theory is very
limited.

More sophisticated techniques based on the multiple-
scattering formalism of Lax3 and others have also been

* Work supported in part by the Advanced Research Projects
Agency.' See, for example, ¹ F. Mott and H. R. Jones, The Theory of
the Properties of Metals and Alloys (Dover Publications, Inc. ,
New York, 1959).' E.A. Stern, Physics 1, 255 (1965);Phys. Rev. 144, 545 (1966).

~ M. Lax, Rev. Mod. Phys. 23, 237 (1951}.

introduced. Korringa4 and, independently, Beeby'
have suggested an approximation in which one reduces
the crystalline potential to a sum of localized potentials
and assumes that the electrons in an alloy behave as
though they were moving in a particular ordered system
of localized potentials, the scattering matrix of which is
the average of the scattering matrices of the localized
potential corresponding to each constituent. This
approximation has been considered by Soven, "who
found that it is not a reasonable one for the case where
the localized potentials have a strength approaching
that found in transition metals. The approximation
reduces to the virtual-crystal one in the case where the
potentials are weak. A formal perturbation-theory
analysis leading to, among other things, an expression
for the alloy density of states has been presented by
Vonezawa and Matsubara. ' The approximation to be
considered below may be reached via their formalism, 9

although they have carried out no analysis of it.
The approximation scheme studied in this paper was

introduced by Soven7 under the name of "the coherent-
potential method. " In Ref. 7 application was made to
the case of one-dimensional alloys, where the method
appeared to be reasonable for many situations. Onodera
and Toyozawa' independently arrived at the same
approximation and applied it, in a somewhat diBerent
context, to a simple three-dimensional system. Velickg
et a/. have carried out a detailed analysis of all of the
approximations discussed above and, in particular, of
the coherent-potential method. Their work is comple-
mentary to ours, overlapping in certain aspects, but in
general analyzing the approximation in a diGerent

4 J. Korringa, J. Phys. Chem. Solids 7, 252 (1958).
~ J. L. Beeby, Proc. Phys. Soc. (London) A279, 82 (1964);

Phys. Rev. 135, A130 (1964).
6 Paul Soven, Phys. Rev. 151, 539 (1966).
~ Paul Soven, Phys. Rev. 156, 809 (1967).
F. Yonezawa, Progr. Theoret. Phys. (Kyoto) 31, 357 (1964);

F. Yonezawa and T. Matsubara, ibid. 35, 357 (1966); 35, 759
(1966).

I T. Matsubara and F. Yonezawa, Progr. Theoret. Phys.
(Kyoto) 37, 1346 (1967)."Y.Onodera and J. Toyozawa, J. Phys. Soc. Japan 24, 1341
(1968}.
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manner. Their conclusions about the ultimate usefulness
of the coherent-potential approximation are consistent
with ours.

Our presentation will be divided into several parts
The particulars of the model and the formalism used to
analyze it are discussed in Sec. II. In Sec. III we calcu-
late the electronic density of states and demonstrate
that our calculation is an accurate one, while in Sec. IV
we study the density of states localized about a par-
ticular lattice site. In Sec. V we very briefly discuss the
representation of the alloy wave functions in terms of
elementary Bloch waves. Section VI is concerned with
the application of some of our results to a very ele-

mentary example. A brief summary and our conclusions
is presented in Sec. VII.

defined by the tight-binding functions

gr, (x) =1V
—'"P exp(ik l)err(x)

The wave vectors of the fr, range over the first Brillouin
zone of the simple cubic lattice.

In Wannier representation

(&~E—X~&')=brr (E Er) —(1 b—r—r )W(l l'—), (2)

where W(l —l') is the matrix element of the Hamiltonian
between orbitals centered on l and l', and E~ is E~ or
E&, as the case may be. In Bloch representation

(k~E—
SC~k

)=X-r P (E—E,)

II. DEFINITION OF THE MODEL where
XexpLil (k —k') j—err. W(k), (3)

W(k) =Q exp(ik l)W(l).
The model alloy studied in this paper is formed by

randomly placing atoms of type A and B on the lattice
sites of a simple cubic lattice. The concentrations of the
constituents are denoted by c& and c~=1—c&, respec-
tively. We postulate that each atom has only a single
eigenvalue in the energy range of interest, the eigen-
function of which is so compact that the electronic
structure of the alloy may be conveniently studied in
the tight-binding formalism. We further postulate
that the atomic-wave functions for atoms A and B
are essentially identical and that the matrix element of
the alloy Hamiltonian between orbitals centered on
different lattice sites is independent of the types of atoms
occupying those sites. The atomic eigenvalues (the
diagonal matrix elements of the Hamiltonian) are E~
and E&, respectively. The model represents a disordered
system only because E&~E&.

The most fruitful method of obtaining information
about the electronic spectrum of the model is by study-
ing the Green's function g, which is defined by the
operator equation

(E+is—K)g =1,

where K is the Hamiltonian, E is the energy, and s is
a positive infinitesimal. It is important to note that
this equation is deceptively simple in appearance; K
is actually a random operator and so, therefore, is g.
A solution of Eq. (1) for the disordered system involves
an inversion of the operator E+is K for an arbitra—ry
configuration of atoms followed by an ensemble average
of the inverse. The remainder of this paper is devoted
to surmounting this problem.

It is necessary to further define the model and to
introduce some notation before proceeding with an
analysis of the Green's-function equation. We work in
two representations, a Kannier one defined by the
functions rr r(x), where rr r is the common atomic orbital
centered on lattice site l, and the Sloch representation

From Eqs. (1) and (3)

(k ~g-r~k)=A-rP (E—E,)

where
g=G+GVg, (6)

(k~ V~k')=X ' Q expLil (k—k') j(Er—Err).

Provided that the resulting series converges, Eq. (6)
may be solved in the usual iterative fashion to yield

8=G+GVG+. ~

which in Wannier representation takes the form

rv=Grv+P Grp'vr"Gr"p+ ~

)II

in which
exp(ik. (l—l')j

Grr =N 'Q
& E—Ep+W(k)

XexpLil (k—k')]—b», W(k). (4)

The essence of the coherent-potential method, as
applied to the present problem, is to expand 8 in a
perturbation series based on a self-consistently de-
termined Green's function G. We define G by replacing
every Er in Eq. (4) by an unknown parameter Err. The
quantity Eo will be chosen to yield a good convergence
rate for the perturbation series which one obtains when
the exact Green's function 8 is expressed in terms of the
coherent Green's function G. G itself satisfies the
equation

(k'
( G r

) k) = tr». [E+is Ep W(—k)j — (5)

and is formally the band Green's function for an ordered
system of atoms, each of which possesses atomic
eigenvalue Eo.

Manipulation of Eqs. (4) and (5) leads to
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4= si+siGuvi+ ' ' ' = o&/(1 —g»i) (9)

in which we have introduced the notation Gii(E) =go(E).
In terms of the tg,

+ 2 Gil-~t"Gl-l- ~l Gi"" i+ . (10)

This equation will form the basis for most of the subse-
quent discussion.

The utility of Eqs. (8) and (10) for studying the
electronic spectrum depends upon the definition of Eo.
If we were to choose Eo=cgEg+cgEg as a definition,
the lowest-order term in Eqs. (8) and (10) would
represent the virtual-crystal approximation but the
higher-order terms would not be small. Instead, we
chose Eo by requiring that at every energy the average
of the t matrices vanish. ~ In symbols,

CA4+CB1B 0 ~

Substitution of Eq. (9) into (11) leads to the equation

(CAEA+ CBEB)—Eo
= (Eg —Eo) (Es—Eo)go(E—Eo) . (12)

The essential, but awkward, feature of this equation is
the dependence of the "unperturbed" Green's function
on Eo. Ke base the perturbation series on a system in
which the major e6ect of the atomic potentials is auto-
matically included. In order to do this it is necessary
that the scattering operators be defined in terms of the
system itself. Eo then becomes energy-dependent, as is
obvious from Eq. (12).

It is convenient to introduce a dimensionless notation
of the following type. Let the lattice constant of the
simple cubic lattice be denoted by a. Then, for the
case where only nearest-neighbor interactions are
important,

W (k) = —
Wo[cos (ak,)+cos (uk„)+ cos(ak,)],

The "perturbing potentials" v& are defined by
vg =Eg—Eo or vga =Egg —Ep. The series may be partially
summed by collecting together all terms in which the
same site occurs successively. This leads to a perturba-
tion series in terms of t matrices, which are defined in
the present case by the equation

p(o) =—Im Tr(8)/vr, (13)

where Im(. . ) is the imaginary part of ( ), Tr denotes
a trace over any complete set,"and (g) is the ensemble
average of g. In Wannier representation

used below were computed numerically, using tech-
niques extensively discussed in the literature. "

In the new notation the defining equation for eo

becomes
oo

——(c~ c—s)6+ (LV—oo')go(o oo) .

The properties of this equation have been discussed
extensively by Velick(' et aV' They show that for 6
sufficiently small Eo(E) is real for all E outside of a
finite interval and is complex for energies within that
interval. For 6 greater than a certain critical va)ue
there are two separated energy intervals in which Eo is
complex. The significance of these properties lies in the
fact that in the coherent-potential approximation, ' in
which one approximates the alloy Green's function by
G, the density of states is nonzero only when Eo is
complex. Values of 6 smaller than the critical one thus
correspond to a regime in which the energy eigenvalues
are confined to a band that is more or less similar to
that of the pure materials. This is presumably the
situation that prevails in many systems, and is the one
that will occupy our attention throughout this paper.

The series in Eqs. (8) and (10) involve the coherent
Green's function for arbitrary spatial arguments. It is
known" that for real Eo the Green's function falls o6
inversely with the distance, an eBect which leads to very
slowly convergent sums in conventional perturbation
theory. For complex Eo an exponentially decaying
factor is added, which greatly facilitates sums over
lattice sites.

III. DENSITY OF STATES

We now turn to the calculation of the average density
of states for an alloy of atoms A and B. We will be
concerned exclusively with gaining an over-all picture
of the density-of-states function and not, for example,
with studying the change in the Fermi-level density of
states as a function of the concentrations. Study of the
latter quantity requires knowledge of the separation
of the atomic-energy levels for each concentration and
will be considered brieQy below.

We compute the state density from the Green's
function for the system. The average density of states
is given by the standard formula

where 8'o is the common value of the overlap integral.
%'e express all energies in terms of 8 o by the relations

Im(gii)
p(o) = —Z (14)

Eg= noh, E= e~'o, Eo= ~o~"o

and assume, henceforth, that by g and G we mean
lVo times the actual Green's functions. Since G~~ is
a function of the difference l t' (and the energy), —we
shall often denote it by G(l—1'). The values of G»'

"See, e.g., D. Hone, H. Callen, and L. R. Walker, Phys. Rev.
144, 283 (1966).

~ B.Velickj, S.Kirkpatrick, and H. Ehrenreich, Bull. Am. Phys.
Soc. 13, 643 {1966);and (to be published).~ Joseph Callaway, J. Math. Phys. 5, 783 (1964)."In the current model, the trace is over the set qg or any linearly
independent combination of them.



COXTRlBUT&OX TO THE THEORY OF DISORDERED ALr OYS 1139

Since (g«) is independent of l, it follows that the
average state density per atom is simply

pp(e) = —Img/s. , (15)

where g= (g~~). Exact evaluation of (g) is out of the
question. In the coherent potential approximation' we
discard all but the irst term appearing in Eq. (10) and
write g go. An indication that this might be reasonable
is provided by the observation that in calculating (g)
we average over the occupancy of every site, and that
by definition of eo and 6 the average of t& and t& is
zero. This implies that every term of Eq. (10) in which

a given site occurs only once vanishes on averaging.
Because of the summation restrictions in Eq. (10) the
series for (g) begins with a term involving two sites
and four t matrices.

If the approximation gogo is at all reasonable it must
at least reproduce the correct total number of states
per atom. Since Imago vanishes simultaneously with Imgo,
the band edges are dined by the condition Imt. o

—+ 0.
It may be shown that with the band edges de6ned in
this manner the integral of —Imgo/s from one edge to
the other is indeed unity. ""

Examples of the po(~) curves following from this
approximation are shown in Figs. 1 and 2. Both cases
involve alloys of 60% of type A and 40% of type B.
The example illustrated in Fig. 1 involves a case where
the constituents di6'er only slightly, the separation
between the atomic levels being only one-sixth of the
unperturbed band width. In the second case the con-
stituents differ considerably, the corresponding ratio
being one-third. The virtual-crystal-state densities are
shown for comparison. If the simple model considered
here were taken to represent the d band of a transition
metal, the second case would correspond to elements
separated by tw'o or three columns in the Periodic
Table. Since the overlap matrix was taken to be identical
for both atoms, the model applies only schematically
to alloys of elements in different rows of the Periodic
Table.

The two curves have common features. They illus-
trate that the band width in the alloy is always greater
than the virtual-crystal model predicts and hence always
greater than that occurring in either of the pure con-
stituents. On the average, therefore, the density of
states is smaller than that given by the virtual-crystal
model although in the wings of the distribution it is
larger (in the 6=1.0 cs,se, considerably larger) than
one would have guessed from a knowledge of the pure

»It is obvious that the complete spectrum of the random
Hamiltonian is bounded by the extreme of the set of band edges
of the pure materials states outside of the band edges predicted
by the current approximation presumably correspond to poles in
the higher-order terms of Eq. (20). As discussed in Ref. 26, the
existence and nature of such states vary from case to case, and
cannot be discussed in any simple and universal manner. All that
we can say is that they apparently have very little weight, since
the higher-order terms have only a small effect on the state
density within the band as dined in the text.

0

40c .I—
'D

jc

-3.o -a.o -i.o o z.o s.o E/wo

FIG. i. Average density of states as calculated in the coherent-
potential (solid line) and the virtual-crystal (dotted line) approxi-
mations for a 0.60—0.40 alloy in which 5=0.5.

g,.;,=2 Z G«Gi+. .i(I~ ~v+.G(h)/(1 ti ~i+.G'(h)))—
hy-'0

+Q Q G«'(4'G'(h)tp+I/(1 —4 &p+pG'(h))). (16)
h/0

na &-
D I ~ ~ ~
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FIG. 2. Average density of states as calculated in the coherent-
potential (solid line) and the virtual-crystal (dotted line) approxi-
mations for a 0.60-0.40 alloy in which 6= 1.0.

materials. While the over-all shape of the curve for
6=0.5 bears a close resemblance to the virtual-crystal
curve, that for 6= 1.0 is entirely different. In both cases
the van Hove singularities characteristic of the pure
material are visible only in the form of a slight change
in slope. The pronounced dip in the middle of the curve
for 6= 1 may be characterized as an incipient band gap.
For sufFiciently big 6 a true gap appears in the
spectrum. "

Ke turn to the question of whether the curves of
Figs. 1 and 2 actually represent the averaged density of
states for the model alloys. In order to gain some idea of
the validity of the approximation leading to them we
examine some of the higher-order terms in the perturba-
tion series. The class of terms in Eq. (10) that appear to
yield the largest correction to (g«) —

go are those in-
volving multiple scattering between two sites l' and
l'+h. Here l' and l'+h represent any two different
sites, one of which may be equal to l. As mentioned
above, the lowest-order terms vanish on averaging. If
we denote the contribution of these terms to (g«) by
g~„.„ then the analytical expression corresponding to
the pair terms is
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It is easily shown that
BG(h)

Q G(l)G(l+h) =— (17)

where the partial derivative indicates diGerentiation
with respect to the explicit energy variable while

ignoring the energy dependence of ~0. Since the averages
appearing in Eq. (16) are actually independent of l',
we may combine Eqs. (16) and (17) to 6nd

BG(h)
g,.;,= —g (u'G(h)/(1 —u'G'(h)))

hp'-0

8G(0)
P (Pt'G'(h)/(1- u'G'(h))), (18)
hp-'0

where t' and t' are to be averaged independently.
Ke have evaluated this expression for the alloys

considered previously. The lattice sums were carried
out over all lattice vectors contributing signi6cantly to
the sum. Because of the exponential damping of G~~

-.2

Fro. 3. Pair contribution to the average density of states in a
0.60-0.40 alloy in which 6=0.5. po is shown for comparison. Note
the factor of 100 multiplying pp;, .

the sum is very rapidly convergent, with the overwhelm-

ing contribution usually coming from the smallest

lattice vector. The results are shown in Figs. 3 and 4,
where we have plotted p„;,= —Img„;,/s. . We call

attention to the scale factors multiplying p», , It is seen

that the contribution of these terms to the average

density of states is essentially negligible. The smallness

of these terms is not due to the smallness of the terms
within the angular brackets of Eq. (16). Indeed, for the

shorter lattice vectors the quantities within the brackets
are only slightly smaller than g0 itself. Only the average
is small, which is due to the vanishing of the average of
the first few terms of the implied geometric series.

The structure of p», , is easily understood. p»zz

partially represents the e6ect of two degenerate systems
interacting. %hen identical systems interact, spectral
density is removed from energy regions surrounding the
levels of the isolated systems (hence the negative por-
tions of p„;,) and transferred to other energy regions.

The low-energy side of the plot shown in Fig. 4
exhibits a slight bump. It is clear that this kind of
behavior is to be expected in general. Since the band
edges are defined by the condition that Ime0 —+ 0, the
damping of G~~. decreases as the band edge is approached
and hence more and more terms contribute to Eq. (13).
The accuracy of the approximation cannot, therefore,
be judged solely by studying this expression. Instead
we make recourse to our previous study of the one-

dimensional alloy. ' In that case, for which exact results
are obtainable, we found that an approximation essen-

tially identical to the one under discussion gave good
results in the energy region in which it predicts the
band edges to lie. While the energies defined by the
condition Ime0~ 0 are not the true band edges of the
spectrum, ""the state density is apparently so small
outside of the region spanned by these points that it is
of no consequence in metallic systems. Presumably the
same phenomenon occurs in the three-dimensional case.
On the basis of these results we would conclude that the
lowest-order approximation gives an adequate repre-
sentation of the complete series.

~ 2

D
N

O

-l.o -5.0 s.o E/Wo

o -.I-

FIG. 4. Pair contribution to the average density of states in a
0.60-0.40 alloy in which 6= 1.0. po is shown for comparison. Note
the factor of 10 multiplying p~;,.

IV. LOCAL-STATE DENSITY

The average density of states discussed in Sec. III
tells us the number of eigenstates having eigenvalues
in a given energy range, but it conveys no information
about the wave functions of those states. It is, of course,
not possible to speak of wave functions without specify-
ing the exact configuration of atoms in the particular
system under consideration, and the concept of an
averaged wave function is meaningless. Ke gain knowl-
edge of the average modulus of the wave functions
by studying various restricted averages of the Green's
function. For example, we will calculate a quantity
(gg~)~, where the subscript outside of the bracket indi-

'~ I.M. Mshits, Usp. Fiz. Nauk 83, 61'f {1964}LEnglish transl. :
Soviet Phys.—Usp. ?, 549 {1965}j.
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-5.0 -2.0 - I.O l.O 2.0 3.0 F/go

FIG. 5. Local density of states for a 0.60-0.40 alloy for
which 4=0.5. The average density of states is shown for
comparison.

cates that we average over the occupancy of all sites
other than /. In a tight-binding formalism the imaginary
part of this expression is proportional to the average
state density localized around a particular type of atom.
The numerical value of this quantity depends only
upon whether an A or B atom is present at the site in
question and is independent of the position of that site
in the crystal. A further average of (g«)& over the
occupancy of t yields the quantity (g«) discussed earlier.
We will refer to the quantity —Im(g«) &/n as the local-
state density. It is also interesting to study the magni-
tude of probable Quctuations in the local-state density
as compared to its average value. To this end we will

study an approximation to the quantity (g&&)&,&, an
average in which the occupancy of both / and /' are
held fixed.

The lowest-order nontrivial approximation to (g«)7
is obtained by neglecting all but the zeroth and first-
order terms in Eq. (10).Since the average (tp) & vanishes
if /g/', we have

(g«) t G«+G«tk'n. (19)

This approximation amounts to calculating (Q«) l

by simply considering the atom at site / to be an isolated
impurity atom with atomic level e& imbedded in a matrix
of atoms formally having eigenvalue ~0. Due to the
complex nature of e(), this interpretation is only a formal
one. Using Eq. (15) and the notation of Sec. II, the
local-state density at an atom of type A is

p&(c) = —Imago(1+g04)]/s', (20)

with a similar expression holding for type-8 atoms.
In Figs. 5 and 6 we show plots of pg, p~, and po for

the alloys considered previously. These cases show quite
dramatically that there are substantial differences be-
tween the average and local-state densities. It is obvious
that states in the upper part of the band will tend to
have the larger amplitude around the atom having the
higher atomic level, but the magnitude of the difference
(as given in the current approximation) is perhaps
surprising.

aa
0

O

.2
lO
Ca

-5.0 -2.0 -1.0 1 0 20 5.0 E/ufo

FIG. 6. Local density of states for a 0.60-0.40 alloy for
which 6=1.0. The average density of states is shown for
comparison.

A measure of the extent of Quctuations in the local
density and of the validity of using the lowest approxi-
mation for the environmentally average local density
may be gained by studying the effect of the next most
important class of terms in the perturbation series.
These include the effect of multiple scattering between
the site / under consideration and another site denoted
by /'. '7 The analytical expression for the contribution of
these terms to g« is

(1+ gotg)' G'(h)tt/L1 —t t(t. G(h)],
where

(21)

We use this expression in two ways. First, we average
over the occupation of site /' and sum over all values of
h. Again the most important contribution is provided by
the first- and occasionally the second-nearest-neighbor
site. We do not show plots of the results because they
are identical in character to those of Figs. 3 and 4. The
corrections for the 6=0.5 alloy are of the order of a
hundredth of the value of Eq. (20), while that for the
6= i.0 alloy are less than a tenth of the contribution of
the lowest-order term.

The situation is entirely different when we employ
expression (21) to estimate (b~~) t t. rather than
(g«) &. To do this we simply evaluate the above formula
for, say, the nearest-neighbor distance and insert the
actual t matrices corresponding to whatever combina-
tion of A and 8 atoms we chose to place on the two
sites.

The results of such a calculation for the 6=0.5 alloy
are shown in Fig. 7. The results for 6= 1.0 are qualita-
tively similar but numerically more extreme. The figure
shows the pg discussed above together with p~ plus
six times the contribution of expression (17).The factor
of 6 represents the number of nearest neighbors in a
simple cubic lattice; the curves, therefore, show the
effect of a very extreme fluctuation. We emphasize that
we have obtained only an estimate of the eGect of such
Quctuations, since many terms, in particular terms in-

"The terms included are only a subset of those used for calculat-
ing p~;, in Sec. III, which actually included more than just the
pair terms, in the sense in which the word is used here.



ii42 PAL L SOVEi% 178
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-3 0 -2.0 -I.O I02050E/'+0
Fro. 7. Effect on the local density of extreme Quctuations in

environment. The curves refer to a 0.60-0.40 alloy in which
6=0.5. Curve a is the local density on a type-A atom when it is
surrounded by six other A atoms; b is the local density on a
type-A atom when it is surrounded by six Batoms; c is the average
local density already illustrated in Fig. 6.

volving multiple scattering among the neighbors, have
been omitted. Also, the curves are plotted for highly
improbable situations. The probability of finding six
neighbors of type A or 8 is c&6 or cz', respectively, which
work out, for the alloys illustrated, to be 0.047 and
0.004. The figures do nonetheless indicate that the
electron density existing at a site in a particular en-
vironment may be very diBerent from that found when
the atom is in the most probable environment.

V. SPECTRAL DENSITY

Discussions of the electronic structure of ordered
systems usually exhibit plots of energy against reduced
momentum. Since the energy eigenfunctions in an
aperiodic system are not eigenfunctions of reduced
momentum (the wave vector is not a "good" quantum
number) no such plots can be made in the present case.
Information about the momentum of the wave func-
tions may be obtained by studying the spectral density

corresponding to each wave vector. In the disordered
situation the 8 function expands into a function of finite
width, indicating that an energy eigenfunction corre-
sponds to a whole specter of wave vectors. Viewed as
a function of k for fixed e, the function p(e, k) has the
general shape of a I,orentzian, the maxima occurring at
a particular set of k vectors, and the half-width indicat-
ing the mean free path or spatial extent of typical
eigenfunctions at that energy.

We use G~ as an estimate of (gqq). The cancellation
that occurs in finding the average state density occurs
here as well, and this approximation should be adequate
for gaining an understanding of the spectral density.
An expression for p(e, k) may be derived by combining
Eqs. (5) and the expression for W(k) given in Sec. II
to yield

p(e, k) = —(1/n. )Imps —eo—cos(ak, )
cos(ok)y cos(okg)P .

In Figs. 8 and 9 we show plots of the position of the
peak in the spectral density for k vectors in the (111j
direction. The curves delimiting the shaded region are
the loci of the wave vectors at which the spectral
density has fallen to half the value obtained at the
peak. The actual value obtained at the peak varies
inversely with the width of the shaded region at con-
stant energy. The dotted line is the usual ~(k) curve of
an ordered system, obtained in the virtual crystal
approximation. For the 6=0.5 alloy the shaded region
is quite narrow (compared to, say, the distance to the
zone corner) and k is a "fairly good" quantum number.
The same statement may be made for the 6= 1.0 alloy
for energies in the extremities of the band. It is clear,
however, that the eigenfunctions corresponding to

3.0

2.0

The spectral density and the density of states are con-
nected by the relation

1.0

o 0

- I.O

where the sum is over allowed wave vectors in the first
Brillouin zone. The quantity p(e, k) is not a spectral
density in the w'ay the term is usually used, because it
does not refer to a decomposition into plane waves, but
rather into the functions f&, which are defined for only
a limited number of wave vectors. The plane-wave de-
composition depends upon the fourier transforms of the
localized functions y~(x). It is of no particular relevance
in the present case.

In the case of an ordered system p(e, k) takes the form
of a 5 function, there being only one energy eigenstate

-2.0

I I I I I I
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FIG. 8. Locus of the maximum of the spectral density for a
0.60-0.40 alloy in which A, =O.S. The boundaries of the shaded
region de6ne the momentum values at which the spectral density
has a value one-half of that attained at the peak. The curve is
plotted for wave vectors of the form k (1,1,1). a is the lattice con-
stant. The dotted line refers to the c(k) relation in the virtual-
crystal approximation.
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FIG. 9. Locus of the maximum of the spectral density for a
0.60-0.40 alloy in which 5=1.0. The boundaries of the shaded
region define the momentum values at which the spectral density
has a value one-half of that attained at the peak. The curve is
plotted for wave vectors of the form k(1,1,1). a is the lattice
constant. The dotted line refers to the e(la) relation in the virtual-
crystal approximation.

cannot be exactly true, since the diGerence between the
ground-state energy and the lowest eigenvalue of atomic
configurations in which the number of d electrons differs

by one from that in the ground-state configuration tends
to be smaller than typical band-widths. Nevertheless,
this idea should serve as an approximate guide to the
position of these levels, and it is of interest to examine
this kind of assumption in the light of the results ob-
tained above.

The quantity most accessible to experiment is the
density of states at the Fermi level. To study the eGect
of alloying on this quantity we will repeat some of the
calculations discussed above, but this time introducing
a Fermi energy ef and adjusting 6 in order to fix the
number of electrons at each site at a predetermined
value. This requires that ~f and 6 be functions of the
concentrations. For ease of computation we use a
model"" in which the density of states in the pure
system has the simple analytic form

2
p(c) =-(1—e')"'

energies in the middle of the band depart very seriously
from simple Bloch waves. This is basically due to the
stationary character of the trigonometric part of W(k)
for wave vectors about half way to the zone edge. The
same phenomenon also produces the maximum in the
density of states for a pure material. The Fermi surface
would appear to be a concept of very limited utility
for Fermi energies in this region of the band.

VI. SIMPLE EXAMPLE

We have emphasized in the Introduction that the bulk
of this paper would be concerned with the study of the
properties of a disordered alloy in which the position
of the atomic eigenvalues were somehow axed in
advance. The connection between this kind of model
and a real system is tenuous unless there is a prescrip-
tion based on the properties of the constituents for
6xing the position of these levels with respect to some
Fermi energy. "In a metal, each atomic cell must have
approximately zero net charge and the position of the
levels will be internally adjusted to ensure that this is
so. This fact is of no inunediate use in applying our
model to, say, the d band of a transition metal, since
charge neutrality only fixes the total number of elec-
trons in each unit cell and not necessarily the number of
electrons in d-like states. However, it has been sug-
gested" that the number of d electrons is itself fixed,
but inspection of spectroscopic data indicates that this

' The phrase "atomic-energy level" should be understood as
referring to the position of the d-wave resonance in the atomic
scattering amplitude. See, e.g., V. Heine, Phys. Rev. 153, 673
(1967).

"A complete discussion is given by Conyers Herring, in
Magnetism, edited by G. T. Rado and H. Suhl (Academic Press
Inc., New York, 1966), Vol. IV.

The relevant Green's function may be calculated with
the aid of the relation""

1 ' p(x)dx
g(s) =-
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FIG. 10. The average density of states at the Fermi energy
versus the average electron concentration for a series of alloys
in which A has 0.9 electrons localized about it while J3 has the
number indicated in the figure. The dotted line is the same quan-
tity in the virtual-crystal approximation.

and the local density, the integral of which determines
the number of electrons at each site, with Eq. (20).
We completely ignore the fluctuations in local density
discussed in Sec. IV.

The type of results obtained for p(cq) is illustrated in
Fig. 10, which shows the average density of states at
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FIG. 11.The local density of states at the Fermi energy versus
the average electron concentration for a series of alloys in which
component A has 0.9 electrons localized about it while J3 has the
number indicated in the figure. pz is plotted for the alloy system in
which J3 has 0.5 electrons.

the Fermi level for a series of alloys in which constituent
A is assumed to have 0.9 electrons (in a nondegenerate
level) while constituent 8 varies from one with 0.5 to
0.8 electrons. The absence of a universal relationship
between Fermi-level density of states and average elec-
tron concentration is obvious, although the departure
from one is not very great. The last observation must
be tempered by noting that the assumed pure-material
state density and consequently the Green's functions
are very smooth functions, in contrast to what one
finds in a transition metal. The innnediate erosion of the
van Hove edges discussed in Sec. III may have a large
eGect in real systems.

The variation of the local density of states at the
Fermi level is also of interest. Ke show this in Fig. 11.
The points corresponding to pure materials were ob-
tained by a conventional impurity calculation. While
there is no published literature dealing with the eGect
of many-body correlations on the magnetic suscepti-
bility of alloys in which the amplitude of the wave
function is different on diGerent sites, it is probable that
the relevant parameters are the product of the local-
state density and a screened Coulomb interaction for
each atom. In view of the strong dependence of local-
state density on concentration that is illustrated in

Fig. 11, it would appear that considerable caution must
be exercised in the interpretation of susceptibility
measurements in transition-metal alloys.

VII. SUMMARY AND CONCLUSION

Our aim in the present work has been twofold: to
evaluate the usefulness of a particular technique for
calculating the one-electron spectrum in a disordered
alloy and to gain some idea of the spectrum in actual
systems. To this end we have made a detailed study of
the simple model which possesses some but not all of
the features of a transition-metal alloy.

It appears that the techniques employed give an
adequate description of the one-electron spectrum in
the disordered system. The perturbation series for the
average density of states was investigated by studying
both the lowest-order (coherent-potential) approxima-
tion and what appear to be the largest class of correc-
tion terms. The eGect of the correction terms was found
to be very small. The density of states given by the
lowest-order term can diGer significantly from the
predicted by the virtual crystal approximation. For
alloys of not too dissimilar elements the diGerence does
not appear to be very great, although this conclusion
may not be valid if considerable structure appears in
the pure material state density. The very rapid erosion
of the van Hove singularities that was found even in the
simple case lends strength to this stipulation.

We found that the local density of states is also
adequately described by the lowest approximation, if
an ensemble average over the environment is included in
the definition of this quantity. The eGect of Ructuations
in the environment on the local density was found to be
considerable. This fact raises interesting questions,
which have not been considered in this paper. For
instance, if the principle that the number of d electrons
on each atom is fixed is approximately valid, then the
position of the atomic energy level" on each atom may
be a strong function of the environment of that atom,
in which case one is in eGect dealing with an alloy of a
large number of constituents. Another of many un-
explored phenomenon deals with ternary alloys, in
which the third component is present in very small
concentrations. Our results suggest that properties of
the dilute component (e.g., whether it bears a magnetic
moment) may depend more upon the enviromnent of the
element than upon the gross properties of the alloy.


