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Singularities in the X-Ray Absorption and Etnission of Metals.
III. One-Body Theory Exact Solution
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Lytnan Laboratory, Harvard University, Cambridge, Massachusetts

The singularities of x-ray absorption or emission in metals are studied by a new "one-body" method,
which describes the scattering of conduction electrons by the transient potential due to the deep
hole. Using the linked-cluster theorem, the net transition rate in the time representation is expressed as the
product of two factors: a one-electron transient Green's function L, and the deep-level Green's function g.
These factors obey simple Dyson equations, which can be solved asymptotically by using Muskhelishvili's
method. The x-ray transition rate is found to behave as 1/e, where ~ is the frequency measured from the
threshold, and a an exponent involving the various phase shifts 8& which describe scattering by the deep
hole. a may be )0 {infinite threshold) or (0 (zero threshold). The experimental implications of these results
and their relation to the Friedel sum rule are briefly discussed.

I. INTRODUCTION
' 'N the first two papers of this series, "x-ray absorp-
~ ~ tion and emission in metals was studied by the
methods of perturbation theory. Special attention was
paid to final-state interaction of the conduction elec-
trons with the localized disturbance created by the
x ray. To the extent that lifetime and recoil of the deep
localized hole may be neglected, ' we showed that the
x-ray spectrum should display a characteristic singu-
larity near the Fermi level threshold. The theory was
carried out on a simplified model, which we briefly
recall:

(j) We consider free conduction electrons, with
energy ek and creation operator akt. In order to simplify
notation, their spin is not explicitly mentioned —it will
be restored at the end by inserting the appropriate
factors of 2. There is no periodic lattice potential, and
hence the Fermi surface is spherical. (Such an approxi-
mation is known to be quite good in view of the small
pseudopotentials involved in band theory. ) Coulomb
interaction between conduction electrons is ignored: It
would simply act to renormalize quasiparticles near the
Fermi surface. We assume that such a renormalization
has been carried out.

(ii) The process is supposed to involve a single x-ray
deep state, with creation operator b~ and unrenormalized
energy Eo. If the deep state is degenerate, a single
component is involved.
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(iii) We only retain intraband scattering processes,
in which the deep level is unchanged, while the conduc-
tion electron remains in the same band. Internal Auger
eGect, which could lead to nonradiative decay of the
deep hole, is neglected. Scattering between two diGerent
components of a degenerate deep level is ignored.

The above assumptions are summarized in the following
model Hamiltonian:

H=Q &pay ag+Epb b+g Vgp apta~ bbt.
k kk'

(Note that the scattering term exists only when the deep
level is empty. ) The coupling to the x-ray field
described by a perturbation.

IIx PWpaptbe '——~'+cc. (2)

when m is the x-ray frequency. In order to calculate the
transition rate, it is convenient to introduce the response
function

S(t—t') =(O~ T(ax(t)ax(t')) ~O), (3)
where T is the time-ordering operator, and ~0) the
initial "ground state" (with the deep level filled or
empty, respectively, for absorption or emission). The
transition rate is proportional to the imaginary part of
the Fourier transform S(pp).

In I and II, the last term of (1) was treated as a many
body interaction. Formally, the problem is similar to
the Kondo e6ect, in that conduction electrons scatter
on a two state system (the deep l-evel being either empty
or full). It may be attacked along the same lines, for
instance, using Abrikosov's' perturbation approach. A
direct transposition of Abrikososov's theory to the x-ray
problem was carried out in I:by summing the so-called
"parquet" graphs, we obtained an explicit expression
for the response function S(cp). II was devoted to a
highly self-consistent formulation, which is valid arbi-

4 A. A. Abrikosov, Physics 2, 5 (1965).

1097



i098 P. NOZI ERES AN D C. T. D E DOM I N I C IS

k P k't Q 0 t'
+

k

trarily close to the singular transition threshold. In
order to complete such a perturbation calculation, we

had to make simplifying assumptions on the matrix

elements V~~ and S"~, namely,

Vg}, =—VN),gg )

W},=8'eg,
I a&—u I (&0, =o otherwise

(u is the chemical potential, $0 a cutoif ~u). Physically,
the choice (4) eliminates any selection rule associated

with rotational symmetry, and retains only 8-wave

scattering by the localized hole. The problem can then

be solved in the weak coupling limit:

g =up V((j.

(where vo is the one spin density of states at the Fermi

surface). In the vicinity of the threshold frequency &dp,

the absorption rate is found to behave as

rm()-(
'

) .

According to (5), we expect the transition rate to be
infinit at threshold (for both emission and absorption),
in agreement with the prediction of Mahan. '

Actually, such a many-body approach is not necessary
in the present problem. Instead of treating the last term
of (1) as a many-body interaction, we may consider it
as a one-body scattering potential which is established

suddenly at the time of the x-ray transition. In an

absorption experiment, the scattering potential

Q V» agtag (6)
kh'

is applied suddenly when the x ray is absorbed; in an
emission process, the potential (6) is suddenly cancelled.
We are then interested in the transient response of
conduction electrons to that abrupt change of potential—in contrast to the ordinary impurity problem, in

which one studies the equilibrium conlguration of con-
duction electrons in a potential which is established
adiabatically. Viewed from that vantage point, we face
a one body scattering p-roblem, although an unusual one
since the scattering potential is time-dependent.

Physically, the simpli6cation stems from the fact that
the deep hole is structureless. ' It may exist or not exist.
Hut once it is created (or destroyed) by the x ray, it

' G. D. Mahan, Phys. Rev. 163) 6T2 (f96"l).' We explicitly eliminated internal transitions between dUferent
components of a degenerate deep state.

Fzo. 1. The Dyson equation for the conduction-electron
Green's function Gjgq. in the emission case. The thin line denotes
the zeroth-order term Ggo, the heavy line corresponds to the
renormalized Ggg. .The cross denotes the interaction vertex, which
carries a factor —i'}-.

just remains there, and the potential felt by conduction
electrons is constant. There is no dynamical degree of
freedom of the hole, except to appear or disappear once.
In contrast, a magnetic impurity keeps Gipping its spin
all the time; it is essential to keep track of its spin his-

tory, which correlates successive collisions of conduction
electrons. For that reason, it is impossible to reduce the
Kondo eOect to a time-dependent one-body problem. 7

The major interest of the many-body approach de-

veloped in I and II is that it is not specilc to the x-ray
problem; the formalism is geared to describe dynamics
of the scatterer, and may thus be transposed to a wide

variety of problems. For instance, the self-consistent
formulation of II should prove very useful in the more
complicated case of the Kondo effect—yet, it is not
required in the x-ray problem.

The present paper is devoted to the "one-body
approach" to x-ray emission and absorption. As might
be expected, the algebra is much simpler than in I
and II—so simple, indeed, that the singularity near
threshold may be calculated exactly, for arbitrary
coupHng strength For si.mplicity, the method is exposed,
using the model interaction, 4 which retains only s-wave
scattering on the deep hole. The general equations are
established in Sec. II; their asymptotic solution close to
the threshold is obtained in Sec. III. We 6nd that the
exponent in (5) involves the phase shift at the Fermi
surface, 8, rather than the coupling strength g tanb.
The extension to a more general interaction V~~., in-

volving all phase shifts 8~, is carried out is Sec. IV. We
show that such a generalization is not trivial, since it
may replace the divergence near threshold by a zero

discontinuity Lthe exponent in (5) becoming negative j.
The physical implications of these results, as well as
their relation to the Friedel sum rule, are briefly
discussed in the conclusion.

II. "ONE-BODT' FORMULATION

We wish to calculate the quantity

F», (i—i') =(olr(a, '(f)b(i)b'(i')a, (i')}lo& p)
from which the x-ray response function is easily ob-
tained. Another quantity of physical interest is the
deep-electron Green's function'

g(i—i') = (o I
r(b(i)b'(i') }I

o).

Since only one deep level is involved, F» and g always
propagate in the same time direction; both vanish for
t) i' (absorption) or t(t' (emission). For instance, the
zeroth-order term of 8 is given by

g, (t) =e-'ao'e(i) (emission)
e'a"8( t),—(absorption) — (9)

~ The nearly systematic cancellation of singularities noticed in I
and D was indeed an indication that the x-ray problem was
basically simpler than the Kondo eBect.

8 Note that for convenience 8 is here defined without a fracto i,
in contrast to I and II.
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dI'Gyp(I') Vgg"Gp 'g'(l I') . (1—2)

The Fourier transform Gl, p (c) is easily expressed in
terms of the scattering matrix I~p..(p) Lsee (I.10)j. To
the extent that we use the fuH propagator Gkk, the
remaining interaction in (1) may be written as

Bi= Q V~~.aptaq. bbt (absorption)
kk'

= —P V».a&taz. btb (emission) .
kk'

(13)

In both cases, Hi is a final state interac-tion, which acts
only when the x-ray transition has taken place.

In the approach of I and II, propagation of the deep
electron was described explicitly If we .represent gp
and Gkk, respectively, by dashed and full lines, the
functions F~~ and 8 are given by all graphs of Figs. 2(a)
and 2(b). We note that the dashed line runs mono-
tonically from I' to I; moreover, according to (13), all
the interaction vertices H~ must lie in the time interval
(I',I), when the perturbation brought about by the x ray
is present. In a conventional calculation based on the
Fourier transforms g(p), these features are hidden.

As was pointed out in the Introduction, the only real
time dependence of the scattering potential is its
limitation to the interval (t,l ). Within that interval,
"propagation" of the deep hole should have no physical
significance. Such a conclusion is indeed immediate if
one looks at (9). In the emission case, the over-all
contribution of the dashed propagators is a mere phase

Fro. 2. The general graphs contrib-
uting to Pkk I Fig. 2{a).l or g t Fig.
2(b)j in the many body approach of I
and II.

t ~ ~ t

~-E-
t

where 8 is the usual step function.
The conduction-electron Green's function is defined

as'
G„~,(I I') —

(0~ T(a„(I)ai,,t(I')) j0) (10)

In the absorption case, it describes propagation in the
absence of a deep hole, and thus reduces to its zeroth-
order term

Gi, g (t) =Ggpbpg ——bye. e""'8-(t) if pg)Ii
= —gap e "&'8( I)—if pg(ii. (11)

In the emission case, the initial state involves the static
potential of the deep hole. Gkk then obeys the Dyson
equation pictured on Fig. 1, which may be written as

Gpi (I) =Gip(I)~i p

I

l

I

I

I

I

I

I

I

I

1

tI

I I
I I
I- I

I I

(a) (&)

Fro. 3. The passage from many-body graphs (where conduction
electrons interact with the deep-level, dotted line) to one-body
graphs (where they interact with a transient scattering potential}.
Closed one-body loops may arise from both self-energy and vertex
renormalization in the many-body approach. [Fig. 3(a) corresponds
to Fkk, Fig. 3(b) to g.

factor
e-sE0(t-t')

which is completely independent of the intermediate
history of the deep hole. In the absorption case, the
minus sign in (9) may be absorbed by changing the sign
of the matrix element Vqq. Lcf. (13)]:Again, propaga-
tion of the deep hole is irrelevant. We may then simplify
the calculation along the following lines:

(i) Introduce "reduced" quantities

Fgg~(I) = We' p Fppi(I),

9(I)=~'"'O(I), (14)

~ correspond, respectively, to emission and absorption,
so as to get rid of the minus sign in (9).

(ii) In order to calculate F and g, erase the deep-hole
lines in the diagrams of Fig. 2, and replace the inter-
action vertices by static potential vertices, as shown
on Fig. 3. Propagation of the deep hole is forgotten; the
only requirement is that all vertices must be in the
range (l, t'), when the interaction Hi is effective.

(iii) To each vertex associate a scattering matrix
element l'kk in the absorption case, —t''kk. in the
emission case [the difference reflecting the change of
sign in (13)j. Every conduction-electron line corre-
sponds to a renormalized propagator Gkk .
The physical meaning of such a formulation is quite
clear: We start from an initial "equilibrium state"
characterized by the propagator Gkk .The hole is created
(or destroyed) for a finite interval of time, and we
calculate the transk nt response of each conduction elec-
tron to that perturbation. We really have a time-
dependent one-body problem, in which the hole history
enters only through the boundaries (l,t').

We see on Fig. 3(a) that a one-body graph for F&&.
involves one open line running from t to t', plus any
number of closed loops. ' The open line corresponds to

9 The closed loops arise from both self-energy and vertex correc-
tions in the old many-body approach /the only diGerence being in
the time ordering of vertices —see Fig. 3(a)j.The large cancellation
between self-energy and vertex renormalization noticed in II is
thus hardly surprising.
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case (f&f), we find"

y»"(r, r'; t, t') =G». (r r—')

dr" P Gsq (r—r")Vqq yq. s (r",r', t, f') (17a)

(t and t' enter only as the boundaries of the integration
over r") In .the emission case (t'&t) we must replace
G by G', V«by —V«, and permute the boundaries t
and t': We obtain

{c)

I

I
I
I

t

FIG. 4. (a) A graph contributing to the transient conduction-
electron Green's function qILIf, (v, v.', t,t'). All vertices lie in the
finite range (t,t'). The last branch is singled out to give Eq. (17).
(b) Derivation with respect to t amounts to fixing any intermediate
vertex at time t; on either side of that vertex, there is a complete
propagator &, denoted by a wavy line. (c) Similar analysis for the
time derivative of the closed loop contribution C(t).

the electron effectively created (or destroyed) by the
x ray, while the closed loops describe the readjustment
of the Fermi sea to a new transient situation. The
Green's function g involves only closed loops, as shown
on Fig. 3(b). We note that closed loops play the same
role as vacuum fluctuations in ordinary perturbation
theory: They can be summed by using the same linked
cluster theorem, which remains valid even if the scat-
tering potential is explicitly time-dependent. Let
C(t—t') be the contribution of all single closed loops,
L».(t—f') being that of the open line in Fig. 3(a). The
linked cluster theorem tells us that

g(f) eo(t)

F».(t) = I».(t)eo"'.

The net transition amplitude FI,I, appears as the
product of a one-body factor L» multiplied by the
deep-hole propagator g. te

At this stage, it is convenient to introduce the one
(conduction) electron Green's function

y» (r,r'; f, t') = (T(a, (f)a„.t(f'))) (16)

Once p is known, the function L» is obtained by
letting v —+ t', 7'~ t:

L» (t t') —= —ys s(f', t; f, t') . (18)

When t and t' go to infinity, the restrictions on vertices
are lifted: yj, I,. reduces to the eglilibrium propagator in
the /I, nal state which is of course the same as the
initial-state propagator for the reverse case":

f~ —~, f ~+ eo: yssis (r,r )~G»l'(r —r ),
f~+ eo

&

f'~ —oo: yet~'(r, r') ~ Gss~s (r r'). (1—9)

The results (17) and (19), are clearly in agreement with
our earlier definition (12). We note that t and t' enter
only as integration boundaries: Hence, the derivative
By/t)f is obtained by setting any vertex in the graph at
the edge of the integra. tion range. As shown in Fig. 4(b),
we have

r)y» (T,r )=1Q ysq(r&f) Vq yqq~&~(f) )r.
qq'

(20)

The differential equation (20) is valid in both cases, and
is completely equivalent to the integral equation (17).

The closed loop contribution C(t) may be inferred
from p» in a similar way. Derivation with respect to t
amounts to fixing any vertex of the loop at the boundary
t )Fig. 4(c)], so that

aC(t f')—= —s P Vqq yq. q(t)t).
t9$

(21)

y»' (r~T i f&f ) Gssr (r r )
t

+i dr" Q Gsq'(r —r")Vqq yq. s"(r",r'; t,t'). (17b)

(Note the minus sign arising from the clpsed lppp. )
Equation (21), although exact, leads tp spmewhat
ambiguous calculations. In what follows, we shall use
an alternative approach to calculate C. Let us multiply
every vertex by a constant factor X, keeping the
propagator G» constant; applying the operator
)t,r)/r)) to C, and letting X go to 1, amounts to multiplying
every graph by its number of vertices n. Such an n-fold

'The indices a and e refer, respectively, to absorption and
emission; in what follows, we shall often shorten the notation by
omitting the variables t and t'in q.

calculated in the presence of the transient potential II~
(in contrast to Gss which is calculated in the initial
state). yes is given by all oPen line graphs of Fig. 4(a),
with all vertices restrained to the interval (f,t') By.
isola. ting the last branch of each diagram LFig. 4(a)],
we obtain a Dyson equation for p. In the absorption

"The physical meaning of such a relation is best understood
by returning to energy space: Then the product Ljit& 8 becomes a
convolution of L» (q) and g(q). But the spectral density Imgis
known to characterize the broadening of the deep level. The above
convolution may then be viewed as the blurring of a "bare" one-
electron spectrum characterized by L~ (e), due to the finite width
of the deep level.
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Z V»»G'» (o),

= —Z V»» G»»'(o).

(24)

We recover the well-known result that X86/BX is equal
to the expectation value of H».

In an absorption process, the anal ground-state
energy (with the hole) differs from the initial energy by
an amount ( E»+5 ); in —the reverse emission process,
the net energy change, from equilibrium to equilibrium,
is (E»+6'). Since the two transitions are inverse of each
other, it is physically obvious that

(25)

The transition threshold is thus the same in absorption
and emission: There is no "Stokes shift. "The relation
(15) may be checked by using (22). For arbitrary X, we

may write in the limit ! t—t'! ~ ~:
y»» (r,r) ~ G»»

' "(0) (emission)
~G», "(0), (absorption)

where G" is the propagator calculated with a net
potential XV&z a&~a& . In analogy with (24), we have
(with obvious shorthand notation):

=TrVG' ",

repetition would also be achieved by "marking"
successively each vertex of the graph (whose time r
varies from t' to t) H. ence, C obeys the equation

P,aC(t t')—
! i Q— V»». p». »(r, r)dr . (22)

8$ g g»» g

Equation (22) will be used in Sec. III.
When ! t t'! ~—~, the derivative BC/Bt becomes

constant, and the main term of C may be written as

C—+ —iA'(t —t') (emission)

i 5'(—t' t) —(absorption) . (23)

Here —ih represents the contribution of all closed loops,
with no restriction on time except that one vertex has
not been integrated over (the extreme right or the ex-
treme left). According to the usual rules of perturbation
theory, b, is simply the change in ground-state energy
due to the static perturbation H» present in the final

state. An additional confirmation is provided by (22),
which yields

function g. In the full g, we may lump all exponential
factors together: Eo is simply replaced by the re-
normalized deep-level energy (E»+6). Mathematically,
the dominant term of C acts to shift the branch point of
the propagator b(»). On the other hand, it does not give

rise to any broadening of the deep level. Such a broaden-

ing leads to decay of the Green's function g(t) for large
times; it will arise from the next terms of C(t), which

diverge more slowly than t. We shall see in Sec. III
that C actually behaves as

C~ iht—+n lnt. (26)

The second term of (26), although smaller, is the only
important one in determining the shape of the spectrum
near threshold. In what follows, we shall usually ignore
the shift b,, the actual threshold frequency oro

=p, —Eo—b, being considered as an experimental
parameter.

III. ASYMPTOTIC SOLUTION FOR
S-WAVE SCATTERING

Let us assume that the potential created by the deep
hole is spherically symmetric; for a free conduction-
electron gas, V~~ depends only on the angle between k
and k', and may be expanded in a series of normalized
spherical harmonics F~

V»g. =Q V)(k,k') Fg~(k) V(~(k') (27)
lee

(where k denotes a unit vector in the direction of k). In
what follows, we shall assume that each component
V~(k, k') is separable, of the form

Vi(k, k') = —Viue(», )u((»g ) . (28)

N~ is a cutoff function more or less centered on the
Fermi surface, and such that u(u) =1; the minus sign
ensures that Vo&0, as befits a Coulomb attraction with
the deep hole. The approximation (28) simplifies the
theory without affecting much the physical results. We
shall see that the singularity near threshold depends on
the interaction on the Fermi surface: the functions u~

only provide a cutoff in otherwise logarithmically di-
vergent integrals. Since we shall not specify that cutoff,
we may rely on the separable approximation (28) to
obtain the correct result. Likewise, we may expand the
x-ray matrix element in a series of spherical harmonics.

W»=Q W( (ey) V(~(k). (29)
lm

For simplicity, we shall assume that Wg is proportional
to the same function u~ that enters (28)

Wg„(»p) = W(„u((»») . (30)
= —Tr VG".

Equation (25) follows by integrating from X =0 to X= 1.
In the limit t —+ ~, the dominant term of C gives rise

to a phase factor exp[ ihtj in the —reduced Green's

Such an approximation renders the calculation much
more symmetrical, without affecting the nature of re-
sults; it is in no way essential and could easily be
removed in a more quantitative calculation (W& only
enters as an over-all multiplicative factor).
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A. Asymptotic Form of Propagators

Let v(c) be the one-spin density of states (in the
absence of a hole). In the absorption case, the initial
propagator G reduces to its zeroth-order term, and is
obtained from (11):

G (i)= v(c)gk(c)C ~«dc ('t) 0)

v(e)u'(e)e-'"de (t &0) .
(32)

For large times t, G' is controlled by the discontinuity
at e= p, ,' its limiting behavior is, for both signs of t,

G (f)~ (v,/ii)c (33)

The factor exp( —ipt) appears in all one-electron propa-
gators; we shall eliminate it by choosing the energy
origin at the Fermi level (ii=0)."The validity of the
asymptotic form (33) is best judged by looking at a.

specific example, for instance,

v(c) = const,

~(~) —c-I ~
I /ro

where $a is a cutoff of the order of the conduction band-
width. The integral (32) is then straightforward and
yields

vp

G'(i) = .it+ (1/&0)sgni

The limit (33) is correct when g, ltl))1, that is for i
larger than a typical atomic time.

Knowing G, we may calculate the general propa-
gator p' by using Eq. (17a), which after momentum
summation becomes

(34)

~ (r,r', i,i') =G (r r')—
G (r r")v (r",r", f i')dr".—(35)

C

'~ This exponential might also be lumped with the phase factor
present in F t see (14)j:Ne would then write

F(t) =e' «P(I),
where co0 =p, —E0—b is the renormalized x-ray threshold
frequency.

In this section, we shall only consider s-wave scat-
tering on the impurity, and thus retain the l=0 term
in (27) and (29). (For simplicity, we drop the subscript
0.) Because of the separable interaction (28), momen-
turn variables in a given graph are decoupled, and we
can perform at once all momentum sums. Instead of
the functions p». , Gj,&, F», there will enter only the
combinations

Pkk'Nkgk' (31)
~l

with similar deanitions for G, F. Each vertex is then
associated to a mere factor &V. There is only one
dimension left: the time t.

Let us assume that all time intervals in cp are large:

I
t r—

I

' ' '&&(o ' (36)

We can then replace G' by its asymptotic form (33),
except in the integral where the argument (r r")—may
be arbitrarily small. However, we shall see that when
the conditions (36) are met, p~ is a slowly varying func-
tion of its arguments; in the region 7."=7., where G
departs from (33), we may assume that y' is practically
constant. The "fine structure" of G near v = v" enters
only through its integral

t+a
G'(r r")d—r",

T CX

(37)

where n is a cutoff &)$0 ', yet smaller than the charac-
teristic time scale of q . Such a contribution to (35)
could also be obtained by adding to the asymptotic
form (33) a term Ab(i); the fine structure of G near
t=0 is then ignored, but its total weight is treated cor-
rectly, which is enough as far as (35) is concerned.

In what follows, we shall rely entirely on the above
asymptotic form of G, which with slightly different
notation may be written as

G (t) = —i LvP(1/i)+ tan8~8(t)].

Here & stands for "principal part" Lso that the corre-
sponding term does not contribute to (37)].The angle 8
is defined by

iA 1 +"
vp tan8= —=—

7r
v(6)s (f)P(1/k)da (39)

Lsee (32)]. The approximation (38) is central to our
theory. We expect it to give the correct. usypzpfofic be
havior for large time intervals. For short intervals, it is
wrong; for instance, we shall see that the function p
diverges when 7, 7-'= t,f:Such divergences are spurious,
and must be healed by introducing a cutoff

A similar analysis may be carried out in the emission
case. The function G' then obeys Eq. (12), which sim-
plifies if we make a Fourier transformation

G (a)
G'(e) =

1 ~ VG'(~)

The Fourier transform of (38) is itself given by

G'( )= (kazoo/COS8) X (e ") if k) 0
X (—e+*') if c&0. (41)

On combining (40) and (41), and inverting the Fourier
transform, we 6nd

G'(i) = ( 'o/0) L~(1/i)+—tan8'a'8(f)],
tan8' = tan8 —a g/cos'8, (42)

P= 1—2m'g tan8+a. g /cos~8

(where g=voV is the coupling constant). Tha, t (42) is
indeed a solution of (12) is easily verified.
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The preceding results may be expressed in terms of
the phase shift of conduction electrons at the Fermi
surface, due to scattering on the deep hole. The phase
shift b(e) may be defined by constructing an eigenstate
with the following wave function in momentum space"

tanb 1
Cs 8(es —e) — P +regular term.

eeJI s

pS

FIG. 5. Contour of integration for calculating the integral (50).
The heavy line is the branch cut of the integrand; on going around
one branch point, the function is multiplied by expI +2ibj. The
principal-part integration excludes the half circles surrounding the
singular points r and r'.

(43)
1

v(e')u'(e')P lde'.
e' —ei

y(e) =

With a separable scattering potential like (28), g can
be calculated explicitly, and is given by

w VN'(e) v(e)
tanb(e) =

1—Vy(e)

its possible solutions, we retain the Perturbafitje one,
which reduces to G when g ~ 0. According to
Muskhelishvili, such a solution is y'.ven by

On comparing (43) with (39), we see that the phase shift
at the Fermi surface, 8(ir) = b, is given by

1—xg tan8

(We assume t(r, r'&t' )When . f is replaced by its
expression (48), the calculation of q~ is reduced to a
quadrature. The 8-function contribution to f is trivially
integrated; the principal part, on the other hand, leads
to an integral of the form

It is then straightforward to verify that

8'= 0—8,
1 1dB

P rrdg

In evaluating (50), we make use of the identity
45

The effect of the scattering potential is completely
characterized by 8, as could be expected.

B. Solution of the Integral Equation

We consider first the absorption case. By inserting
(38) into (35), we obtain the following equation for s

The integral (50) can then be calculated by using the
integration contour of Fig. 5 (paying due attention to
the various determinations of the integrand).
algebra is lengthy, but straightforward, so that we shall
only quote the result. "

y'(r, r') (1 7rg tane] —=G'(r —r')

t'
+g v (r",r')Pl „ I«" (46)

Er r"i—
(46) is an integral equation with respect to the variable
r. Retaining only the "active" variable, and making
use of (44), we may write it as

1 1
vp (r)=f (r)+ tanb q (r"—)P ldr", (47)

r—v")

where we have set

—zvo 1
f'(r) = P l+rr tan8 b(r r') . (48)—

1—xg tan8 7-—g')

(47) is a standard singular integral equation, as dis-
cussed in the famous book of Muskhelishvili. "Among

-(f' r')(r f) »— —-
v (r, r', t,t') =G (r r')— , (51)

-(f'—r) (r —f)-
where G' is the emission Green's function, given by (42).
The result (51) is remarkably simple; we note that it
verifies the condition (19) when f &+eo, t + ——~:—
The transient character of p is entirely contained in
the last algebraic factor. Of course, (51) is only valid in
the asymptotic limit where all time intervals are))fs '.

A similar analysis may be carried out in the emission
case. The equation for p' is then obtained by making
the following replacements in (35):

~1l See, for instance, W. Kohn, Phys. Rev. 84, 695 (1951).
'4 N. I. Muskhelishvili, Singular Inkgra/ Eycetioes (P. Noord-

ho6 I td. , Groningen, The Netherlands, 1953), Chap. XIV.
» That (5j,) is indeed a solution of (46) may be veri6ed by using

the same integration contour as for the calculation of ($0).
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On using (42), we thus find

(y'(r", r')Pi idr".

we find
ivp 8 i i

s (r, r') —+ G'(r r'—) ———— +
p ~-t'-T r-t-

(55)
i

y'(r, r') ~G'(r r')—+iso — +
lr T—t t—r

With the help of (44), this equation may be cast in the
form

where we have set

G'(r r')—
'(r) =

1+(s g tan8')/J3

(52) is similar to (47) and can be solved by the same
method. One thus finds (for f(r, r'(/)

,
-( '-~')(i- )-"

q '(r, r', t, t') =G'(r r') — . (53)
(r f)(t r')— —

The analogy with (51) is complete; the "transient
factor" is the same in both cases.

The x-ray response function involves the quantity
defined in (18), obtained by letting r=t', r'=f.

According to (51) and (53), y is then infinite. We know
that such a divergence is spurious, being due to our
asymptotic approximation on G' and G; the divergence
must be healed by introducing a cutoff of order $o. We
shall see later that this cutoB must be pure imaginary,
in order to ensure a real spectral density for the response
function La fact which could be suspected from the
particular example (36)j. If we take this into account,
and also restore the missing phase factor e'&', we obtain
(after performing momentum sums)

L;(&)=(i,/t)(ig, t)'» e'"8(—&)

I:(&)=(~'olP&)(ibi)"'o'"'8(&),

Ilail»1

(54)

The result (54) is correct within logarithmic acclracy'o
(the cutoff $o being only known within a factor 1).
The only thing which is known exactly is the esoposoeso&

of t.

C. Contribution of Closed Loops

The closed loop contribution C(t) is best calculated
using Eq. (22)," which involves the apparently di-
vergent factor v (r,r). In order to clarify the nature of
that divergence, let us expand the last factor of (51)
and (53) in powers of (r r'); in the limit —r r' +0, — —

"Such a logarithmic error renders the factor P in I.'(t) somewhat
meaningless.

"Equation {21), although apparently simpler, leads to difh-
culties as the function y{t,t) is singular, both in the factor G and
in the "transient" algebraic factor. One must use a cutoG g0 ',
which precludes a precise calculation of C. Since C enters as an
exponent, such an approximation is unacceptable.

The divergence appears only in the first term G' or G—
it is clearly due to our asymptotic approximation, and
would disappear in a more realistic calculation. The
important point is that these seemingly singular terms
are completely zrsdependerst of t and t'; when carried over
into (22), they will give a contribution to C proportional
to (t t'): Th—ey are thus responsible for the energy shift
LL of the deep hole. In contrast, the last terms of (55)
depend on t and t', and will control the decay of the
Green's function g when 1,t t'~ ~ ~—. We are not
interested in the shift 6, which has been absorbed in the
phenomenological threshold coo. We shall, therefore,
discard the singular terms of (55), and retain only the
last regular terms, which although smaller convey all
the relevant physical information. '

We carry the momentum summation in (22), and
replace rp(r, r) by the last term of (55). The integral
over 7. has a logarithmic divergence at both ends, which
we eliminate by introducing the usual cutoff $o '. We
thus find

8C~(&) 2g 5

P m.

Let us replace P by its expression (65): The integration
over g is immediate and yields

C = —(8/or)' ln( gotj . (58)

The emission case is somewhat more complicated, as G'
then depends on g: The derivation in (57) must be taken
ai constant G', i.e., at constant P and 8' [see (42)j.We
shall therefore write

BC' 8C' 8C' Bb

N, Bg pyr 88 Bg pyr

(59)

Now, a glance at (52) shows that, when expressed in

' Note that in writing (55), we tacitly assumed that the t-
dependent part of q and q' is continuous when (~—r') ~0, even
when )jr—r'~ (&0 .That such a continuity exists is not obvious—
although plausible since the t dependence comes from intermediate
times far away from v and ~'.

aC (s)
X = —2g—in[got) .

N

We consider first the absorption case: The initial
propagator G is then g-independent, and we may write

BC 8C
X =g (57)

ax ag
'
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terms of 8' and P, the phase shift is given by It is equally easy to calculate the ordinary Fourier
transform

tan5=
P+vrg tan8'

y(e) = y(t)e*"«.'

0

from which it follows that

85 =1.
gg p gr

We can then perform the integration over 8 in (56):We
thus find that O'=C .

The deep-level Green's function g is given by (15).
Again, we shall see that the cutoff' in (58) must be pure
imaginary if g is to have a real spectral density: We
thus replace b by i)o We.also restore the missing phase
factors and sign Lsee (14)].We thus obtain

If we measure the energies from the branch point so~,

we find that"

y(i) = iA—e* I''(n) (&0/e)

It is then easy to verify that for ~)0

Rey= ms.

(65)

We recover the usual properties of response functions.
The quantities of physical interest are the spectral

densities. Measured from their respective branch points,
they behave as

X(+8(t)] (emission).

(61)

g(t)= e " ~~&' XL—8(—t)$ (absorption)
(i$ t)"'"

1 e)&"&'
for the Green's function g,

(
25 I~—(5 I~)~

&0
for the response function F.

(66)

D. Spectral Representation of F and g

According to (61) and (62), the functions g and F
have the same general form

y(t) = (2/it) (idiot) ~e'""8(at) -(6.3)

Let us consider for instance the emission case (t&0).
We know from Grst principles that both functions have
a real spectral density s(e), such that,

y($) —e iruli—de s(e)e

It is easily verified that (63) implies

(where I' is the usual y function). We note that the
factor ($0/e) is rea/, which justifies our choice of an
imaginary cutoQ in the time representation.

From (15), (54), and (61),we may calculate the original
x-ray response function F (summed over momenta):

F(&)= (ivo/
~
t

~ )[igotj"' '""e'"O-'X8( t) (ab—sorption)

X8(t)/P, (emission)

(62)

where coo is the x-ray threshold. We see that F has a very
unusual power dependence as a function of t. The factor
I. tends to increase the response function, while g acts
to quench the divergence. Let us emphasize again that
(61) and (62) are only valid within logarithmic accuracy

(to being roughly determined).

LThe exact coefficients may be figured out from (64)j.
In the weak coupling limit (8~~g&(1), (66) agrees with

the results of the many body approach of I and II.
The x-ray transition rate is proportional to the

spectral density of P. Thus when

28 (8~'
Q=

is positive, the absorption (emission) rate should be
infinite at threshold, in agreement with the prediction
of Mahan. ' Conversely, n&0 means that there is no
sharp threshold (the amplitude of the discontinuity
being exponentially small). "We shall see in the con-
clusion that this second possibility may explain certain
features of the experimental data.

IV. INFLUENCE OF SPIN AND HIGHER-
ORDER PHASE SHIFTS

The eGect of the electron spin is easily included if we
assume that the spin of conduction electrons is con-
served in the interaction with the deep hole. Put another
way, we ignore exchange processes in which the deep
hole and one conduction electron would both reverse
their spin. Such an approximation was in fact implicit
in our statement that only one deep level is involved; if

"Actually, the integration over t should be cut o8 at t~&0 '.
What enters (65) is {g0/e) —1, rather than (po/e)". Such a correc-
tion is necessary if one wants to recover the zeroth-order result by
expanding in powers of n."One verifies easily that, whatever the sign of of, the asymptotic
form of y(t) depends only on the spectral density Near threshold
(for large t, only small values of ~ avoid destructive interference).
Hence, our logarithmic approximations do not aGect conclusions
regarding the shape of s near e=o.
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we were to rdease it, we would face a Kondo problem
which is far more complicated. Under such restriction,
spin is conserved along any open or closed line in the
"one-body" graphs. The only change is that L and C
are multiplied by a factor 2 (each line corresponding to
either spin direction). The change in L simply doubles
the transition rate (there are twice as many conduction
electrons involved); on the other hand, the change in C
is much more drastic, as it changes the exponent u in

(63). The behavior near threshold (66) is replaced by

for the Green's function g,

(~)-
(iso&)

(b&la=2 Q (2t+1)i —i;

(71)

factors g~ (the partial-wave sum appears in the
exPonent). In contrast, the open line contribution to S
is a sum over (l,ru), each term being weighted by the
corresponding x-ray matrix element

~
W&„~ '.

Let us replace C& and L& by their values in (69)
and (70). Taking spin into account, we find that, for
large times t, the functions g and S behave as

( p ) (28/s ) (1—8/I )

for the response function F.
kg)

(67)
(ibi)"

S«)-Z IW -I'

Spin thus increases the deep-level broadening, which in

turn tends to quench the x-ray singularity near
threshold.

The angular dependence of the matrix element V~~

may be treated in much the same way. Let us replace
Vza by its general form (27), and further assume that
each coefficient is separable, as shown in (28). Each
vertex involves a sum over (l,ru); for every single term
of this sum, we may carry out momentum sums, as in
the preceding section (momentum variables are com-

pletely decoupled). A propagator joining two vertices
(l,m) and (P,rl') will then give rise to a factor

ag ——2—2 Q (2l+1)—
(72)

for the Green's function g

(73)

(for simplicity, we retained only the significant factors
in (61) and (62), dropping the exponentials, step func-
tions, etc.). The corresponding spectral densities are
given by

Q G,gu( (ci)F(„(k)u( (ea)F( (k'). (68)
al

P ~
W~

~

' — for the response function S.
lm

g(t)=exp+ Ci (i), (69)

while the x-ray response function follows from (3), (15),
(29), and (30)

S(I)=g (W( ('L( (t).

We note that the Green's function 8 is a product of

Because of rotational invariance, G». depends only on
the angle between k and k'. (68) thus vanishes except
when (l,ru)=(l', m'). We conclude that the angular
momentum (l,ru) is conserved along any line of the graph,
exactly as for spin. Each value (l,re) defines an inde-
pendent "channel, "yielding a contribution A& to any
open or closed line; the total contribution is simply the
sum of the partial A & .

For each value (f,te), we can reproduce the analysis
carried out for s-wave scattering. Because F~ is
normalized, we need only replace V and u by V& and u&.

The corresponding contribution of the open line Lg

and of the closed loops C& is obtained by replacing b

by the appropriate 1th phase shift 8& in our former
results (54) and. (58). The deep-level Green's function
is then obtained from (15)

We expect (73) to provide the exact asymptotic be-
havior of g and S near &=0; we note that each term
of S has its own exponent o.~.

V. CONCLUSION

The basic physical result of this paper is contained
in (73). The spectral density of S is nothing but the
x-ray absorption (emission) rate measured experi-
mentally. The singularity in (73) thus determines the
behavior of the spectrum near the threshold frequency
co~. We see that for each (l,m) the transition rate at
threshold is either infinite (u~) 0) or sero (n~(0) Such a.
singularity arises as a compromise between the plain
resonance in the scattering of conduction electrons
(which always gives a divergence in L), and the broaden
ing of the deep level (measured by g) which tends to
quench that resonance. The sign of n~ depends on which
of these two sects dominates. %e note that the linked
cluster theorem allows a very simple treatment of the
broadening e6ect: In the time representation, the total
response function Ii is simply the product of a one-
electron factor I. times 8; the corresponding convolution
in the energy representation obviously accounts for the
inQuence of broadening on the observed spectrum.
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The matrix element tV~ may be written as

W, dr% p*(r)ipse V%'p(r), (74)

where g is the x-ray polarization vector, %d the deep-
level wave function, +j, the conduction-electron wave
function. 0 ~ is actually a Bloch state

where Nl, incorporates the core structure and the efI'ect

of the periodic lattice. The angular components lV~

then depend critically on the rotational symmetry of
the deep and conduction states. If both are s states,

possesses only a component /=1. On the other
hand, by varying the nature of the initial state (E,I.,M
transitions), one should be able to sample other values
of (l,m), in varying amounts. One cannot make more
precise statements without a detailed analysis of speci6c
materials and transitions.

The nature of the singularity is controlled by the
exponents n~, i.e., by the various phase shifts 8& describ-
ing scattering of conduction electrons on the deep hole.
Because of the long range of Coulomb interactions,
these phase shifts are not independent; they obey the
well-known Friedel sum rule"

(75)

(which by the way shows that a strictly weak coupling
theory is never possible). If we assume that only one
phase shift is nonzero, say 8&„ then e& is completely
determined from (75); according to (72), we have

2(2lp+1)

1=+
2(2lp+ 1)

if l/lp.

if l= lp.

The discontinuity at threshold should be in6nite for

»J. Friedel, Phil. Nag. 63, 153 (1952); J. S. Langer and V.
Ambegaokar, Phys. Rev. 121, 1091 (1961).

l=lp, and zero for l/lp (the singularity being weaker
for increasing lp). However, such an assumption of a
single phase shift is completely arbitrary; again, de6nite
statements can only be made in speci6c cases.

Experimentally, a sharp Fermi level threshold is
observed in the emission spectra of certain simple
metals; in several cases, there is a de6nite enhancement
of the spectrum near threshold (e.g., in Al, Mg, and to
a lesser extent in Na); it is likely that in these cases the
relevant n~ are &0. On the other hand, in many tran-
sition metals (e.g., Cu), there is no sharp Fermi level
threshold at all—a feature which is very surprising,
since the conduction electrons do have a discontinuous
distribution. This longstanding anomaly may be under-
stood if we assume that in those metals the relevant o.~

are (0; the discontinuity is washed out by the deep-
level broadening. A numerical discussion of specific
cases is needed to support this interpretation.

In conclusion, we should emphasize again that we
have neglected many possibly important physical
eBects. The 6nite lifetime of the hole, as well as its
recoil, will tend to blur the threshold singularity. (It is
possible to incorporate lifetime efI'ects into the present
formalism, although the calculation does not look very
tractable. ) Another approximation is that of a single
deep state; if the deep hole may scatter from one state
to another, we face a Kondo-like problem. The for-
malism of this paper, based on a structureless hole, is
then useless. In addition to the above "physical"
approximations, we assumed a centrally symmetric
scattering potential, with separable components V~ .
The latter approximation may probably be avoided by
using a t-matrix formulation; we did not push the
question further, since it is clear that only the vicinity
of the Fermi surface is involved; the separability
assumption should then be unimportant.
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