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45'K."However, this interpretation now appears to be
invalid not only because of the existence of the rise
effect, but also because long-range interstitial motion in
tungsten does not seem to occur until about 45'K.
Finally, although the exact nature of the rise-eGect
mechanism is not clear, comparison of Figs. 6 and 8
indicates that the irradiation-induced background decre-
ment anneals during close-pair recovery substages,
suggesting that close-pair configurations are essential to
the mechanism. The background reductions between 35
and 45'K might then be interpreted as the disappear-
ance of defect-dislocation interactions through mutual
annihilation of the close-pair constituents. On the other
hand, the decrement increases near 26'K might suggest
the conversion of one close-pair configuration into
another more stable configuration which in its inter-
action with dislocations produces a larger decrement.

V. CONCLUSIONS

For an applied stress frequency of about 600 Hz, the
results of the present research on Stage I in tungsten
have revealed the existence of a prominent irradiation-
induced internal-friction peak near 30'K. Peak proper-
ties such as its temperature half-width, dependence on
stress direction, apparent independence of dislocation
background, and radiation doping, and disappearance
during close-pair resistivity recovery imply that it was

'6 J. A. DiCarlo, C. L. Snead, Jr., and A. N. Goland, Bull. Am.
Phys. Soc. 13, 381 (1968).

produced by the stress-induced ordering of close-pair
interstitials. Directional-dependence results suggest that
the 30'K interstitials are not trigonal defects, that is,
crowdions, but probably are orthorhombic defects in
general and (110) split interstitials in particular. The
split configuration for this interstitial is also supported
by activation energy determinations which show its
reorientation energy to be lover than its migration
energy. In fact, were it not for a combination of this
latter result and the low-observation temperature,
internal-friction measurements in the employed fre-
quency range would probably not have detected the
interstitial at all. This conclusion is especially true in the
case of electron irradiation since at these low irradiation
temperatures it becomes impractical to use electrons to
produce total defect concentrations greater than those
attained here ( 10 '). Nevertheless, the present results
do suggest that, given a high enough defect concentra-
tion and a low enough stress frequency, self-interstitials
in the bcc metals, like impurity interstitials, can be
detected and studied by internal-friction techniques.
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X-ray emission and absorption spectra in metals may display singularities near the Fermi-level threshold.
These singularities, predicted by Mahan, are due to final-state interactions between conduction electrons
and the localized disturbance created by the x ray. The eGect is treated within a simple model by the methods
of perturbation theory. It is shown that even to lowest order one must sum the so-called parquet diagrams,
in close analogy with the Abrikosov theory of the Kondo eGect. Mahan's prediction is confirmed, and its va-
lidity discussed. Various secondary effects which could blur the singularity are analyzed.

I. INTRODUCTION

HE problem of x-ray absorption or emission in
solids has been widely studied in the past thirty

years. It has been recognized at an early stage that the
electron interaction played an important role. For
instance, in the ordinary Auger e6ect, the x-ray tran-
sition is accompanied by the excitation of one extra
electron (giving rise to satellite lines and to spectral

broadening). Sometimes the Auger effect may display
a collective resonance, the excited electron being replaced
by a plasmon. ' A detailed review of these various
phenomena has been given by Parratt. '

In metals, the emission and absorption spectra dis-

«Laboratoire Associd au Centre National de la RechercheScientifique.' P. Longe and A. J. Glick (to be published).'L. G. Parratt, Rev. Mod. Phys. 31, 616 (f959).
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play a sharp threshold corresponding to the edge of
the Fermi distribution (possible broadening of this
threshold will be discussed later). It has been suggested
recently by Mahan' that the x-ray spectra should be
singular near that threshold; let (pp —cop) be the distance
to threshold. By calculating the first terms of a pertur-
bation expansion, and guessing what the sum should

be, Mahan predicts that the absorption (emission)
intensity should vary as (pp

—~p) ",where g is a dimen-

sionless coupling constant, describing the interaction
between conduction electrons and the deep hole left
behind. Such a striking behavior is again a consequence
of jinat state int-eractions in the x-ray process. However,
it arises from the discontinuity of the electron distri-
bution at the Fermi level, and is, therefore, quite differ-

ent from the usual Auger effect.
Such a singularity linked to the Fermi discontinuity

is reminiscent of the Kondo effect. In the latter case,
scattering of conduction electrons on a magnetic im-

purity is singular when the energy approaches the Fermi
level. The singularity arises because the impurity has
internal structure (i.e., its spin). Similarly, in the
x-ray problem, the deep localized level is a @co-state

system (empty or full). The corresponding scattering
amplitude of conduction electrons displays the same
resonance as in the Kondo effect, which leads to
Mahan's singularity. The resemblance between the
two problems is particularly clear when the magnetic
impurity is described in terms of Abrikosov's4 "pseudo-
fermion" operators. Such an analogy has been stressed
by Anderson' and Hopfield' (who also established some
general theorems on the overlap of many-body wave
functions with diiferent impurity potentials).

Our purpose is to apply to the x-ray problem the per-
turbation technique devised by Abrikosov4 to deal with
the Kondo effect. As in the latter problem, systematic
search for singular factors leads one to solve coupled
Bethe-Salpeter equations in tmo channels, the so-called
"parquet" problem. In the simplest approximation, used
by Abrikosov, one sdects only the most divergent terms
of the perturbation expansion; this part of the calcu-
lation is carried out in the present paper, and confirms
the result guessed by Mahan. In a second article, ' we
shall show that such a procedure is not valid very dose
to the threshold. It is then necessary to carry out a
self-consistent renormalization of all the singularities,
which leads to somewhat different results (in agreement
with those of Anderson' ).

In fact, one does not need such a "many-body"
approach in the x-ray case. Once the deep hole has been
created, it acts as a strectlreless scattering center for
conduction electrons (there is no "memory" of the hole

between two collisions). One then has an essentially
one-body problem, but a transient one: One wants to
study the transient response to the sudden creation of
a scattering center (while in the ordinary impurity
problem one studies the adiabatic response to the scat-
tering potential). Such a one-body approach is in fact
much simpler; it may be carried through exactly, for
arbitrary coupling strengths, and will be reported
elsewhere. ' However, it cannot be transposed to the
Kondo effect, where the spin memory between two
collisions is essential. For that reason, the many-body
approach described in the present papers remains ex-
tremely useful, even though more complicated and far
less elegant. It lays the ground, in a simple case, for
the self consist-ent calculation of singular factors, associ-
ated with resonant scattering near the Fermi level. A
similar approach should be relevant in any problem
involving logarithmic divergences. For instance, the
sort of renormalization that we shall carry through is
expected to be very important in the Kondo effect.

II. FORMULATION OF THE PROBLEM

We consider a metal, whose conduction electrons are
assumed free, with creation operators a~, energy e~.
For simplicity, we ignore the electron spin, which can
be restored at the end by inserting a few factors of 2.
The Coulomb interaction between conduction electrons
is neglected; since we are interested only in the vicinity
of the Fermi level, it would only replace electrons by
quasiparticles, with renormalized a&~ and ~&. We assume
that this renormalization has been carried through.

When an x-ray, with frequency co, is absorbed, it
excites one electron from a deep level to the conduction
band. In the reverse emission process, a conduction
electron fills the deep hole. We assume that the deep
electron level is localized on a given lattice site: Thus
there is no overlap of core wave functions from one site
to the next, and the corresponding band of Bloch states
is infinitely narrow (which corresponds to Mahan's
assumption of an infinite hole mass). Let bt and Ep be
the creation operator and energy of the deep electron
level before the interaction with conduction electrons
has been taken into account. The coupling with the
x-ray field leads to a perturbing term in the Hamiltonian

B~=P W~a~tbe '"'+c.c.

When the deep level is empty, translational invariance
is broken down, and the hole may scatter conduction
electrons. Hence there appears a new term in the
Hamiltonian

~ G. D. Mahan, Phys. Rev. 163, 612 (1967).
4 A. A. Abrikosov, Physics 2, S (1965).
~ P. W. Anderson, Phys. Rev. Letters 18, 1049 (1967).
J. J. Hop6eld (private communication).

~ P. Nozihres, J. Gavoret, and B.Roulet, following paper, Phys.
Rev. 178, 1084 (1969).

which describes the rearrangement of conduction elec-

' P. Nozieres and C. T. de Dominicis, second following paper,
Phys. Rev. 178, 1097 (1969).
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trons in the potential of the hole. In the form (2), Ht
appears as a many-body interaction, added to the un-

perturbed part
Bs=Q ssagtas+Egbtb.

In its form (2), Bt describes only the sntrabattd part of
the Coulomb interaction between all electrons. There
exist, in fact, many other terms associated with band-
to-band transitions, internal Auger effect, etc. We
neglect them, as they do not contribute to the Mahan
singularity studied here.

In order to calculate the x-ray transition rate, we

introduce the response function

(4)

Elx(l) is evaluated in the Heisenberg representation,
using the total Hanultonian (Bs+Ht). T denotes the
usual time ordering operator.

~ 0) is the "ground state"
of the conduction electrons with the deep level either
plied (for an absorption process) or enspty (for an emis-

sion process). The transition rate is then proportional
to the imaginary part of the Fourier transform S(ra).s

In order to calculate S(co), we must make simplifying
assumptions on the form of VI,I, . We shall take it as a
separable potential of the BCS type:

V». ———Vasss. , wtth Ns ——»f I e&—&1&6
(5)-0 tf icy —pi &$o.

is is the chemical potential, (s is a cutoff of order g.
With this de6nition, V is positive, corresponding to an
electron hole attraction. (5) is a reasonable approxi-
mation to the average of VI,I, over the angle between k
and k', and should thus describe fairly well 5-wave
scattering by the deep hole. On the other hand, any
scattering amplitude with 3/0 is obviously left out of
(5). The strength of the interaction (2) is measured by
the dimensionless parameter

g=spV, (6)

where vp is the density of states at the Fermi level for
a given spin. Taking for VI,I, a screened Coulomb inter-
action, we 6nd for g

~ See, for instance, Ref. 3.
"In all but the zero-order term, the summation over k will be

cut o6 by the interaction vertex (5). In the zero-order term itself,
k is bound to be near the Fermi surface if ao is near the threshold.
We may thus "cut oif" Ws when ( ss —p [ )Io without modifying
the result. We shall use this corrected form which renders the
calculation more symmetrical.

where g~ is the Debye wave vector. For a typical metal,

g seems to lie between 0.1 and 0.5.
In the same spirit, we shall assume that 8'I, does not

depend on k'p Here, again, we miss all the information
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FIG. 1. The direct (cod) and indirect (co;) threshold frequencies
when the deep state has a finite band width.

related to the angular symmetry of the core and con-
duction levels. All the subtle differences between &, L,

~ absorption lines are washed out, as well as con-
siderations on the nature of conduction orbitals (s, p,
d type P). It does not appear difficult to extend our
calculation by making a careful partial-wave analysis
around the scattering center. However, for the sake of
simplicity, we did not attempt it. In their present form,
our results thus predict only the qualitative shape of
the spectrum singularities.

It should be realized that besides the angular de-
pendence of all factors, we are neglecting a number of
other important physical effects. We already mentioned
the neglect of "band broadening" of the deep level. Put
another way, we assume the deep hole has no recoil. If
we gave a small width 6 to the "energy band" of deep
states, there would exist heo threshold frequencies, as
shown on Fig. i. co~ refers to direct transitions, where
momentum is conserved, while ~; refers to Auger
transitions where an extra electron can pick up any
momentum &2k+ at no energy expense. Detailed
analysis shows that Mahan's singularity is then spread
over a distance h. The effect will usually be negligible,
except for very shallow levels.

In the opposite limit of deep levels, one must worry
about the lifetime of the deep hole. In emission, we
implicitly assumed it was in6nite, since we took the
initial "ground state"

~ 0) as well defined. In absorption,
a finite lifetime r will cut off the response function S(t)
In both cases, Mahan's singularity will be blurred over
a range 1/r. For very deep (e.g. , E) levels, radiative
recombination is dominant; corresponding lifetimes are
very short (&10 " sec, see Ref. 2) and preclude the
observation of Mahan's singularities, especially in heavy
elements. For intermediate levels, radiative lifetimes
may be reasonable, but then, one must worry about
nonradiative recombination. The latter is due to in-
ternal Auger processes, and arises from interaction
terms of the form

eat&&&2,
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where the two destruction operators c~ and c2 refer to
conduction states, or more likely to other deep core
states. Such terms were ignored in (2) because they in-

volve large energy transfers; as was mentioned earlier,
they do not contribute to the Mahan divergence, which
involves very small energy transfers (terms of (2) with
e'=e' =pj. Still they can give rise to real transitions,
and thus blur singularities.

The experimental situation is thus somewhat critical.
The core state involved in the transition must not be
too shallow (for fear of band broadening), nor too deep
(because of lifetime broadening). Whether internal
Auger effect is negligible in intermediate levels probably
requires quantitative discussion in each case. It seems
that Mahan's singularity exists in Al, Mg, and, to a
lesser extent, in Na. A systematic analysis throughout
the periodic table has not been attempted. Here we

only wish to emphasize the limitations of our theory.
Let us now return to our simple "model" problem,

where al1 the above dik. culties are ignored. If there
were no interaction II&, the threshold frequency for
both absorption and emission would be (p —Eo); the
transition rate would be proportional to the density of
states (since we have assumed W" constant). The
inclusion of H' les.ds to final state int-eractions which

modify the spectrum. In absorption, the conduction
electrons interact with the newly created hole. In emis-

sion, the static hole potential has been incorporated in

~ 0), which involves scattering states rather than plane
wave states. There remains a perturbation

—Q Vgg stag. b~b,
kk'

(2')

which describes how the scattering states adjust to the
sudden destruction of the scattering center. According
to Mahan, such 6nal-state interactions lead to major
eerrex corrections, giving rise to an in6nite transition
probability at the threshold (Fig. 2). We shall indeed
substantiate this result. However, we should not forget
about possible self-energy corrections in the 6nal state.
Let us 6rst consider conduction levels. Because the hole
potential is localized, their energy is shifted by a quan-
tity of order I/E, which is negligible. In principle, the
hole potential might accept a bound state below the
bottom of the conduction band, or a virtual bound state
slightly above the bottom (where the broadening e6ect
of the continuum is not too large). Actually, Mott"
has pointed out that such bound states are not likely to
exist, as they would require low electronic densities at
which the system would no longer be metallic. Anyhow,
they would occur far from the Fermi surface, in a region
in which we are not interested.

In contrast, the deep level is localized; its energy is
thus largely modi6ed by the interaction (2), going from
E0 to a renormalized value K Moreover, creating or
destroying a deep electron breaks the equilibrium of

&I N. F. Mott (to be published).

I ~

(I
l
1

rr
I
I

I
I
I

~o

I'IG. 2. The transition rate I near threshold ~0, as a function of
x-ray frequency au. Dashed line: emission, full line: absorption.

conduction electrons, which may be excited in the
process at a small energy expense. The deep level is
thus broadened asymmetricall. A convenient way to
characterize this broadening is to introduce the Green's
function for the deep electron,

g(t —t') = i(0~ T{b(t)bt(t'))
~
0). (7)

g vanishes for t&t' in an absorption experiment, for
t(t' in an emission experiment. The spectral density of
the deep level is proportional to the imaginary part of
the Fourier transform g(e). It extends from E to the
low- or high-energy side, respectively, for the absorption
or emission case. Such a broadening of the deep level
tends to smooth the singularity near threshold; however,
the latter remains sharp, since the spectral density of g
is discontinuous at ~= E. This "smearing" effect will
be discussed in detail in the following paper.

The threshold in the x-ray spectrum occurs at
coo=@,—E. In the framework of perturbation theory, it
is not obvious that coo should be the same in absorption
and emission. If, however, we interpret coo as the dif-
ference in ground-state energies without and with the
holes, the existence of a unique threshold becomes
obvious: There is no "Stokes shift. "This point is proven
in Ref. 8.

III. PERTURBATION THEORY FORMALISM

Since the Mahan singularity occurs over an energy
range ))kT, we may restrict ourselves to the zero
temperature limit. Together with the deep propagator
g, we introduce the conduction-electron Green's
function

Gg), (t—t') =i(0~ T{ay(t)ag'(t'))
~
0).

In what follows, the renormalized Q and G'q will be
denoted, respectively, by dashed and full lines. Because
of the separable interaction (5), all the momentum
variables are decoupled; only the following quantity
will enter the calculation

G(t) =Q nally. Ggg (t).
kk'

The perturbation expansion is thus one dimensional,
involving only energy variables. The basic interaction
vertex is shown on Fig. 3(a). We wish to calculate the
self-energies of g and G, sketched on Figs. 3(b) and 3(c),
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4 4 (The singular behavior arises from the discontinuity of
8 at x=0.) In the emission case, we find from (10b)
and (11)

k, c-tie

G(d)=vof(~) )

f=fol(1 gf—o)
(12b)

FIG. 3. (a) The basic interaction vertex, (b) a deep-electron
self-energy, (c) a conduction-electron self-energy, (d) a contribu-
tion to the response function x(co). Dashed and full lines refer,
respectively, to deep- or conduction-electron propagators.

as well as the response function S(cd), given by all

graphs of Fig. 3(d) (summed over d, d', k, and k').
We note that only one deep electron (or hole) is

involved. Thus the propagator g runs in only one time
direction (forward in emission, backward in absorption).
In any graph, there is only one open dashed line, and no
deep-electron closed loop (except for first-order
"Hartree" loops, shown on Fig. 4, which occur only in
emission). We conclude that in absorption the propa-
gator G),), is unrenormalized, its Fourier transform
being

Gii (&) =G~o4u = ~~~ . (Ma)
dg —d —18 Sgn(d Jl)

In emission, G corresponds to propagation in the stat&

deep-hole potential

Gkk (d) =Gto(d)&kk+Gko(d)4k (d)GR 0(d)1 (10b)

l~~ (d) is the usual t matrix, easily calculated for the
separable potential (5)

bar(d) = VNgiig~/L1 —V P Gg~i0(s)Nycti j. (11)
Qll

Let us for simplicity assume that the density of con-
duction states is constant in the interaction range
(—$0, +$0) around the Fermi surface. In the absorption
case, the quantity G(d), defined in (9) is equal to

G(d) =i pfo(d),
where

dej,

d~ —d —i8 sgn(d —p)

The discontinuity at ~=p, remains. "
Since there is only one deep-electron line in the dia-

grams of Fig. 3(d), we may choose independently the
origin of energy for the deep and conduction electrons.
Let us measure the conduction-electron energy from p
(i.e., we set p=0). We, moreover, measure the deep-
electron energy from the edge E of its spectral density:
The branch point of g(c) then lies at d=0. With these
conventions, the x-ray frequency co, appearing in Fig.
3(d), is measured from ido=ii E, t—hat is, from the
threshold of the x-ray spectrum. Hereafter, we shall
only use these reduced variables; we shall retain the
same notations, and thus make the replacements

~),—p, , ~—p, —+ ~)„e for conduction electrons

~—E~~ for the deep electron

M—
GOp ~ (0 for the x-ray frequency.

(13)

By doing so, we automatically ignore the shift of the
threshold E—Ep which is incorporated in the unspeci-
fied energy origins. Thus, we cannot calculate the
position of the threshold; on the other hand, our
reduced variables are perfectly all right to calculate
the shape of the spectrum near threshold.

Let us get rid of the x-ray matrix elements by writing
the response function S(cd) in the form

s(~) =
I
&I'x(~).

The simplest approximation to x(cd) is obtained by
summing the "ladder" graphs of Fig. 5(a). This calcu-
lation was performed by Mahan, "and yields the follow-
ing result:

VpXO(N)
XLsd(id)

1—gXp((d)

where xo(cd) is the zeroth-order contribution to x

8(x) = sgnx

=0

$0-(d-y)= ln +kr8(d —p), (12a)
4+(d —~)

if IxI (gp

(b)

/

/I~a
K K

FIG. 4. The Grst-order conduction self-
energy graph in the emission case.

FIG. 5. (a) Ladder graphs in the calculation of p(co), {b) extended
ladder graphs allowing for propagation backward in time.

"Note that a bound state of conduction electrons would show
up as a discrete pole of f, necessarily below the bottom of the
conduction band, where Im f0=0.

'g G. D. Mahan, Phys. Rev. 153, 882 (1967).
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(within a factor uo)

Xo(~)= —d& Bo(&)fo(o+oo) .
2Ã

(15) c &

With our choice of energies, go= —1/o. Because of the
discontinuity of fo, xo is logarithmically divergent when
co~ 0,

1 de $o
Xo — —sgn(o+co) ln—.

2 M
(16)

In this "ladder" approximation, x would vanish at
threshold (co=0) and would display a discrete pole
below threshold. This pole would correspond to a bound
state of the conduction electron to the localized deep
hole, lying at a distance $o expL —1/gj below the Fermi
level. Such a bound state, lying in the continuum of
6lled conduction levels, is clearly unphysical (if it
existed, it would be immediately broadened by exci-
tation of other electrons). The error comes because the
ladder graphs 5(a) only allow propagation of the excited
conduction electron forward in time Even w. ith a static
impurity potential, one mould get such a bound state if
one forced the electron to lie outside the unperturbed
Fermi surface. Actually, this bound state disappears as
soon as one allows propagation of the excited electron
backuard in time, as shown on Fig. 5(b). Physically,
such graphs describe the excitation of several conduc-
tion electrons by the deep hole, which act to wash out
the spurious pole of p. Put another way, including only
the ladder graphs 5(a) amounts to assuming a rigid
Fermi sea (the exclusion principle acting on plane wave
states). In a realistic calculation, the exclusion principle
must, instead, be applied to the actual scattering states;
the calculation must allow for the readjustment of all
other electrons to the scattering potential, which is
exactly what the graphs 5(b) achieve. "

That the graphs 5(a) and 5(b) are equally important
is also obvious from a purely mathematical point of
view. Let us consider the two basic "bubbles" of Figs.
6(a) and 6(b). We already found that the contribution
of the bubble 6(a) was logarithmically divergent when
m=0 Lsee (16)j. The contribution of bubble 6(b) has
the form

$o
go —— do bo(o)f—o(co—o) —ln—.

27r

It is also divergent, with a sign opposite to that of yo.
One might object that bubbles 6(b) with a small energy
co never enter in x (since one integrates over all internal
energies). However, a look at Fig. 6(c) shows that this
is not true: For small or, the integration over e and e'

will provide two logarithmic factors; in building these

'4A similar situation is encountered in the theory of super-
conductivity. In his original paper, Cooper considers the motion
of a bound pair outside a rigid Fermi sea, and 6nds a bound state
below the Fermi level. Actually, one must allow for the propaga-
tion of the pair backward in time (i.e., for virtual excitation of
other pairs from the Fermi sea): In the correct calculation, the
spurious bound state is replaced by the usual pair instability.

C+Ol 4

o +

(c)

FIG. 6. (a) and (b): The two types of singular bubbles in the
perturbation expansion, (c) a graph showing how singularities in
the cross bubble are reflected in the response function x(~).

logarithms, the important value of e and e' are of order
co, but then the total energy entering the cross bubble,
&+&+or, is also small, and a third logarithmic diver-
gence appears. We thus conclude that the perturbation
expansion of y will contain an increasing number of
logarithmically singular factors, arising from internal
bubbles of both types 6(a) and 6(b). The inclusion of
backward propagation LFig. 5(b)) allows systematically
for both types of singular bubbles, while the pure ladder
graphs of Fig. S(a) ignored all singularities associated
with bubbles 6(b).

A decent calculation of the x-ray spectrum near
threshold should trace systematically all logarithmic
factors in the perturbation expansion, and then select
the ones which are summed on a well-defined criterion.
For instance, for weak coupling g, one may retain only
the most divergent terms, proportional to g" ln"+'. Such
a program was achieved long ago by Diatlov, Sudakov,
and Ter Martirosian, " in connection with the com-
pletely different problem of high-energy meson scatter-
ing. It proceeds in two steps.

(i) Write down coupled Bethe-Salpeter equations to
describe multiple scattering of the deep and conduction
electrons in the two singular "channels" (dashed and
full lines parallel or antiparallel). All quantities are then
expressed in terms of g, G, and of an interaction kernel
R which is irreducible in the two channels.

(ii) By taking the lowest-order terms of R, g, and G,
one sums the so-called "parquet" graphs, which in-
corporate the major logarithmic singularities of the
expansion. The parquet graphs represent for the coupled
channels what the ladder graphs are for a single scatter-
ing channel.

A similar approach has been applied by the Soviet-
school to a number of problems (Kondo effect, ' one-
dimensional superconductivity" ). It is required when-

1~ I. T. Diatlov, V. V. Sudakov, and K. A. Ter-Martirosian,
Zh. Eksperim. i Teor. Fiz. 32, 767 (1957) /English transl. : Soviet
Phys. —JETP 5, 631 (1957)j.

Yu. A. Bychkov, L. P. Gor'kov, and I. M. Dzyaloshinskii,
Zh. Eksperim. i Teor. Fiz. 50 738 (1966) I English transl. :Soviet
Phys. —JETP 23, 489 (1966)~.
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ever singular factors occur in several different scattering
channels.

In Sec. IV, we shall write down the general parquet
equations, describing multiple scattering in the two
"singular channels, " without any approximation. In
Sec. V, we solve these equations in the lowest approxi-
mation, valid for small coupling g and not too small

energy ru (g'info/~(1); such an approximation is
equivalent to that used in Refs. 4, 15, and 16. In the
follovring paper, vre present a more refined self-consist-
ent calculation, vrhich is claimed to vrork dovrn to co=0.

The energy variables of y will be defined by specifying
the two deep level energies ei and e2, and the total energy

$ or g, in the channel of interest. Thus depending on the
problem, vre shall use either of the two following forms:

(18)

%e note that the four variables are not independent,
since e~+ e~ $+rI-—

Let I~ and I2 be the sum of all graphs which are
irreducible in respectively channels 1 and 2, while yj and

y2 are the sum of all graphs vrhich are reducible in either
channel. Clearly, vre have

I1+P1 I2+P2 (19)

(since a graph is either irreducible or reducible). Here
again, we shall use notations I;, I;,y;, y;, depending on
the energy variables which are used Lsee (18)].Typical
graphs of y~ and y~ are shown on Figs. 8(a) and 8(b). We
have singled out the first intermediate bubble starting
from the incoming deep line: The left hand blocks are
thus irreducible kernels Ij and I2, while on the right we
have the full interaction operator p. By looking at Fig.
8, we may vrrite two usual Bethe-Salpeter equations for
each channel separately

IV. PARQUET ALGEBRA

Let y be the renormalized interaction operator given

by all graphs of Fig. 7. From y one can calculate all

quantities of interest. The total energy in channel
1 (parallel full and dashed lines) is equal to

$= f1+Cl = r'2+ E2

Similarly, the total energy in channel 2 (antiparallel
full and dashed lines) is

FIG. 7. The general renormalized
interaction vertex.

reducible simultaneously in the two channels 1 and 2.
/For instance, a graph of Fig. 8(a) should take the form

of Fig. 9 if it vrere to be reducible in channel 2: This is
clearly impossible because of particle conservation. ]
Thus, if we denote by R the sum of all graphs vrhich are
irreducible in both channels —the so-called totally
irreducible interaction —vre may write

Ig= R+y2,
I2=R+y j,
V =R+Vi+V2

(21)

To the extent that R, G, and g are known, (20) and (21)
form a closed set of equations, from which one may, in

principle, calculate all properties of interest. %e note
that these "parquet" equations are exact. They corre-
spond to cogpled Bethe-Salpeter equations in channels
1 and 2. Multiple scattering in the tmo channels is now
built in, even if we use the simplest approximation for
R. In contrast, an ordinary Bethe-Salpeter treatment in,
say, channel 1 vrould express everything in terms of I~,
which remains singular because of multiple scattering
in channel 2. The necessity of a parggel redNction is thus
quite obvious.

The 6rst term of R is the basic vertex of Fig. 3(a). As
an illustration, the next tvro graphs of R are indicated
on Fig. 10. (We note that the absence of closed dotted
loops severely limits possible graphs. ) In addition to R,
one must know the self-energy Z of the deep electron in
order to calculate the propagator g. We shall see in the
following paper that it is essential to maintain consist-
ent approximations in the calculation of Z and R.

p obeys a simple symmetry relation which is useful
to check our results. Let us reverse the arrovrs of all
conduction-electron lines and change their energies
from e,' to —e . Energy conservation at each vertex is
thereby preserved. On the other hand, we have seen in
(12a) that the zeroth-order propagator G was an odd
function of energy. Since a graph of p of order n contains
(rI, 1) conduct—ion-electron lines, it follows that

'r(ty, f2, 61,fg i g) = r(ky, E2, ——c2 q
—ey j—g). (22)

z

'rg(flp62)$) =— dfjI1(tg)Sip()8(ei)G(( fi)r(t'i&r2&$) q—
2Ã

(20)

'rn(eg, tI,TJ)= 'AjI2(t'ypfjp7f)g(t'j)G(ej —'g)r(Ej, 62~'g).
21r

We note that in (20) 8 and G are renormalized
propagator s.

%e novr remark that a given graph of y cannot be

lb)

Fro. 8. Reducible graphs
contributing respectively to p&

(a) and y~ (b}.The Grst inter-
mediate bubble from the left
has been singled out.
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FIG. 9. An impossible graph
which would be reducible in both
channels 1 and 2.

Similarly, a glance at Fig. 8 shows that

These relations are exact, but depend on our particular
choice of V),& (symmetric with respect to the Fermi
level).

V. FIRST-ORDER SOLUTION TO PARQUET
EQUATIONS (WEAK COUPLING)

We assume that the coupling constant g is (&1. The
first-order contribution to the interaction operator y is
&'"~V. The second-order terms, given by graphs of
Fig. 6(b), are of order

+(2)

L= 1n(&0/e),

where e is the (small) total energy in either channel.
(Were it not for the large factor L, y"' would be negli-
gible. ) More generally, an arbitrary term of the pertur-
bation expansion will give a contribution of the form

Vg"L" & (p&~0).

The first approximation consists in selecting the @cost

divergent terms of the expansion, that is those which
correspond to p=0. Such an approximation will be
valid as long as gL& 1:Then one must retain all terms
of the form V (gL)", while a term such as Yg'L is negli-
gible, Put another way, the perturbation expansion of
p may be rearranged in the following way:

v= VL~o(gL)+go~(gL)+g'~2(gL)+ "] (24)

In the first-order solution, one retains only the first
term ao (g is a small parameter, while gL is not). Clearly,
such an approximation is no longer valid when L»1/g:
For very large L, a term such as g'L may, for instance,
become larger than 1. Thus, the first-order solution to
the parquet equations presented here is only valid for
not too small energies, e) b expL —1/g]. When e +0, —
a more refined self-consistent treatment is required:

Fj:G. 10. The third- and fourth-order contributions
to the totally irreducible interaction R.

Fro. 11.The lowest graph of the
deep level self-energy Z.

R= V. (25a)

We now turn to the conduction-electron Green's func-
tion G. In (12b), the denominator of f introduces an
extra factor g without any additional ln. To be consist-
ent, we must neglect this term. Moreover, the loga-
rithmic divergence arises only from the discontinuous
imaginary part of fo (the real part vanishes when
c=p). We shall thus write

(25b)

Finally, the deep-electron Green's function is

8= —I/(e+&),

where 2 is the self-energy measured from its value at the
branch point E

&(e) =&(e)-&(0)

[Z(0) gives rise to the shift (E—E,), and disappeared
when we chose the origin &=0 at the actual branch
point of g]. The lowest graph of 2 is shown on Fig. 11,
its contribution is found to be of order

g'e 1n((0/e) .
Within our approximation it is negligible as compared
to e. The same conclusion holds to all orders: We shall
thus write

g= —I/(emit) (25c)

(the sign & corresponds, respectively, to x-ray emission
or absorption). In practice, the 8-function part of (25c)
does not contribute to the logarithmic divergence and
may be discarded: We thus arrive at exactly the same
equations in the absorption and emission cases.

The latter approximation is somewhat tricky, as
imaginary parts are essential in order to define the
analytic properties of the various quantities near
branch cuts. When neglecting them, we can only obtain

Such a calculation is described in the following paper.
We first consider the totally irreducible interaction R.

The contribution of the two graphs of Fig. 10 may be
calculated explicitly (see Ref. 7 for a detailed discus-
sion); one Gnds that

R~ Vg' ln($0/e) (Fig. 10(a)]
Vg' ln(&0/e) LFig. 10(b)],

where e is the maximum energy of the two deep lines
entering or leaving y. In our first-order approximation,
such corrections are negligible as compared to the first
term R&') = V. Such a conclusion persists to all orders
(in an irreducible graph, the internal lines are so tightly
linked together tha one cannot pile up enough inde-
pendent logarithmic factors). The leading logarithmic
terms will thus be obtained by setting
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Pp As
'r2(E1&E2 't) =ii8(Ei rt)I2(E1ieiirt) t(EiiEEirt) i

2

(26)

Ix(Er, E;,f) = V+ps(Er, Ei, Eg+E,—$),

IE(E1&Eiig) = V+ry(Eyi E,iEg+Ei —. 'o)
(27)

The existence of logarithmic factors is quite clear; p&,
for instance, contains an integral of the form

~

~

S& dE; gp—=ln-
E;

(2g)

Similarly, yE contains factors ln $E/rt. In addition, both
y~ and f2 depend on ~~ and e2 through the irreducible
kernels I. D et us, for instance, consider the diagram of
Fig. 12: e& enters via the total energy in the cross bubble,
which yields a factor In(Eq+E,—$)j.Each term p& or

has its "natural independent variables, " which
ensure a reasonably smooth variation of the function;
for y&, these are E~, EE, $, while for yE they are Ei, EE, g:
That is why we chose to write (26) and (27) exclusively
in terms of y~ and y2.

We note that all energies enter through slowly vary-
ing logarithms. To the extent that we collect the
nsmimlm number of logarithms, two quantities lik--

the real (reactive) part of all operators. In the imaginary
(dissipative) parts, one ln is replaced by +is T"he corre-
sponding calculation would require a higher accuracy.
Actually we know from general arguments how branch
cuts should be disposed. We can then bypass the above
difhculties by using relations of the Kramers-Kronig
type between real and imaginary parts.

Within the above approximation, we sum all the so
called "Parquet graPhs, "which can be obtained from the
6rst-order vertex by replacing any number of times a
single vertex by a bubble of Fig. 6(a) or 6(b). A typical
example of such a graph is shown on Fig. 12, together
with its mechanism of formation. Every time a vertex
is replaced by a bubble, the graph contribution is multi-
plied by a factor ~gl. . All parquet graphs will thus
contribute terms of order

V (gI-)"

in agreement with our approximation criterion.
Making use of these various approximations, the

exact Eqs. (20) become

Vp As
Vi(EZiEEik) = e($ —Ei)h(—er, Ei,k)V(Eii Er, k) i

2 «d~;—8($—E;)= —2
&s

(29)

(remember that we are interested in the range Q&&E).
Moreover, let us consider again the graph of Fig. 12:
It clearly does not depend on E& if E&~& $ Lsince in that
case max(E&, E;)= E;].Such a conclusion may be extended
to all orders by induction —and anyhow it may be
checked on the final result. A similar result holds for ~2

(the two ends of the graph play symmetrical roles).
We conclude that

7~(E~iEEik) =7~(hiEEik) =V~(EEik)
(30)

Vl(t, k, h) =|'.r(5) if Er, E2& 8

(note the shorthand notation to avoid repetition of the
same variable). A similar relation may be established
for ys(Ey, EE,rt) &y comb. ining (30) with our general
logarithmic approximation, we may transform (27) into

Ig( g,EEg) = V+yE(max(Eg, E;)),

IE(E1 E 'g) = V+'''r~(max(Eq, E,)) ~

(31)

The passage from (27) to (31) is the key approximation
of this paper. It is only valid to leading order in the
logarithmic expansion, and will have to be reconsidered
in the more sophisticated treatment of the following
paper.

At this stage, it is convenient to replace e; by a new
"logarithmic variable"

say, ln) and ln2~are identical. Thus we need only
define energies with togarithmic accuracy (i.e., within a
factor of order 1). Let us, for instance, consider the
factor ln(Eq+ E;—$) which appears in Fig. 12:Within the
above accuracy, we may replace it by lnLmax(E& —$, E,)j;
such a replacement is wrong when E~—$=—E;, but such
a range of e; gives a negligible contribution to the
integral (28), which serves to build the factor 1n).
Moreover, the relevant values of e; in that integral are)$, so that we may perform the replacement (again
within logarithmic accuracy)

1n(Eg+ E;—&) i 1 nLmax(Eg, E,) j.
Such a logarithmic approximation will be carried out
everywhere; whenever we have quantity y (E,+a),
where e; is an integration variable, we replace it by
y(max(E;, a)). The corresponding error involves one less
logarithm in the expansion, and is thus negligible in
our 6rst-order calculation.

With the above approximation, only the absolute
values of e~, e2, ~;, etc., enter the calculation. We can
thus simplify the integrals according to

~ etc t;=1 (np, /)E (32)

Fio. 12. An example of construction of successive parquet graphs.

In the same way, E&, EE, (, rt are replaced by quantities
t~, tE, a, p. We remember that E~+EE——$+rt; thuS t~, ts,
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a

yI(t), t»a) = —vp dt, I)[min(t), t;)]
0

X (I)[min(t»t;)]+yI(t, ,t»a)),

ys(ts, t»,P) =+vo dt,I,[min(ti, t;)]
0

X (I»[min(t»t, )]+y»(t;,t»P)),

II(t) = V+V»(t)x I»(t) = V+rI(t) ~

(34)

It is clear on (32) that yi does not depend on ti when
ti) a (i.e., »I( $):We thus confirm our earlier prediction
(»).

The approximate equations (34) may be solved
exactly, using a trick by Abrikosov4 and Sudakov. '~ The
solution is sketched in the Appendix, and yields the
following result:

1
YI(tbt»a)

V
—Il e g[min(—ni)) min, (a—tg)[+e, g[2a-m—in(a, i))—min(a, ig))]2L.

a, P are not independent, but instead obey the relation

min(ti, tg) =min(a, p) . (33)

On using (29), we may write the basic equations (26) and
(31) in the following (final) form:

(ii) t»&max(a, p): y remains complicated, and the
general form (35) must be explicited in each given case
(as done for example in the following section).

Here we shall only discuss the particular result (36).
We first note that y = V when a=P; thus for comparable
energies in the two channels, the singularities cancel
out completely, and p reduces to its first-order term.
Such a cancellation was already apparent in second
order, when we found that the two singular bubbles (16)
and (17) had opposite signs. We, here, prove that the
cancellation persists to all orders. This cancellation is
very helpful, as it will simplify considerably the im-
proved calculation of the following paper. Physically, it
follows from the fact that the scattering potential, once
created by the x-ray, is struetureless. [In the Kondo
eBect for instance, the scattering potential has an inter-
nal degree of freedom (its spin), and the above cancel-
lation no longer occurs, a,s shown by Abrikosov'. ]

When aWP, the higher-order terms no longer cancel.
The result (36) must be viewed as the sum of a pertur-
bation expansion

1+g(p a)+. . . —eg(e-n)

The second term corresponds to the elementary bubbles
(16) and (17). When expressed in terms of the original
energy variables, (36) becomes

v= V(k/v)'

—1—g min(a, ti,ts), p is seen to have an essential singularity near the origin,
(35) with a rather unexpected exponent.

Y&(t4t»p)
V

1 i e+gi min (e, tl)—min {e,t2) [+e+g [2p—min {Is,il)—m(n (e, i2) )]2L

—1+g min(p, ti, ts) .

We note that (35) obeys the general symmetry relation
(23); yI tends to be exponentially small while y& is
exponentially large (the opposite result would hold if
we reversed the sign of the interaction). From yI and
p2, the total interaction y is obtained by

V=VI+V»+ V.

The general result (35) is rather unappealing: We
shall illustrate it on specific examples. Let us assume
t)&~tg (this is not a real limitation, since yI and ys are
obviously symmetrical in ti and t»). From (33), it follows
that

tI =IIIIII(a,p) .

VI. RESPONSE FUNCTION AND X-RAY
TRANSITION RATE

Knowing the interaction operator y, it is straight-
forward to calculate the response function)t((g), given by
all graphs of Fig. 3(d). On including the zeroth-order
term, we may write

( 1 2

x( )=., (
—x g{ )g{ —)+.,'

21r [2~

XB(»)G(» ~)V(»&»'x~)B(»')G(»' ~) (37)

Here again, we must treat the integrations over e and ~'

within logarithmic accuracy. Using the same approxi-
mations as in Sec. V, we transform (37) into

&((g)= v»P 1v»» dt dt'y(t, t',P),
0

Two cases are then possible
where p is defined as

p = Ingp/(g.
(i) t&~&max(a, P): (35) simplifies considerably, and

yields

y —Ve& (36)

p is symmetric under interchange of t and t', so that
(38) may be replaced by

'~V. V. Sudakov, Dokl. Akad. Nauk SSSR 111, 338 (1956)
/English transl. : Soviet Phys. —Doklady 1, 662 (1956)j.

gr

X({g)=vgp+2vg' dt' dt y(t, t',p).
0 0

(39)
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TAsLE I. Determination of imaginary part of ln&, fee.

Absorption
Emission

We now use the general result (35), noting that here
a=(, because of relation (33). On using (A4) and (A5),
we obtain

y(t, t',P) =yg+y2+ V=-'VLe«' "+e«'~' "j. (40)

We insert (40) into (39), and perform the integration
which yields

( )=( /2 )L'"-lj (41)

Expressed in terms of the frequency co itself, (41)
becomes

X(~)= (vo/2g)L(b/~)" —13 (42)

(42) is exactly the result guessed by Mahan' by extrap-

olating the 6rst few terms of the expansion. We note
the strong singularity of x when or ~ 0, which involves

a power law with an exponent proportional to the inter-

action strength.
The x-ray transition rate is proportional to Imp. To

calculate it, we note that the branch cut of y lies on the
positive semiaxis for absorption (above the threshold),
on the negative semiaxis for emission (below the thresh-

old). This 6xes the determination of ln()0/co), whose

imaginary part is indicated in Table I.
The simplest way to calculate Imp is to add the relevant
imaginary part to P in (41) [a correction which does not
modify the main part of x(ca) within our logarithmic
approximation). We thus obtain

Imx = sin(27rg) (vo/2g)e'«g(&co), (43)

where g is the usual step function, and the sign & corre-
sponds respectively to absorption or emission. Actually,
our calculation only makes sense when g&(1, so that we

must rather write

Imx(~) =~v~'"n(+~) =~0(b/~)"n(~~) . (44)

The result (44) provides the shape of the x-ray spec-
trum near the threshold.

Another way to obtain Imp, which may be less
questionable than the above procedure, is to choose it
in such a way that, when inserted in the Kramers-
Kronig relation

1 Imx(co')
ReX(ra) =— dry',

it gives the right result (41). In the limit g&(1, to which
we are restricted, such a fancy method gives the same
answer (44).

VII. CON CLUSION

We have con6rmed the prediction of Mahan' that
there should exist a singularity of the x-ray absorption

or emission spectrum near the Fermi level threshold.
This singularity follows a power law, with an exponent
proportional to the interaction strength. There is some
experimental evidence of such an anomaly. However,
before attempting a comparison with experiment, one
must remember that we have neglected a number of
corrections which would broaden such a "resonance"
of the spectrum: lifetime of the deep-level band broaden-
ing (that is, diffusion of the hole to other lattice sites).
The importance of such sects must be evaluated in
each of the many speci6c cases.

A similar singularity (and the associated parquet
graphs) should occur whenever a degenerate Fermi gas
interacts with a discrete level (here with a localized
state). Its physical origin lies in the very long time re-

quired by the electrons near the Fermi surface to re-

adjust to a new localized environment. During that long
time, these electrons keep exchanging with the elec-
tron initially excited by the x-ray, which tends to en-
hance the low-frequency part of the spectrum (that is,
the part near threshold).

Throughout the paper, we have ignored the spin of
conduction electrons. In the present approximation,
where all graphs involve only one open electron line
which bounces again and again on the deep hole, it only
acts to double the density of states. Since the x-ray
transition conserves spin, we only need to multiply the
response function x by a factor 2.

In principle, our calculation is only valid when

g 1n(&p/ru) ~1, i.e., when the resonant enhancement of x
is not large. However, we shall see in the following paper
that the theory can be extended down to or=0 by in-
cluding self-energy and vertex renormalization in con-
sistent fashion. Such a self-consistent treatment deeply
modi6es the nature of the singularities, which are no
longer logarithmic at very low energies. Nevertheless, it
does not a6ect markedly the shape of the x-ray spec-
trum, which remains very close to (44). Such an un-
expected result comes from a nearly complete cancel-
lation of self-energy and vertex corrections, and may be
traced back to the tendency of the singularities in the
two channels to cancel each other.

This large amount of cancelling singularities becomes
very clear in the "one-body" treatment of the problem
described in Ref. 8. There we obtain an exact solution
for arbitrary coupling strength. One recovers a result
of the type (44), g being simply replaced by 8/vr, where
8 is the s-phase shift at the Fermi surface. "Our main
reason for developing at length the present "many-
body" approach is that it serves as a pattern for more
complicated problems, like the Kondo eGect. In tha, t,

respect, the renormalized calculation presented in the
following paper should prove very useful.

'8This feature guarantees that Imx is always positive, in
contrast to (43) which, if extended to large g, would become
negative.
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APPENDIX

According to (34), yi is an iteration of any number
~& 2 of kernels I&, separated by "bubbles, " as shown on
Fig. 13. Each bubble is characterized by a variable
t, (0&t;&a). In a given graph, let us select the bubble
with the highest t;, which we take equal to t. On the
right and left of that "maximum" bubble, there may
exist any number of other bubbles (& 0) with the re-
striction that their t; be a/l smaller than t. On the right
and left of the central bubble, we thus find a full y;
the restriction on t, means that in these factors y we
must replace a by t. We may thus write the equation

y)(ti, to,n) = —vo dt[I)(min(ti, t))+pi(ti, t,t)]
0

X C I,(min(t„t))+q, (t,t„t)]. (Al)

(A1) is completely equivalent to the first equation (34).
We note that there is no duplication of diagrams: The
procedure whereby we select the highest t, is perfectly
well defined, and eBectively leaves a full & on either side.
The objection raised by Silverstein and Duke" is thus
not valid. A similar equation holds for y2

F&G. 13. The iteration of kernels II contributing to». The
vertical bar marks the bubble with the highest t; =t. On either side
there is any number of bubbles, all with t, Ct.

channels. Using (A3) and (A4), one verifies that

~o(~) = —Vi(~) = l'g~ (AS)

y(tt, (t) = V(1+gt,) vo—V'dt+

On differentiating with respect to ti, (A6) gives rise to
a simple differential equation

8'r/Bt) = +g'r .

Here again, all the terms with more than one logarithm
have cancelled out.

We now consider a somewhat more complicated case

t&&a& t, .

From (33), it follows that P= ti, so that yo(ti, to,P) = Vgtt.
In (A1), we must distinguish the ranges (O, ti) and (tt, tt).
On using (A4), together with the shorthand notation
(30), we thus obtain

Vo(ti, tt&p) = vo dtLI, (min(t„t))+ q, (t,,t, t)] ~(tt tr) —Veg(tt —a) (A7)

Using the boundary condition y(ti, a) = V for ti=n, we
find

XLIo(min(to t))+go(t, to, t)]. (A2)

Let us now consider the case t~, t2~& a, P: yy and y2 do
not depend on ti and to Lwhich is indeed obvious on
(A1) and (A2)]. On using the last equation (34), we may
cast the above equations into the following simpler
form:

in agreement with the result (36). A similar calculation
yields the same result when ti(P&&to.

Let us finally assume ti(to(a. Again, (33) implies
P= ti and go= Vgti. In (A1), we must now distinguish
three regions, (O, ti), (t),to), and (to,ct). Since the y which
enter the integral (A1) always have two energies equal,
there may be obtained from (A7). We thus find

'Y)((t) = vo dtL V+Vo(t)+V i(t)]'

(o)3) &(ti, totn) = V(1+gti) —vo V2eg (tI—g)dt

vo(P) =+vo dti V+yi(t)+go(t)]'.

From (A3), it follows at once that

v(~) =V)(~)+so(o)+ &'= l Integration is immediate and yields

V2eg (g& g)eg (g2

As discussed in the text, the singular ternis y~ and p2
completely cancel for comparable energies in the two
"S. D. Silverstein and C. B.Duke, Phys. Rev. 161, 456 (196It').

+(ti to (t) 1 V(eo(tl —tt)+go(tl+tl —2a)) (A8)

By looking at all possible orderings of variables, one
finds the general result (35).


