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We present a theory to describe the direct generation of transverse acoustic waves in metals by electro-
magnetic radiation incident on the metal surface and to describe the converse effect, both in the presence
and in the absence of an external magnetic field directed normally to the metal surface. This theory can be
used to predict the fraction of the incident power which goes into the generated wave. The predictions of
this theory are shown to be in substantial agreement with the experimental data reported by Houck et al.
and others on the direct generation of transverse acoustic waves by radio-frequency radiation in aluminum
in the presence of a magnetic field. However, when the predictions of this theory for the direct generation
of transverse acoustic waves by microwave radiation in indium are compared with the experimental data of
Abeles and others, the predicted insertion loss is found to be several orders of magnitude below that reported.
The theory is developed from Maxwell’s equations and the equation of motion of the lattice for a free-electron,
semi-infinite metal with an electromagnetic field and/or a shear acoustic wave incident on the metal surface.
The only forces acting on the ions in the metal are those forces present in the bulk metal or applied ex-
ternally; that is, the theory is devoid of any forces on the ions resulting from electron scattering at the
metal surface. The theory can be easily understood by imagining the unfilled half-space to be occupied by
another piece of the same metal and introducing a current sheet and/or a shearing force in a plane containing
the origin. The equations which describe the electric field and the ionic displacement field in the metal
can then be derived in the context of an infinite metal in a manner which is analogous to that frequently
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used in deriving the expression for the surface impedance of a metal in the extreme anomalous limit.

L. INTRODUCTION

RECENTLY, experimental evidence has been pre-
sented!® for the direct excitation of transverse
acoustic waves by radio-frequency and microwave
electromagnetic fields in metals, both in the normal and
superconducting states, and for the converse effect, the
direct excitation of electromagnetic fields by transverse
acoustic waves in metals. Direct excitation of trans-
verse acoustic waves by rf radiation has been observed
in the presence of a magnetic field applied perpendicu-
larly to the metal surface in Al,! Nb, and Sn 2 above the
helicon absorption edge and in Ag, Al, and PbTe?
below the helicon absorption edge. Also, direct exci-
tation of transverse acoustic waves by microwaves has
been found to occur in indium films in the absence of a
magnetic field.#® Quinn® has given a brief theoretical
treatment of this problem in which he finds that acoustic
waves can indeed be generated directly in a normal
metal by an rf field incident on the surface of the metal;
he assumes that an applied magnetic field is present and
directed normally to the surface of the metal, although
this assumption is not necessary to the theoretical
treatment of the problem.

In Sec. IT A of this paper we shall develop expres-
sions relating the electric field to the ionic displacement
field in a semi-infinite normal metal where either an
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electromagnetic field or a transverse acoustic wave, or
both, is normally incident on the surface of the metal
in the absence of any externally applied magnetic fields.
This development parallels that used by Reuter and
Sondheimer? to obtain an expression for the surface
impedance, except that it has been modified to include
the ions by including collision drag effects and by taking
the total current density to be the sum of the electronic
current density and the ionic current density, rather
than simply the electronic current density. The ionic
current density can be related to the electric field in the
metal by use of the equation of motion for the ions.?

Using these relations we shall then develop, in Secs.
II B and C, expressions which describe the coupling
between the electromagnetic field and the transverse
acoustic wave in a metal for two model configurations.
The first model will consist of an electromagnetic field
incident normally on the surface of a semi-infinite
metal; we shall obtain an expression for the rate of
energy transfer to the acoustic wave. The second model
will consist of a transverse acoustic wave incident
normally on the metal surface; we shall obtain an ex-
pression for the rate of electromagnetic energy transfer
across the boundary. In Sec. II D we shall generalize
the results obtained in the prior three parts to include
the presence of a magnetic field applied normally to the
metal surface.

Sec. IIT we shall adopt the parameters and experi-
mental configurations given in Refs. 4 and 3 and com-
pare the predictions of the theory given in Sec. II to
the experimental results. Section IV will be devoted to

7G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).
¢J. J. Quinn and S. Rodriguez, Phys. Rev. 133, A1589 (1964).
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a discussion of these results and the conclusions which
may be drawn from them.

II. THEORY

A. Development of Equations Coupling the
Electric Field in the Metal to the Ionic
Displacement Field

We shall consider a semi-infinite metal with its sur-
face in the xy plane and the positive z axis directed
toward the interior of the metal. The metal will be
assumed to consist of a free-electron gas embedded in
an isotropic background of positively charged ions which
is able to sustain shear acoustic waves. It will further
be assumed that both electromagnetic radiation and
transverse acoustic waves are incident normally on the
surface of the metal. The electric field E(z)e™* in the
metal will be taken to be in the x direction and the
magnetic field H(z)e®! in the y direction. Although we
shall have occasion to discuss experiments which involve
an external magnetic field directed normally to the
surface of the metal, we choose, for reasons of simplicity
of presentation, to develop the theory in the absence of
an applied magnetic field and then to outline the
generalization of the resultant theory to include the
presence of an external magnetic field. Deleting the
factor e*t in these and all subsequent equations,
Maxwell’s equations take the form

dE iw
——=—EFE+—J, —=——H, (1)
dz ¢ c dz c

where J(z) is the total current density. Upon eliminating
H(z) from these equations, one obtains

d’E ! 4miw
—+—E= J. 2)

dz?  ¢? c?

The total current density J(z) will be taken to be the
sum of the electronic current density J.(z) and the
ionic current density J;(z). The ionic current density is
given by

Ji(2) =noedt/ dt=noeiwt(z), 3)

where £(z,f) = £(3) exp(iwf) is the displacement in the x
direction of an ion at position z and time £. We have
taken the charge on an ion to be Ze, where e is the abso-
lute value of the charge on an electron, and 7, to be the
number of free electrons per unit volume. The elec-
tronic current density is shown in Appendix A to be

Jo(2) = 2me2h—3m2%? /; : k <(Z;t)>

X [E(t)-— (ii’f>£(t):|dt , @)

er
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where

x/2
k(u)= / d0 sin3d secd exp[— (1+iwr) |#|secd]. (5)
0

In these equations, 7 is the electronic mass, —e is the
electronic charge, and 7 is the velocity of an electron
on the Fermi surface. The electronic mean free path is
l=79r, where 7 is an average relaxation time for an elec-
tron on the Fermi surface. In deriving Eq. (4), as is
pointed out in Appendix A, we have used the assumption
that the electrons are specularly reflected at the surface
of the metal. Furthermore, in order to define the elec-
tric field and the ionic displacement field on the negative
2 axis, we have set

E(—2)=E(z) and &(—2)=£(). (6)

When Egs. (3) and (4) are substituted in Eq. (2),
one finds that

B?E o?  driw (2wePm¥? 2 fz—
e )
dz*  ¢? c? h —» l

X[E(t)—%é(t)]dl—}—noiweé} .

er

In Eq. (7) we shall make the substitutions
x=32/l and y=t/l ®)

and delete the factor ! from the dependent variables,
i.e., E(lx)= E(x), etc. We shall also define the parameter
a according to

a=8wm?(reb/c)*(I/ h)*=3(l/9)*, &)

where §=c¢/(2mwo)!/? is the classical skin depth. The
classical conductivity o=mn.e?r/m is related to the elec-
tron plasma frequency w, by the relation wpr=4wo.
With these definitions and substitutions, Eq. (7)
becomes

@E  w¥? m
—-—+—~(E+—w,ﬁ£>
€

dx? ¢?

bl Twm
—ia f k(x—y)[E(y)——~e<y>]dy. (10)

eT

Assuming the functions E(x) and £(x) to be continu-
ous everywhere, to tend toward zero as |x| becomes
large, to be absolutely integrable over the real axis, and
to be differentiable in all orders everywhere except at
2=0, we may define the Fourier transforms

E(q)= /‘“’ E(x)e—*eedx,

Hg)= / E(x)ewrd, (11)



1052

and

k(q)= f i k(x)eie=dx.

In the limit wr<<1 we shall make use of the limiting
forms? ) L

li =4(1—

im k(g)=$(1—%¢°)

(12)

and
i 4
| q\,I'Il K(Q) l I ’

together with the observation that |k(g)| decreases
monotonically from 4 to 0 as |g| goes from 0 to . If
we define
dE
lim —=g and
z=0F g,

(13)

Jm =6

it immediately follows that

dE dt
lim —=—u and lim —=-—¢.
=07 dy 7207 gy

With these definitions, the Fourier transform of Eq.
(10) is

[—¢*+ (wl/c)*—tax(q) 1E(q)

=2p— (ww,d/c)*(m/e)[1—3x(@) JE(0). (14)
The equation of motion of the ions® is
— Mw?t(z) = Ms*(d?t/dz?)
+2eE(@2)+ (@m/7)((0)—u), (15)

where M is the ionic mass and s is the velocity of trans-
verse sound in the metal. The average electron velocity
in the x direction, (v) is related to the electronic current
density by J.(z)= —nee(v), and the ionic velocity in the
x direction is #=0§/0t=1wf. The final term on the
right side of Eq. (15) represents the collision force of the
electrons on the ions, where it has been assumed that
the scattering of the electrons is diffuse in the system
of coordinates in which the ions are locally at rest. After
making the change of variables described in Eq. (8),
the Fourier transform of Eq. (15) is

{@* = (l/s)’[1—iv(1—§(@) ]} £(@)
=— 20+ @l /M s*)(1— () E(9) ,

where we have used the relation m/%= (37%n,)'/® and
we have set y= Zm/M)(wr)~L.

(16)

B. Direct Generation of Transverse Acoustic
Waves by Electromagnetic Radiation

In this part we shall use Egs. (14) and (16) to calcu-
late the ratio of the power transferred to the acoustic
wave to the power incident on the surface when electro-
magnetic radiation is normally incident on the surface
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of a semi-infinite metal. The Poynting theorem,

a([vudv)/at=—/;J-Edv—/;N-dS, (17)

where #=(E-D+H-B)/8x is the electromagnetic
energy density, N=c(EXH)/4r is the Poynting vector,
and the volume integrations are to be carried out over
a volume of space V which is enclosed by the surface
S, is interpreted to mean that the electromagnetic power
transferred to the volume occupied by the semi-infinite
metal is equal to the power transferred across the
metal surface, given by the surface integral of the
Poynting vector, less the volume integral of J-E. This
integral can be divided into two terms, i.e.,

/J-Ed’u=/J,-Ed'u+/ J;-Edv,
v v v

where the first term on the right represents the Joule
heating of the electrons. If we assume that no energy
is lost by the transverse acoustic wave, then the second
term on the right represents the power added to the
transverse acoustic wave. Admitting the possibility of
complex fields and currents, and noting that the fields
and currents in the metal are functions only of distance
along the coordinate axis normal to the metal surface,
the power added to the transverse acoustic wave per
unit surface area is

(18)

Pu=3}l f ) [J (%) E*(2)+ T *() E(x) Jdx.  (19)

Since there are assumed to be no currents in the half-
space not occupied by the metal, and since the reflec-
tivity of a metal surface is quite close to unity, the
electromagnetic power incident on the metal surface
per unit area is

Pro=c|H(0)|2/8. (20)

The ratio of the power transferred to the transverse
acoustic wave to the electromagnetic power incident
on the metal surface is then n;= P11/ P1o.

If Eq. (3) is substituted into Eq. (19), we obtain

Pu=noiel(167)-1 f [E@)E*Q)— 2@ E@ g, (21)

where we have made use of the inverse Fourier trans-
forms of Eq. (11), that is,

E(x)=(2m)! / ) E(g)ete=dy, etc. (22)

Since, in the model we are presently using, the metal
surface is not constrained mechanically, the stress and,
hence, the strain at the surface are zero, and therefore
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the parameter ¢ in Eq. (16) is identically zero. Also,
since the existence of an ionic displacement field de-
pends on the presence of the electric field, the significant
driving term on the electric field in the metal is the
gradient of the electric field at the metal surface u; thus,
we shall neglect the second term on the right of Eq. (14).
We shall also neglect the term in Eq. (14) which results
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from the displacement current for the same reasons
given in Ref. 7 for neglecting this term. Upon substi-
tuting Eqgs. (14) and (16) into Eq. (21) subject to the
approximations just described, we obtain

Pu=ngwel®|u|/(4rMs?) (23)

with

(1—§«(e))

C.f, (24)

I= d .
/—w ! [ {¢*— (/) [1—iv(1— (@) 1} | ¢*+iex(g) |* ‘

where c.c. means the complex conjugate of the preceding
term. Finally, Maxwell’s equations may be used to
obtain the relation

cu=1lH(0), (25)
and Egs. (20) and (23) may be used to obtain
m= (4/27) Em/M ) (0 2w*%/s%c*)1;. (26)

C. Direct Generation of Electromagnetic Radiation
by Transverse Acoustic Waves

We shall again use Egs. (14) and (16) to calculate the
ratio of the electromagnetic power transferred across
the metal surface to the acoustic power entering the
metal when a transverse acoustic wave is normally
incident on the surface of a semi-infinite metal from a
semi-infinite insulator having dielectric constant equal
to unity. From the Poynting theorem we immediately
observe that the electromagnetic power per unit area
transferred out of the metal across the metal surface is
given by the Poynting vector evaluated at the surface
of the metal, i.e.,

Poy=(c/16m)[E(x)H*(x)+ E*(x)H (2) ]| z=0. (27)
The acoustic flux of the incident transverse acoustic
wave entering the metal is $5Cy|0%/92|2, where Cy4
is the shear elastic stiffness constant. This elastic stiff-
ness constant is related to the transverse sound velocity
according tos= (Cas/p)!/?, where p=noM /% is the density
of the metal. Thus, the acoustic power entering the
metal per unit surface area is

Pa=Mnos®|¢|?/(221%), (28)
where we have made use of Eq. (13). The ratio of the
electromagnetic power leaving the metal to the acoustic
power entering the metal is then n,= Py;/Py.

The generated electromagnetic wave will be assumed
to consist of a plane wave of frequency w propagating
in the dielectric medium. Therefore, since the electric
and magnetic fields must be continuous across the metal-
insulator boundary, we have

E(0)=H(0). (29)

This result may be inserted into Eq. (27) to obtain
Py1=(c/8m)| E(0)]*. (30)

Since the existence of an electric field in the metal de-
pends on the presence of an ionic displacement field, the
significant driving term on the ionic displacement is the
strain at the metal surface; thus, we shall neglect the
second term on the right side of Eq. (16). The boundary
condition on the electromagnetic fields given by Eq.
(29) and the Maxwell relation given by Eq. (25) can be
used in Eq. (14) to relate the gradient of the electric
field at the metal surface to the electric field at the
surface. I't can then be observed that neglect of the term
r in Eq. (14) introduces an error in the electric field at
the metal surface which is of order ¢Z/2r, where Z is
the surface impedance of the metal. For a typical metal
and for frequencies in the microwave range or below,
this error is several orders of magnitude less than unity,
and hence we shall neglect the term p in Eq. (14). If we
neglect the displacement current and substitute Egs.
(14) and (16), subject to the above approximations,
into Eq. (30), we obtain

Poy=(c/8m)(wwpl/c) (m/me)*|§|*| 1|2,  (31)

where

12=/w dq
- (1— ()

X .
{¢°— (l/s)’[1—iv(1—$x(9)) ]} (g*+iax(q))
Finally, combining Egs. (28) and (31) we find that
Ne= r"Q(Em/M) (lz/SC)s(.t)p2(.v.)4 l Iz] 2,

32)

(33)

D. Generalization of the Theory to Include
an External Magnetic Field

In this part we shall discuss the modifications of the
theory that are necessary when an external magnetic
field of magnitude B directed normally to the surface
of the metal is added to the model discussed in Secs.
IT A, B, and C. Each equation in this part will be num-
bered in such a manner that it may be easily identified
with its counterpart in the original theory. In the p res-
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ence of a magnetic field it will be convenient to describe
the fields and currents in the metal by their left- and
right-circularly polarized components; thus, E.i(z)
= E,(2)+1E,(3), etc., where the subscripts refer to the
x and y components of the electric field vector in the
metal. As before, the wave equation is

@E; w?

4riw

+= J:f: )
dz?  ¢? c?

2)

where Ji=J.++J:r. The circular components of the
ionic current density are

T ox= 2metlmp? / ka((z—1)/D)

—o0

) X[EL()— (iwe/mr) £ (1) Jdt, (4)
with
/2
k()= d0 sin’d sechd
’ Xexp{—[1+i(wFw)r]|u| secd}, (5)

where w,=eB/mc is the cyclotron frequency of the
electrons. The Fourier transform of Eq. (5) is

k(@)= / ba(x)evsd; (1)

in the limit wr<<1 and w.7/>>1 we shall make use of the
limiting forms

lim ki (g)=4(1Fiw,7)!
ILweT
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the Fourier transform of the wave equation is
[—¢*+ (wl/c)*—iax1(9)1E+(9)
=2py— (/) (m/e)(1— k(@) Ex(g) . (14)
The equation of motion for the ions is
—szsﬂ: = Msz(d2$i/dzz)+28Eiﬂ: (ZewB/c) E:i:
+@m/7)((0)x—us), (15)

where we have included a term on the right side of Eq.
(15") to take into account the Lorentz force on the ions
due to the magnetic field. The Fourier transform of
Eq. (15') is

{g*— (l/s)[1£Qe/0—iv(1— (@) 1} ££(0)
=— 20+ @l /Ms*)(1— i (@) E+ (@),

where Q,=2eB/Mc¢ in the cyclotron frequency of the
ions. At this point we should mention that if ¢ in Eq.
(14') is set equal to zero, then the solution of Egs. (14')
and (16”) for £.(¢g) is identical to that obtained by
Quinn,® and if uy in Eq. (16”) is also set equal to zero,
then the solution of these equations for £.(g) is identical
to that obtained by Quinn and Rodriguez.?

In order to derive an expression for the ratio 71 we
shall require that the electromagnetic field incident on
the metal surface be plane polarized, i.e., E,(0)=H .(0)
=0. The electromagnetic power incident on a unit
area of the metal surface is then given by Eq. (20) and
the power added to the acoustic wave per unit area of
exposed surface is

(16)

and 129 Pu=ﬁl/ [Jir(x) Es*(x)+J i (x) E_* (x)+-c.c. Jdx.
s —
lim Ki(q)=—|—l. (19"
> aer q i find that
If we define Proceeding as before, we find tha
dE, m= (i/4r) @m/M)(w, '’V /s*c*) (Ins+11-),  (26)
lim ——=p,, etc,, (13")
=0t gy where
” (1—3xx(q))
Il:{:—_-/ dq{ X il A (24’)
o g (@l/s)[1£Qe/w—iv(1—$xs(9)) ]} | ¢*+iaxs(g) |2

Similarly, in order to define an expression for the ratio 5. we shall require that the transverse acoustic wave
incident on the metal surface be plane polarized, i.e., {,=0. The acoustic flux entering the metal is then given by
Eq. (28) and the electromagnetic power transferred across a unit area of the metal surface is

Proceeding as before, we find that

where

Poy=(ic/327)(Ey (x)H  *(x) — E_(x) H_*(x)—c.C.) | z=o0- (27"

na= (2x2)1(@m/M)(1*/sc) w2’ [ | Ia] *+ | I-| 2], (33")
1—3«

AR -

Izi:—/ dq

(g2~ (wl/5)2[ 12 Qo/0— iv(1— 3x:(@) D (g*F ik ()
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III. COMPARISON WITH EXPERIMENT
A. No Magnetic Field

In this section we shall specialize the theory developed
in Sec. IT A, B, and C to the experimental conditions
described by Abeles.* In this experiment microwaves in
a resonant rectangular cavity were incident upon an
indium film several thousand angstroms in thickness
which composed a portion of one of the walls of the
cavity. The indium film had been evaporated on a
germanium rod which extended behind the cavity. Thus,
microwaves incident on the indium film generated
transverse acoustic waves which traveled down the Ge
rod, were reflected, and traveled back to the In film.
These acoustic waves then generated microwave radi-
ation which was detected in the cavity as an echo oc-
curring at a time after the initial pulse corresponding to
the transit time of a transverse sound wave up and down
the Ge rod. For the 9.3-GHz microwaves used in this
experiment, the insertion loss, defined as the ratio of
the amplitude of the echo to the amplitude of the
initial pulse, was observed to be 10713, The parameters
appropriate to the In film* are s=1.28X10° cm/sec,
Zm/M =0.48X107%, w,2=1.2X10% sec™?, =1.21X108
cm/sec, and 7=2X 1072 sec. Assigning this value to the
relaxation time 7 leads to a value of the parameter a
which is of order unity; however, the poles of the inte-
grals I; and I, are not easily obtained when a is of
order unity. Hence, we shall examine the regions
a1 and o>>1 in the expectation, since a is proportional
to the cube of the relaxation time, that one of these
cases will correctly describe the experimental data.

We shall consider this experiment in two parts. In
the first part we discuss the generation of transverse
acoustic waves by the microwave radiation incident on
the indium film. As a model for this portion of the
experiment we shall extend the thickness of the In
film to infinity and ignore all the energy-loss mecha-
nisms available to the acoustic wave. In the context
of this model the ratio of the acoustic power generated
in the In film to the microwave power incident on the
film is 7, given by Eq. (26). The details of the evaluation
of the integral I; are outlined in note 1 of Appendix B;
for the parameters just given, we have wl/s>>1, v<1,

and 8>>1, where
B= (wl/s)(am)~1/2, (34)
We find that

L= —2mi(s/wl)’ (35)

for both the regions a1 and o>>1, and hence, for both
these regions we have

m= (@m/M)(wy/w)*(s/c)*. (36)

We now consider the second part of this experiment,
that is, the generation of microwave radiation by the
transverse acoustic waves which return to the In film
upon reflection from the far end of the Ge rod. As a
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model for this portion of the experiment we shall take
the In-Ge interface as the boundary surface, i.e., the
z=0 plane, and extend the thickness of the In film to
infinity. In making this approximation we assume that
the microwave power emitted at the In-Ge interface
is the same as the power emitted by the film into the
cavity. In the context of this model, the ratio of the
microwave power entering the cavity to the acoustic
power entering the metal is 7, given by Eq. (33). The
details of the evaluation of the integral I, are outlined
in note 2 of Appendix B; we find that

I,=—n(s/wl)*Xi, a1
X268(1—i/V3), a1 37
and hence
Zm\ fwp\2/5\?
OO0
M/\w c
X166%/27, o>1. (38)

If we assume that the attenuation of the transverse
acoustic wave in traveling up and down the Ge rod is
negligible compared to the power reductions involved
in transferring energy between the microwave field
and the acoustic wave, then the ratio of the electro-
magnetic power leaving the film to the electromagnetic
power incident on the film is 17s. Thus, from Egs. (36)
and (38) we obtain, for the parameters given above,

7]1112=1.8X10-22X1, a<<1
X43, a>1.

Even when allowance is made for the enhancement
factor? of the cavity, this numerical result is still several
orders of magnitude smaller than the insertion loss of
10713 reported by Abeles.

B. Magnetic Field

In this section we shall specialize the extension of the
theory to include an external magnetic field which was
outlined in the Sec. II D, to the experimental conditions
described by Houck, Bohm, Maxfield, and Wilkins.?
In this experiment a radio-frequency field generated in
a coil is independent upon an aluminum film several
millimeters in thickness which is coupled acoustically
to a quartz delay rod. The transverse acoustic waves
generated in the metal film were detected by a piezo-
electric transducer attached to the opposite end of the
quartz delay rod after a time corresponding to the transit
time of a shear acoustic wave down the delay rod. An
external magnetic field was applied normally to the
metal surface; the magnitude of this field was such that
damping of the helicon by the mechanism of Doppler-
shifted cyclotron resonance absorption takes place while
damping of the acoustic wave by this mechanism does
not occur. It is then observed that as the magnitude of
the magnetic field is varied within the limitations just
mentioned the power transmitted in the acoustic wave
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is proportional to the square of the magnetic field
strength. It is also pointed out that the converse effect
was observed, i.e., transverse acoustic waves generated
by the transducer induced a voltage in the coil. The
parameters appropriate to the Al sample® are s=3.4
X105 cm/sec, Zm/M=6X10"%, w,2=5.6X10% sec?,
0=2rX10" sec™}, w,(10 kG)=1.8X 10" sec™, 5=2X 108
cm/sec, and w,m>>1. These parameters imply that o>>1
and y<«<1.

We shall first consider the generation of transverse
acoustic waves by an rf field in the presence of an ex-
ternal magnetic field. If we imagine the thickness of the
Al film to be extended to infinity and ignore all the
energy-loss mechanisms available to the acoustic wave,
then the ratio of the acoustic power generated in the
Al sample to the rf power incident on the sample surface
is 1 given by Eq. (26'). The details of the evaluation of
the integrals I, are outlined in note 3 of Appendix B;
for the parameters just given, we have Q<&Lw, wl/s
K(am)'’® and (a/w.r)?, wl/s<wr, as is required for
damping of the transverse sound wave via the mecha-
nism of Doppler-shifted cyclotron resonance absorption
to be absent, and (ar)!/*> w,r, as is required for damp-
ing of the electromagnetic mode by this mechanism to
be present. We find that

Iy=—2mi(s/wl) Bw.r/4a)?, (39)

and hence,
m= (&m/M)(c/s)(ws/w,)*. (40)

At this point it should be pointed out that if the
magnetic strength is increased to well above the helicon
absorption edge so that (ar)!/*&w,r, then, as is discussed
in note 3 of Appendix B, the integral I14 is unchanged
from the result given in Eq. (39). Thus, the theory
predicts that acoustic power generated by rf power
incident on a metal surface in the presence of a magnetic
field will be proportional to the square of the magnetic
field strength in the region well above the helicon ab-
sorption edge as well as in the region below the absorp-
tion edge; it has been reported? that the acoustic power
generated in Nb and Sn crystals was proportional to the
square of the magnetic field intensity in magnetic fields
up to 110 kG. Equation (40) does not contain the relax-
ation time 7 and hence we conclude that the generated
acoustic signal intensity should not be a function of
temperature; it is reported? that the signal amplitude
was not strongly temperature dependent.

Houck ef al.? failed to observe an ultrasonic signal for
magnetic fields of less than 5 kG. This field is near the
acoustic absorption edge and hence one would expect
the acoustic wave to be damped by the mechanism of
Doppler-shifted cyclotron resonance absorption since
the sample thickness is much larger than the acoustic
wavelength. Although damping of the acoustic wave by
this mechanism will certainly occur for the single-
crystal Al samples described in Ref. 3 when the magnetic
field is reduced below the acoustic absorption edge,
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damping by this mechanism will not be significant for
the polycrystalline aluminum-foil sample which was
also found to generate transverse acoustic waves. With
reference to this latter sample we may let the magnetic
field strength go to zero and calculate the ratio m by
use of Eq. (26); for this situation, noting that wl/s>>1
and 8«1, the calculation of the integral I proceeds in
a straightforward manner, and we find that

I,=—2mi(wl/s)(ar)~?

m=(1/72) @Em/M)(w/w,)*([@/5)*(c/s).

Thus, the predicted ratio of the acoustic power gener-
ation for the aluminum-foil sample in the presence of a
magnetic field the magnitude of which lies somewhat
below the helicon absorption edge to the power gener-
ation in the absence of the magnetic field, that is, Eq.
(40) divided by Eq. (42), is (rw.s/wb)?, and this quantity
takes the value 200 for a magnetic field of 10 kG.

Finally, we consider the converse effect for magnetic
fields in the region somewhat below and well above the
helicon absorption edge. We shall assume a model for
this discussion which is identical to that used in the dis-
cussion of the direct generation of microwaves by
transverse acoustic waves given in Sec. III A. The
ratio of the rf power radiated by the sample to the
acoustic power entering the sample is »; given by Eq.
(33"). The integral I,, can be shown to be

Ioyp=+1n(s/wl) (3w.r/40);

2= (&m/M)(c/s) (we/wp)*.
IV. DISCUSSION

(41)
and
(42)

(43)
thus,
(44)

If we assume, as we have done, that the electrons are
reflected specularly at the surface of the metal, then we
can obtain Egs. (14) and (16) in a manner which is
somewhat simpler than that which we have used. When,
in a semi-infinite metal with its surface in the z=0 plane,
an electron is scattered specularly from this surface, it
follows a trajectory which is the mirror image of the
trajectory it would have followed if it had been allowed
to pass through the metal surface into the other semi-
infinite space.® Hence, we can extend the model we have
presently adopted, consisting of a semi-infinite metal,
to one consisting of an infinite metal by considering the
other semi-infinite space to be filled with another piece
of the same metal and defining the fields in this half-
space in the manner given by Eq. (6). However, in
order to treat the problem in this context one must
introduce a current-density sheet in the z=0 plane in
order to produce the correct boundary conditions on the
electric field in the metal, i.e., a term of the form
2(dE(2)/d2)| .=08(z) must be added to the right side of
Eq. (2). Similarly, in order to produce the correct bound-
ary conditions on the ionic displacement field in the

*D. C. Mattis and G. Dresselhaus, Phys. Rev. 111, 403 (1958)
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metal, one must introduce a shearing stress must be
introduced in the z2=0 plane; this is accomplished by
adding a term of the form —2(d£(z)/dz)|.=00(z) to the
right side of Eq. (15). By taking the Fourier transforms
of these modified forms of Egs. (2) and (15), which are
assumed to be valid for an infinite metal, one obtains
Egs. (14) and (16) directly.

In the Sec. III we found that the predictions of the
theory developed in this paper are in substantial agree-
ment with the experimental observations of Houck
et al.* on aluminum using rf fields and an applied mag-
netic field. The predicted insertion loss for microwaves
in the absence of a magnetic field was found, however,
to be several orders of magnitude less than that ob-
served by Abeles? in indium. In the theory which we
have presented to describe the direct generation of
transverse acoustic waves by electromagnetic radiation
in metals and the converse effect, as is made clear in the
preceding paragraph, the only forces acting on the ions
are those which act on the ions in the bulk metal or are
applied externally. Therefore, while the predictions of
the theory presented here are compatible with the ex-
perimental data which have recently been reported, it
seems apparent that other forces on the ions in the metal
must be present which dominate those present in the
bulk metal in the microwave range. In this connection
we should point out that there exist other theories* 01!
in which a force on the ions resulting from diffuse
electron scattering at the surface of the metal as intro-
duced. Some of these authors’ present calculations which
indicate that for microwave frequencies the power
transferred to the transverse acoustic wave from the
incident electromagnetic wave due to electron scattering
at the surface of the metal may be equal to or consider-
ably larger than the power transferred to the acoustic
wave due to the forces acting on the ions in the bulk
metal. Finally, it should be mentioned that the theory
given in this paper ignores any dependence which
the amplitude of the transverse acoustic waves gener-
ated directly in a metal by electromagnetic radiation
might have on the sample thickness. Although this
assumption is supported by the observations reported
in Ref. 3, insertion losses which decrease from 1072 to
10715 as the sample thickness is increased from 2000 to
10 000 A were obtained in several recent measurements
by Weisbarth!? on In films using an experimental con-
figuration similar to that used by Abeles.

The magnitude of the coupling between the electric
field and the ionic displacement field in a metal is
largely determined by the factor 1—$«(g) which appears
in Egs. (14) and (16) and which can be interpreted as a
measure of the nonlocal nature of the gth Fourier com-
ponent of the electronic current-field relation in a metal.

10 P, D. Southgate, J. Appl. Phys. (to be published).

' M. I. Kaganov and V. B. Fiks, Fiz. Metal. Metalloved. 19,
%?368:9’65) [English transl.: Phys. Metals Metallography 19, 8

12 G Weisbarth (private communication).
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That is, in order that the generated field not be screened
out by the electrons, it is necessary that a nonlocal
electronic current-field relation exist for the modes at
which coupling between the fields takes place. Since
coupling may occur via the acoustic mode where g=wl/s
or via the electromagnetic mode where ¢=1/8, we must
have either >>\,/2r, where \,= 27s/w is the wavelength
of the sound wave, or I3>8, or both, for effective coupling
between the fields to occur. The former inequality is
seen to hold for both the experimental configurations
which we have discussed; the latter inequality is simply
the definition of the anomalous limit, i.e., o>>1.

If one assumes that the dominant poles of the inte-
grals I; and I, correspond to the acoustic mode with
I>>\,/2x, that is, that all coupling between the ions and
the electric field occurs at wavelengths corresponding
to the acoustic wave as is the case for the experimental
configuration of Houck ef al.® and for that of Abeles* in
the classical limit, then one finds from Egs. (26) and
(33) that 71 equals 5s. Thus, if we define the efficiency of
power generation in a metal to be the ratio of the power
generated to the power incident on the metal, we are
led to conclude that, under the assumptions just men-
tioned, the efficiency of generation of acoustic power
from electromagnetic radiation is identical to the
efficiency of generation of electromagnetic power from
transverse acoustic waves.

In the absence of a magnetic field the ratio of the
acoustic power generated in a metal to the electro-
magnetic power incident on the metal surface is given
by Eq. (36) in the microwave region and by Eq. (24) in
the rf region. Although these results were obtained for
different metals, the only significant difference in the
parameters used to derive these two equations is that
B, given by Eq. (34) is much greater than unity in the
former case and much less than unity in the latter. In
terms of the ineffectiveness concept introduced by
Pippard!®:!* in connection with the anomalous skin
effect in metals one may define, in the extreme anomal-
ous skin effect in metals one may define, in the extreme
anomalous region, i.e., when o>>1, an effective skin
depth desr= (82A71)1/3, where A is a constant of order
unity; thus, the parameter 8 is found to be proportional
to 2mdess/Ns, the constant of proportionality being of
order unity. We observe that in the microwave region,
where 8>>1, we have n; proportional to w=2; in the rf
region, where 8«1, we have 7 proportional to «w® In
the region where 8 is of order unity, we find 7: to be of
the order (m/M)(¥/c).
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APPENDIX A

Using the physical model described in Sec. 11 A we
shall develop here the relationship between the x
component of the electronic current-density vector
J.(z) and the x components of the electric field E(z) and
the ionic displacement £(z). The time dependence of
these quantities, as well as all other quantities, is given
by e*t, This relationship will be established by use of
the electron distribution

f(V,Z)=f0(V)+ f)_(V,Z) ) (Al)

where z is the z component of the electron position vector
and v is the electron velocity vector. The distribution fo
is not the Fermi equilibrium distribution fo but rather a
local equilibrium distribution.?® It differs from fo in
that the electrons scatter into an equilibrium distribu-
tion centered about the scattering center, i.e., the dis-
tribution fj is centered in a coordinate system moving
with the velocity #=1iw#(2) of the lattice. Since the ionic
velocity is much smaller than the electronic velocity,
we may expand fo(v) about the Fermi distribution to

obtain i
Jo(v)= fo(v) —u(d fo/ 9v.). (A2)

The electron distribution obeys the Boltzmann equation

af e  dfo of (f—fo
2)— =

—_— V—=—

a m 0v, 9z T

, (A3)

where —e is the electronic charge and 7 is an average
relaxation time for all the electrons on the Fermi
surface. Neglecting terms quadratic in f; and E(2),
Eq. (A3) becomes

a—f‘+(l+iw)fx= € %[E(z)—(%)i(z)} (A4)

a9z 0,7 mv, 01, er

This equation is seen to be identical with Eq. (5) of Ref.
7, if one defines the bracketed quantity in Eq. (A4) to be
&(2). If one proceeds in a manner analogous to that used
in Ref. 7, assumes that the electrons are reflected
specularly at the metal surface, and extends the electric
field and ionic displacement field along the negative z
axis according to the relations E(—z)= E(z) and £(—3)
= £(2), one obtains Egs. (4) and (5) of the text.

18 S, Rodriguez, Phys. Rev. 130, 1778 (1963).
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APPENDIX B

Note 1. When the two terms of the integral 1 are
combined, one obtains a single integral with poles at
g==(wl/s)(1—iy/2) and g===(wl/s)(1+14v/2), where
k(g)=m/|q|. If K1, there will be additional poles at
g==(1/8)(141), where k(g)=4$(1—3¢); if a>>1, there
will be additional poles at g= (am)'e™*/¢ with n=1, 3,
5,7,9, and 11, where k(¢)=m/|¢|. One then obtains the
result I;= —2mi(s/wl)® when the contour integration is
carried out for the region a<<1 and one neglects (}y/508)
X (wl/s) with respect to unity; an identical result is
obtained when the contour integration is carried out for
the region a>>1 and one neglects 3% with respect to
unity.

Note 2. (a) a<<1. The integral I» will have poles at
g==(wl/s)(1—iy/2) with «(¢)==/|g] and at
g==(1/8)(1—1) with x(g)=4(1—3%g*). One obtains the
result Jo=—i(s/wl)® when the contour integration is
carried out and wi?/5sé is neglected with respect to
unity. (b) &>>1. Since |g|>>1 for all the poles of I in
this regime, we can set k(¢)=m/|g|. One finds that

L= —zﬁ(il) [ [ <y2+i>-lydy+0<:rl>},

where O(3~) means terms of order 3. Hence, we find
Io=—(mB)(s/wl)*(1—14/V3) in the limit g>>1.

Note 3. When the two terms of 11, are combined, one
obtains a single integral with poles at g===(wl/s)
X(1—iy/2) and g==(wl/s)(14+4v/2) with «.(q)
=4(1Fiw,r)™! and at g=(am)'Pe™*/6 with n=1, 3,
5, 7,9, and 11 where k(g)=m/|g|. One then obtains
I.=—2mi(s/wl) 3w,r/4e)? when the contour integra-
tion is carried out and one neglects (ywl/s)(8/w.r)? with
respect to unity. If the magnitude of the magnetic field
is increased so that (emr)!/3%<<w.r, the integral I;4 will
have poles at ¢=z(4e/3w.r)?[141(2w,r)™'] and
at g* while the integral I~ will have poles at
g= =+ (4a/3wer)*[(2w.r)~*+14] and at g*. Both inte-
grals will have poles at ¢== (wl/s)(1—4y/2) and at
g==t (wl/s)(1414y/2) and we have ky(g) =$(1Fiw.r)™!
for all these poles. When the contour integration is
performed, the result is identical to that given above.



