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The Brueckner-Goldstone (BG) many-body perturbation theory has been applied in a calcu-
lation of the hyperfine structure (hfs) of lithium in the excited 1s 2p( P) state. This is the
first complete calculation of hfs by the BG theory in a nonspherical system. Our result for

agi2 is 45.86 Mc/sec in excellent agreement with the experimental result of 46.17 +0.35 Mc/
sec. In addition, we obtained the value a~~~= —2.79 Mc/sec for which no direct experimental
result is currently available. The contributions from each of the magnetic hyperfine inter-
actions and also the electric quadrupole moment interaction are presented. This approach
also makes possible an analysis of the relative importance of various physical effects in

each case.

I. INTRODUCTION

The Brueckner-Goldstone (BG) linked cluster
perturbation approach' for many-body problems
has been applied by Kelly' to atomic calculations
in beryllium and oxygen. The method was shown

to yield excellent results for correlation energy,
polarizability, and dipole- shielding factor. The
BG theory has also been applied successfully in
the past to the study of hyperfine properties of a
number of atomic systems, such as the ground
state ('S) of the lithium atom, ' the excited triplet
state ('S) of hebum' and the ground states ('8) of
nitrogen' and phosphorous atoms. 6 The BG method
seems especially adaptable to the hfs problem both
because the wave function is an eigenfunction of 8'
to all orders and also because it enables a,conve-
nient separation of physical effects such as core
polarization and various types of correlation. This
allows an assessment of the relative importance of
these effects.

In the present paper we describe the application
of the BG procedure to the excited 1s'2P ('P) state
of lithium. ' The approach used is similar to that
developed by Kelly. ' This study is interesting for
a number of reasons. The first reason is that, in
contrast to the ground state, the 2s orbital is un-
occupied. Therefore, it can serve as a particle
state to which the hole states may be excited. Thus
a comparison of the relative importance of discrete
and continuum particle states in this system with
those in the ground state of lithium is expected to
show significant differences. Secondly, since there
s o ly esta.te f sy tyad ofP

symmetry to consider, this makes the choice of the
single-particle potential more convenient than for
the ground state. In particular, we can now work
entirely with hole states which are true Hartree-
Fock states, and this significantly reduces the
number of diagrams one has to consider. The

final and perhaps most important reason for
studying the P state of lithium is that being non-
spherical in nature it provides a vehicle for
studying many-body effects on a number of other
hyperfine propertiesa: the magnetic orbital and
spin dipolar effects and nuclear electric qua-
dxupole effects. A number of calculations of the
hyperfine properties in lithium 'P are available
in the literature based on one-electron theory, '
and one configuration interaction calculation" has
been given. An experimental measurement'4 of
the hyperfine constant in the J= ~ state is available.
The presence of several interactions makes the
comparison between theory and experiment some-
what less straightforward than in the case of 8-
state atoms. There the theoretical result for the
contact hyperfine interaction can be compared
dixectly with the hyperfine parameter in the spin
Hamiltonian. However, a level- cx ossing atomic-
beam experiment" has been performed between
the J = & and the J = 2 levels of lithium 'P, and
this data makes possible a richer comparison be-
tween experiment and details of the theory.

Section II contains a x'eview of the BG theory and
hyperfine-stxucture analysis and a discussion of
their application to the lithium 'P system. The
relevant diagrams for the various types of hyper-
fine properties and their contributions are pre-
sented in Sec. III. The concluding section deals
with a discussion of results and a detailed com-
parison with experiment.

II. THEORY

A. Brueckner&oldstone Approach to Atomic Calculations

The usual approach in calculations of atomic
pxoperties is to replace the total nonrelativistic
Hamiltoni an ..
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N N
x =ET, +g

i=1 i&j ij

where T. = —
& V.' —Z/r

Z ip (2)

by a central-field-approximation Hamiltonian:

N
x = Q (T.+v,).

1=1
(3)

Atomic units are used here and throughout. The
single-particle potential, Vz, is selected in such
a way that the one-electron equation,

(4)

FIG. 1. Basic diagram components representing
1/x~2 interactions in A, C, and D and the —V interaction
in B.

is solvable for a complete set of states Qf with
energies e'&. A set of N of these single-particle
states may then be combined to form a deter-
minantal zero-order wave function, 40, which
will satisfy the approximate Schrodinger equation:

+O+0 = @0+0 (5)

(8)

where the zero-order energy, E„ is simply the
sum of the corresponding N one-electron energies.

Assuming that a sufficiently judicious choice of
V has been made, the difference,

gram 1A represents a general 1/x» interaction
connecting states i and j with states k and I. Dia-
gram 1B represents the interaction of states i and

j through the potential —V. Diagrams 1C and 1D
are the direct and exchange representations of
the 1/r» interaction of states i and j with a pas-
sive unexcited state n. The total BG wave func-
tion, 4, consists of all possible linked diagrams
made up of these components. This description
of the BG procedure is quite brief and the reader
is referred to earlier literature for further de-
tails. '&'

Given the wave function, any atomic property,
f, may then be obtained as the expectation value
of the corresponding operator,

will be a small perturbation Then . with Eq. (5)
as the zero-order approximation, the solution, "
4, of the Schrodinger equation,

f =&+If I~& /(~l +& .

Through perturbation theory the wave function is
obtained as a series of successive corrections:

O'= I 0 ) + I 1) + I 2) + ~ . (10)

may be obtained through perturbation theory. In
particular the BG perturbation theory gives 0 as
the linked cluster expansion, '

where I k) is used to denote the sum of all linked
diagrams of order k. Thus the expectation value
is given by

(8)

The terms of this summation are enumerated
as diagrams, and the L superscript signifies that
only linked diagrams are included in the sum.
This diagrammatic representation of 4 is obtained
explicitly as follows. Of the set of states Qf,
those occupied in 0, are designated unexcited
states; the others then being excited states. An

unoccupied, unexcited state is called a hole and
an occupied, excited state is a particle. A hole
is represented by a downward-directed line and a
particle by an upward-directed line. The basic
diagram components are shown in Fig. 1. Dia-

f= ((Ol f I 0) + 2(OI f I 1) +(1 If I 1) + ~ ~ ~ )/C, (11)

with C =(Ol 0) +2(OI 1)+(1I1)+ ~ ~ . .

While the wave function as defined in Eqs. (8)
and (10)consists only of linked diagrams, the ex-
pectation value, Eq. (11) and, in particular, the
term (1 If I 1) contains unconnected diagrams.
However, the term (1 I 1) in C~ in combination
with (Ol f I 0) provides identical unconnected dia-
grams of opposite sign. Thus a careful analysis
of the expectation value shows that, up to second
order in hX, Eq. (11) may be re-expressed as

f = (0 If I 0)+2 (0 I f I 1) +(1 If I 1) + 2 (0 I f I 2), (13)



where now (1 lf I 1) contains only all possible linked
diagrams. An RlterDRtlve %ay of dex'lvlng this x'e-

sult is to consider f as a Hamiltonian and retain
all energy diagx ams involving one order in the hfs
interaction.

The diagrams which contribute to the (m, n)th
order of f, i. e. , to (m If In), will be referred to
as (m, n) diagrams. As seen from E((l. (18) the
contributions to f for m& n are multiplied by a
factor of 2 reflecting invariance vnth respect to
time reversal. The (m, n) diagrams for all m and
n are obtained from the wave function diagrams
of Im) and In). All possible diagrams are drawn
in which an Im) diagram is connected to an In)
diagram by attaching an interaction which rep-
resents the operator f.

8. Hyper6ne Interactions

The hfs arises from the various interactions
vrhich occur between the nuclear moment and the
electronic spin and orbital moments. The forms
of the Hamiltonian tex'ms corresponding to these
interactions may be determined through a Foldy-
Wouthuysen transformation of the relativistic
Hamiltonian. " Alternatively, it is possible to
derive the expressions classically by utilizing the
Hamiltonian for the electrons in the presence of
the electromagnetic field of the nucleus. The in-
teractions are conveniently classed in four types
commonly designated: Fermi contact interaction,
magnetic orbital interaction, dipole-dipole inter-
action, and electric quadrupole interaction. The
derivations of the expx'essions as mell as the
physical meaning of each of the interactions are
adequately discussed in the literature. '8 The
Hamiltonians for the three magnetic interactions

mination of Rtomic hfs ls to consldex' R spin
Hamiltonian

where J is the total electronic angular momentum
and ag is called the hyperfine coupling constant.
Each of the interaction Hamiltonians, Eqs. (14)—
(16), may be written in the form

(18)

~ eff,
vrhere Hg is an effective magnetic field
at the nucleus due to the electrons. The Wigner-
Eckart theox'em assures that the matrix elements
of the components of H&

e are proportional" to
those of the invariant angular momentum J. Thus
we can write fox' the coupling constants

g& (@(ZM&)l(H. ) Ie(ZM ))

( P(ZMZ) I Z, I e(Zm~ )}

The denominator here ls ~ust MZC~ so the cou-
pling constants in cps for the three eases may
be given explicitly as

(20)

16m 8 X ) g ( )e3 Ia'. i$=1
(14)

N t 3 s. ' r. sz.)

The electric quadrupole intex'action will be dis-
cussed a little later. In E(ls. (14) —(16), p& is the
Bohr magneton, p,& is the nuclear moment, a~ is
the Bohr radius, I is the nuclear spin, and lg and
s ~ are the single-electron orbital Rnd spin angular
momentum, respectively. The subscripts e, 0,
Rnd d signify the Fermi contact, magnetic orbital,
Rnd dipole-dipole interactions in that order and
mill be employed in that sense throughout the
pRpex'.

The usuRl Rppx'ORch ln Rn experimental detel'-

For a given J' and Mg the wave function may be
transformed to the MI,Mg representation x'esulting
in a linear combination of matrix elements be-
tween the various Ml Mg stRtes Which occur fox'

the particular J and Mg. The BG wave function
for each of the Ml Mg states may then be ex-
pressed as in Eq. (10), and these matrix elements
will then be given by sets of (m, n) diagrams where
m and n range from zero to as high as desired.
Since there are three magnetic interactions, me
need three associated vertices for the correspond-
ing matrix elements in diagrams. Vfe have rep-
resented hfs vertices as gravy lines followed by
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the appropriate letter. These are defined as
follows:

(23)

(24)

In the corresponding diagrams the single-particle
matrix elements of the gradient operator are given
by an hfs vertex designated by Q and signifying

(3O)

C. Single -Particle Potential and V4vc Function

(25)

=[e2qQ/4f(2f-1)](3f '-i i),

where q is the field gradient at the nuclear site
due to the electron. If an accurate value fox q is
known, then the quadrupole moment may be deter-
mined through a measurement of e'qQ. Thus the
quantity of theoretical interest is the electronic
field gradient at the nucleus. The corresponding
expectation value" is

& @l4)
(2V)

In the literature one often deals with the shield-
ing factor, "

&e, le, &

(29)

It is also of interest to consider here the con-
sequence of applying, in addition, an external
magnetic field. If the field is sufficiently strong
that the Zeeman terms are large coxnpared with
the spin-orbit interaction, then the former may no
longer be treated as a small perturbation. How-

ever, the Zeeman terms do not commute with 4'
and therefore J' is no longer a good quantum num-
ber of the wave function. This is exactly the
situation which occurs in connection with level
crossing experiments" in Li 'P state. In this
case the quantities which are of direct interest
are these same matrix elements between the
various possible MI Mg states including any non-
diagonal ones which may occur. Thus the quan-
tities which ax'e directly obtained in this BG cal-
culation are explicitly applicable in an analysis of
such a level- crossing measux ement.

It remains to consider the last of the hyperfine
interactions, that due to the nuclear electric
Iluadrupole moment Q. The corresponding term
in the spin Hamiltonian has the form"

The electronic configuration of the lithium atom in'

the 'I' state is 18'2p. These electrons can couple
to give J = ~ or &. Since the state of maximum
M~ involves a combination of a minimum number
of MI.Mg states, we prefer to consider the cases
O' = —,, M&= —,

' and 8=2, Mg=~. The zero-order
wave functions fox' these states may be represent-
ed as

4', (J' = 2, M~= p) = 40(M =1,M = 2)

4,(Z= —,', M = —,')= g;y,(Jvf-
- v'g @,(M =O, M = -,'). (32)

The three MIMg states which occur on the right
in Eels. (31) and (32) are determinantal functions,
composed of one-electron functions, Qf, for the
paired 18 core and the valence states 2P,+, 2P, ,
and 2p0+y x'espe Ctlv61y.

Starting with each of these three restx'ieted
Hartree-Fock (RHF) determinantal functions a
perturbation hierarchy of correction terms may be
generated through EIl. (8). Each of these wave-
function correction terms is expressed as a sum
of diagrams of the appropriate order; and the
particular diagrams which contribute are depen-
dent upon the choice of the single-particle poten-
tial. It is only necessary to carry out this entire
procedure for one of the MIMS states since all
physical information is contained in the reduced
matrix elements which depend only on I and S.
This is, of course, a consequence of the Wigner-
Eekart theorem. This point will be discussed in
terms of diagrams subsequently. First the cal-
culation of the wave-function diagrams of first and
second order will be discussed in terms of the
special case of the determinant (Mf, = 1, Mg = —,').

The one area in which the BG procedure allows
considerable freedom of choice is in the selection
of a single-particle potential. Of course, what-
evex' ls 1ncluded in or excluded from V 18 im-
mediately compensated by b3.'as shown in Eq. (6).
Thus several important considerations emerge
relative to the choice of V. This topic has been
considered in detail elsewhere. 2~ ' Suffice it to
say at this point that two factors were of major
concern in selection of the single-particle poten-
tial for Li ('P). First it was desired to achieve
maximum cancellation between single- excitation
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(j iV ii ) =(j (1) ls(2) I tii ('1) ls(2))

+(j (1) 2p(2) I x 'i i (1)2p(2))

(2P (1)j (2) i &12
'

i i (1)2P(2)),(33)

and (j 1 V )i )s

=2(j (l)ls(2)is 'Ii (1)ls(2))

-(1s(1)j (2) I ~ 'l i (1)1s(2)) (34)

wave-function diagrams; which is equivalent to
requiring maximum agreement with the Hartree-
Fock potential. Secondly, it was desired to
achieve the maximum rate of convergence possible
in the perturbation theory, and this corresponds
to requiring the greatest possible similarity to
real physical single-particle states.

The choice of potential which seems best to meet
both of these requirements is one in which all s
states are generated in the presence of Coulomb
interactions with one 1s electron and one spher-
ically averaged 2P electron and half an exchange
interaction with the spherically averaged 2P elec-
tron. Correspondingly, all states of nonzero
angular momentum experience Coulomb interac-
tions with the 1s core and an exchange interaction
with one of the 1s electrons. A complete orthog-
onal set of states is still obtained even though the
radial part of the potential differs for s and non-s
states since between these states orthogonality is
assured through the angular dependence.

The potential just described may be written ex-
plicitly in terms of matrix elements as

+(—) is
I

2

FIG. 2. Diagrammatic representation of the single-
particle potential for s and non-s states.

in this case.
Obtaining the first-order wave function is now

simply reduced to a systematic procedure of
drawing all possible diagrams which begin with
the reference state (taken as the vacuum state)
and contain a single interaction of the types listed
in Fig. 1. When the three V diagrams which
occur are expanded in terms of direct and ex-
change interactions with passive states and all
possible cancellations made, the total first-order
wave function is given as the set of diagrams
exhibited in Fig. 3. A few comments about these
diagrams are pertinent. Diagram 3A represents
the well-known exchange polarization of the 1s
core by the 2P electron and is a consequence of
using an RHF potential, Eq. (33), which does not

Figures 2(A) and 2(B) are diagrammatic represen-
tations of Eqs. (33) and (34), respectively. When-
ever a V interaction occurs in a diagram it is re-
placed by the corresponding set of diagrams shown
in Fig. 2. Thus many diagrams containing direct
and exchange interactions with passive states are
cancelled explicitly by the potential V. This
greatly reduces the number of diagrams to be
evaluated numerically.

It should be noted that the potential defined by
Eqs. (33) and (34) or equivalently by Figs. 2(A) and
2(B) is exactly the restricted Hartree-Fock poten-
tial when Eq. (4) is solved for the ls or 2P states.
However, excited states are also obtained in a
potential which includes interactions with only two
other electrons. This is physically reasonable and
provides asymptotically a Coulomb potential cor-
responding to a unit positive ionic charge. One
consequence of this is that the set of states con-
sists of both bound and continuum states. Another
is that certain ladder diagrams which often occur
as corrections to the potential'~ ' are not present

(+ —) IS-
+

2 Ks

IS K
d

IS K K IS
+ +

IS K K 2p+

FIG. 3. Complete set of first-order wave-function
diagrams after cancellation made possible by the choice
of single-particle potential.
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discriminate between states of different spin.
Figure 3B results from the use of a central ap-
proximation for V and represents an electrostatic
pojarization of the 1s core. Both of these effects
act in combination in diagram 3C which can be
described as anisotropic exchange polarization.
The last two diagrams represent many-body
effects which are always present independent of
the choice of V.

Obtaining the second-order wave function re-
quires a procedure entirely analogous to that just
described. All possible diagrams are drawn be-
ginning with each of the diagrams of Fig. 3 and
with one more interaction added. The final com-
plete set of second-order wave-function diagrams
is obtained after making all the cancellations
arising from V diagrams. Since there are V8 dia-
grams which could contribute to a one-electron
property such as hfs, only a few diagrams, rep-
resentative of certain classes of physical effects,
are shown in Fig. 4. The first diagram is an
example of the hybrid effect of exchange polar-
ization and consistency between the 1s orbitals.
Figure 4B is a similar. combination of exchange
polarization with intrashell correlation. The
other four diagrams shown indicate various types
of direct and exchange correlation effects.

2p

K~ Is

2p+
1

D. Relationship Between hfs in J =
2 and J =, Levels

It would appear from Eqs. (20) —(22) for aJ.
that we would have to carry out a BG calculation
for the J = 2 level and another for J = & starting
from Eq. (31) and (32), respectively, for 4,.
This would further entail calculating off-diagonal
matrix elements between two different MI.Mg
states for the case of J = 2 which can certainly be
done. However, a proper application of the
Wigner-Eckart theorem entirely obviates the need
for a BG calculation for J = 2.

To demonstrate this it is convenient to start
with Eq. (18) for the hfs Hamiltonian X'. The
matrix elements of 3" that are of interest in Eqs.
(20) —(22) for aJ are actually matrix elements of
jeff over the electronic wave function, since the
nuclear moment is handled classically. Inasmuch
as J represents the invariant angular momentum
of the system, the Wigner-Eckart theorem yields

(JMJ)H. ) ZMJ') =E.(J)(JMJ( J1ZMJ'), (35)

where Fg(Z) depends differently on J' for each of
the three types of magnetic interactions, since
they depend on electron spin and space coordi-
nates in different tensorial forms.

In addition, the actual value of Ef(J) for each
interaction will differ from one-electron to many-
electron theory, However, the dependence on J
is the same in either case. This means that the
ratios Ef, ~/Ef-', , and, hence, af-, /af-, , are con-
stants and can be simply evaluated using the one-
electron theory. Thus substituting Eqs. (31) and

(32) for %0 in Eqs. (20)- (22) we obtain for the
ratios

8 =a i/a 3 =-1,
C C~ C&

(38)

IS
K+ '2

IS

2p+
I

ft =a i/a, =2,
0 02 02

~d d —/sd —'
2 2

(38)

IS

2p
I (f IS

IS+

[is+

FIG. 4. Representative second-order wave-function

diagrams.

Therefore, the values of a;& are given directly
from those for a~, .

In utilizing the results of one-electron theory to
decide on the ratios of hyperfine constants of dif-
ferent J levels, a note of caution should be
sounded. For instance, in the one-electron theo-
ry, because both orbital and dipolar hyperfine
terms involve (2P l1/r'I2P), it follows that
ao~ = —5ad3. On combining this with Eqs. (3'1)
and (38),. it is found that a(o d) 3 = 5a(o+d)
These relations, however, should not be expected
to hold except in one-electron theory since they
relate operators of different tensorial character.
Thus the use of these relations in analyzing ex-
perimental data" can introduce some error. This
point was emphasized in an empirical manner by
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Harvey' who suggested using two different quan-
tities (2P ) 1'')2P) and (2P l 1/xd'12P) for the
orbital and dipolar terms ao and ad in the one-
electron expr essions.

While we do not need to evaluate azg2 explicitly
because of the Wigner-Echart theorem, one does
need matrix elements over ML,Mg states for the
interpretation of level- crossing experiments.
There the invariance of J is broken by the in-
troduction of Zeeman terms associated with a
strong magnetic field. Denoting 4,(M = 1,
MS= —,), 4', (MI, =1, MS= ——,'), and 4, Ml =0,
MS= k) by D„D„and D„respectively, we re-
quire essentially the matrix elements
(D, la.".(D,), (D, (X' ID,), (D, IX' ID,), and

(D, ISC' ID, ) for each of the three operators. Since
L2 and 8' still provide good quantum numbers,
one can now use the Wigner-Eckart theorem in
terms of the I, S, M~, M@ representation to relate
(D 1R.' ID&) (m, nW 1) to (Dl l36. ' )Dl). Utilizing

m t n . 1
the same information required in the derivation of
EIls. (36) —(38), we have found

(sc )„= 3(x )„, (~, ')33=+3(36,')»,

d 23
Even though this discussion has shown that cal-

culation of diagrams for the J= 2 state is unneces-
sary, it is interesting to consider them for two
reasons. First, this is a convenient example in
which to investigate the effect of a multidetermin-
antal zero-order state. Secondly, it serves as a
check on the correctness of our perturbation-
theory calculation. It is certainly possible to
apply the BG technique to a multideterminant state.
In terms of hfs calculations for the contact and
orbital operators where mixing of configurations
is not possible, it is simply a matter of summing
sets of diagrams for each zero-order determinant.
The dipolar operator is a little more involved in
that matrix elements between different MIMg

= (- 1)M~ 'l(k)(-', ) —(k)(- —,')]M 3, (4o)

which is, of course, an identity. A similar treat-
ment verifies Figs. 5B and 5C.

Finally we consider the relationship of the field
gradient in the two J levels. The Wigner-Eckart
theorem applied in the same manner as for the
magnetic hyperfine operators starting with Eq.
(27) gives

q„,=0. (41)

This vanishing of q, &, can be seen in the one-
electron theory by observing that 4,(J'= —,, M~= & )
of Eq. (32) has a spherical charge distribution,
which means that

&~,(~=2, M~=4)(1.')~ (~=-.', M =-,')) =0.

states occur. Our convention for representing the
resulting off-diagonal diagrams is to consider D,
as the vacuum state. Thus diagrams which con-
nect 8, with D, appear as excitations from D, to
D, and will therefore have two open lines at the
bottom: an upward-~directed line representing the
2P, state and a downward-directed line repre-
~~ntinp the 2p, + state.
Demonstrating agreement with the Wigner-

Eckart theorem in the case of the contact and or-
bital operators is quite simple and is exemplified
by the special cases shown as Figs. 5A and 5B.
The dipolar case is also straightforward in terms
of the convention described above for off-diagonal
diagrams and an example is given as Fig. 5C.
Figures 5A- 5C are diagrammatic forms of Eqs.
(36) —(38), respectively. This may be shown in
each case by evaluating the diagrams. For ex-
ample, in the contact case, Fig. 5A, all diagrams
are expressible as a product of constants arising
from the contact operator and the angular integra-
tion multiplying a common factor

$1 (0)p& (0)(ls2pi 2pks)'/(e —e& ) .

Dropping this and the constant (16m/3) p~ p~/f~&3C&
from each side of the equation, there remains

'i(- -')(-'.) + (-')(--.') +&-.'-)(-.') —(-,')(- —,')]MJ- 2

(--) ISI

3
+(-) IS3 +(-) IS

I

6
-(-) IS

I

6
(-I) (-) ISI

2
-(-) ISI

2

J=—I

2
J~ 0

2

(~3) 2p
K )IS

IJs
2

(2) 2p

Ja-3
2

Fig. 5. Relationship
between diagrams for
J= 2 and those for 4
= ~ for contact, orbital,
and dipole-dipole opera-
tors.

(~3) IS +(-) ISI

3 -(2 3 )IS (-10) IS
+

2p 'll I ii2p
Js I

2
Js 3

2
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Since L' commutes with gc and X, and hence with
4X, no nonspherical perturbation can be intro-
duced by nX through Eq. (8). Thus q, &, is still
zero after incorporating many-body effects.

C I (-8.6196)

IS

C2 (-.6374)

KS IS

K . C
S

III. DESCRIPTION AND EVALUATION OF DIAGRAMS

Using the BG wave function up to second order,
expectation values of the four hyperfine inter-
action operators have been calculated. In the
convention described previously, all diagrams of
order (0, 0), (0, 1), (1, 1), and (0, 2) have been
evaluated. Some diagrams of higher order have
been evaluated as a check on convergence of the
results. The numerical procedures employed
have been discussed in previous papers. '~4

Briefly, the Hartree- Fock integro-differential
equation for the single-particle states was solved
numerically for both bound and continuum states.
The momentum values for the continuum states
were selected such that a twelve-point Gauss-
Laguerre integration technique could be em-
ployed in k space. This section contains four
subsections, each dealing with one of the hfs
interactions. In each case the diagrams and their
values are given together with a discussion of
their meaning.

A. Fermi Contact Interaction

There are no contributing (0, 0) diagrams for the
Fermi contact interaction since the sum of these
corresponds to the net spin density of the RHF
function at the nucleus. This is, of course, zero
for Li Is'2P('P). Thus the lowest-order, and
most significant, contribution to the contact term
is the (0, 1) diagram given as C1 in Fig. 6. In
this and all similar figures, the diagrams are
shown along with their net contribution to the
hyperfine coupling constant in Mc/sec. These
values include contributions due to time reversal
whenever applicable. Diagram C1 represents
core polarization and its contribution is over 90%%us

of the total contact term. The source of this dia-
gram may be seen from Fig. 3A of the first-order
wave function. Contributions from the two spin
states add due to the spin dependence of the con-
tact operator.

It is possible to sum certain classes of diagrams,
called ladder diagrams, to all orders by techniques
described in the literature. '~ ' Because of our choice
of potential, ladders of the core-polarization dia-
gram in the present case can only occur in odd
orders. This total effect is negligible since the
combination of hole-hole and diagonal-hole pa,r-
ticle ladders changes the diagram value by less
than 0. 002 Mcjsec.

The (1, 1) contact diagrams are given as C2
through C6 of Fig. 6. Diagram C2 is an interplay
between core polarization and intra-shell cor-
relation and will be referred to as a hybrid dia-

C3 (+.I267) C4 (+.06I6)

IS I t2p,

C5 (-.02S6) C6 (.0076)

IS/
C~ 'I2p

IS/
KS 'II'2p

I
I2p

FIG. 6. (0, 1) and (1,1) diagrams for the Fermi-
contact interaction and their values in Mc/sec.

gram. Diagrams C3 and C4 are pure direct and
exchange intershell correlation contributions,
respectively. The last two diagrams are sim-
ilar to these except with the contact interaction
attached to the 1s hole line. Diagram C2 is seen
to supply a fairly large amount. This may be
understood as follows. One of the 1s electrons is
exchange polarized by the unpaired 2p electron
thus acquiring modified s character. This modi-
fied 1s electron then transmits its exchange
polarization to the other 1s electron through their
large mutual correlation leading to additional spin
density at the nucleus. In general we have found
that whenever a diagram includes the exchange
polarization element, Fig. 3A, its contribution is
substantial relative to diagrams of the same order.

Diagrams C7 through C14 listed in Fig. 7 com-
prise the (0, 2) contribution to the contact inter-
action. Diagrams C7 and C8 are hybrid effects of
core polarization with consistency in the former
and correlation in the latter. Diagrams C9 and
C10 represent intra- and intershell correlation,
respectively, with C11 being the exchange counter-
part of C10. Diagram C12 is an exclusion princi-
ple violating'~ ' (EPV) exchange correlation dia-
gram. Finally diagrams C13 and C14 are direct
and exchange hole-hole correlation contributions.
Diagrams C11 and C12 are shown as individually
substantial though mutually cancelling in effect.
Their opposite signs arise from the additional in-
ternal hole line in C12. That they are of simila. r
magnitude can be understood from the fact that,
when 0 is a p state and 0' is an s state in C11, all
interactions are the same except for the rniddle
vertex. In this vertex the integration over A 'k "

s s
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C 7 (-.9747) C8 (-.3373) Adding these together gives

/
Ks

IS QKS
2p

I

2pI

KRIS which reduces to

C9(+059O) C IO (+.O733)

IS

C I I(+l.722 I ) C I 2 (-I.5747)

IS4

2p

IS

IS 2p

CI3 (+.4242) C14(+.I29 5 )

IS

2p
I

2p
I

IS

FIG. 7. {0,2) diagrams for the Fermi-contact
interaction and their values in Mc/sec.

gives a contribution comparable with that from
1s 1s. It was found that this particular contribu-
tion to C11 is the predominant one and cancels
much of C12.

Considering the cancellation of C11 and C12, the
largest contribution from (0, 2) diagrams again
comes from the hybrid diagrams as was the case
in (1, 1) order. Altogether hybrid diagrams, C2,
C"l, and C8, amount to about —1.95 Mc/sec, so
this is certainly a significant effect. Actually it
may be demonstrated that diagrams C2, C7, and
C8 are not all independent. All three diagrams in-
volve products of the same three matrix elements
and their energy denominators are simply related.
The energy denominator of C2 is

and this is exactly the energy denominator of C7.
Thus C7 is identically the sum of C2 and C8. This
is shown diagrammatically in Fig. 8. The fact
that the numerical values given with Fig. 8 satis-
fy this relation serves as a verification of our
numerical accuracy.

Another consequence of a particular choice for
the single-particle potential is the specific com-
position of the phase space over which diagrams
are to be integrated. In the present case the only
unexcited states are 1s+, 1s, and 2P, +. There-
fore all other 2P electrons must be considered as
excited states. In general a tremendous amount
of cancellation of diagrams occurs in summations
over m~ and m~. In fact frequently the only con-
tribution remaining from a given diagram is a re-
sult of this "asymmetry of phase space" just de-
scribed. %e refer to such specific diagrams re-
maining after cancellation of a general sum over
allowed phase space for a diagram as "residue
diagrams. " Diagram C9 of Fig. 7 is a good ex-
ample of this concept. Actually there are two
possible diagrams of this type, corresponding to
having the contact interaction line attached to a
positive- or negative-spin 1s electron. In general
the contributions from these two diagrams would
cancel for each possible set of particle states
kp, kp', and k". However the 1s electron can
be excited to a 2P1 state while this excitation is
not available to a 1s+ electron. Thus C9 actually
reduces to the difference between two residue dia-
grams; one corresponding to replacing kp with 2P
and the other with 2P substituted for kp'. The con-
tributions of these two diagrams are +0. 1491 and
—0. 0901 Mc/sec, respectively, combining to give
the value shown in Fig. 7. Thus the small but
finite contribution from diagram C9 owes its origin
entirely to the asymmetry of our phase space.

In general a diagram must be summed over states
of all angular momentum as well as all k values.
In most cases selection rules eliminate all but one
or two possible values of / in a diagram. How-

ever, a few diagrams remain in which contribu-

C2 (.6374)

Ks IS

C + ISKS

CS (.5573)
C

2p

C7 (.9747)
C

KK

KS

and that of C8 is
K6 IS

2p
I

[(e —t )(2f —e —e )] FIG. 8. Relationship of hybrid {1,1) and {0,2) contact
diagrams.
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tions from any / value are allowed. Diagram C11
is the only example pf this situation in the con-
tact case. In this work s, P, d, and f states were
included. To demonstrate the effect of the cutoff
at 1 = 3 a comparison of contributions to diagram
C11 from various angular momentum states is
given in Table I. It is seen that contributions for
increasing l values decrease substantially, lead-
ing us to expect that inclusion of higher angular
momentum states would have a minor effect on the
total value of this diagram.

In view of the substantial size of some of the

(1, 1) and (0, 2) diagrams, we felt it desirable to
examine some higher-order diagrams of similar
types. We evaluated certain (0, 3) and (1, 2) dia-
grams which are built out of the interactions found
in the larger (1, 1) and (0, 2) diagrams; specifically
diagrams C2, C7, C8, and C12. These diagrams
and their values are given as Fig. 9. It is seen
that none of them are very significant. Thus
assuming large amounts of cancellation in these
orders as found in (1, 1) and (0, 2), we expect the
total contribution to be of the order of 1%.

B. Magnetic Orbital Interaction

The magnetic orbital interaction diagrams in
contrast to the contact diagram do not benefit
from any cancellation of positive-spin and nega-
tive-spin contributions since the operator is spin-
independent. Another complete reversal in the
nature of the contributions occurs between con-
tact and orbital interactions in that only s elec-
trons may contribute in the former, while due to
the l~ operator in the orbital case there is no
contribution from 8 electrons at all.

In (0, 0) order the 1s electrons cannot contribute
due to the form of the operator, so the only (0, 0)
diagram is the direct 2P, contribution given as
diagram 01 in Fig. 10. This diagram corres-
ponds to the total orbital hfs contribution in the
RHF method. There is no contribution possible
in (0, 1) order.

Diagrams 02 to 09 of Fig. 10 comprise the (1, 1)
contribution to the orbital interaction. Diagram
02 is the hybrid effect of electrostatic polariza-
tion of the 1s core contributing through its inter-
shell correlation with the 2p, electron. The cor-
responding exchange effect is given as diagram
03. Diagram 04 is intrashell correlation and the
only contribution here is from residues. Dia-

(.OI2O) (-.OI59)

IS

IS

av$ I
Kp

IS

(-.0005) (.OOOI)

IS

IS
S

2p
I

(-.0024)

IS 2p

IS

IS 2p

FIG. 9. Representative major higher-order diagrams.

02(™10~) 03(-.OOOI)

OI (8.0877)

2p(Q~~ 0
Rp

grams 05 —09 represent direct and exchange
intershell correlation contributing through either
the 1s or 2p, electrons. The dominant contri-
bution in this order is from that part of diagrams
06 and 07 which represents purely radial excita-
tions of the 2P orbital.

The (0, 2) orbital diagrams are given in Fig. 11.
Diagrams 010 and 011 are direct and exchange
hybrid diagrams of a type similar to diagram C8.
The rest of the (0, 2) diagrams, 012 through 015,
correspond to various pure correlation effects.
The largest contribution again comes from the
intershell correlation diagram 015 in which the
2P, electron undergoes purely radial correlation.

C. Dipole - Dipole Interaction

The diagrams of the dipole-dipole interaction

TABLE I: Contributions to diagram C11 (see Fig. 7)
from all allowed angular momentum states up to f.

04(+,0007)

0 &IS

05 (-.0013)

K~0 K 2P

K

08(+.0359)

Kp

IS K (~ 8p

K"

lk

p
S

p
f
d

Contribution
(Mc/sec)

-0.2229
+ 1.2363
+ 0.3024
+0.2716
+ 0.0690
+ 0.0656

07( .OI95) 08( .003I) 09( IO-5)

2p
I

0 IS

FIG. 10. (0, 0) and (1, 1) diagrams for the magnetic
orbital interaction.
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010 t-. 0020) OI I(- .0031)

2p)

have features in common with both of the operators
discussed previously. The dipole-dipole operator
is again spin-dependent like the contact operator
resulting in much cancellation between contribu-
tions from the two 1s electrons. However, it
differs in that it involves a spatial part which is
tensorial in character with / =2 dependence which
results in differences in the nature of the excited
states that are required in the diagrams. Fur-
ther, the radial part of the operator is 1/p' as
was the orbital operator. Thus any diagram cal-
culated for the orbital interaction need only be
multiplied by an angular factor to give the cor-
responding dipolar contribution.

Again the direct contribution which is the RHF
result is given by the (0, 0) diagram. This is dia-
gram D1 in Fig. 12. The single (0, 1) diagram is
D2. This diagram represents anisotropic ex-
change polarization of the 1s core by the 2p elec-
tron. It is interesting to examine in more detail
the distribution of the contributions to this type of
diagram over the set of single-particle states.
In Table II the various contributions to the contact
(0, 1) diagram and the dipole (0, 1) diagram are
compared. The contact contributions come from
s bound and continuum states while only d states
contribute to the dipolar diagram. This table
makes clear the very special nature of the ex-
cited s states of this problem. Almost 70%%uo of the
value of the contact diagram comes from the 2s
orbital alone. In sharp contrast to this is the di-
pole case where over 99% comes from continuum
states. This latter case is similar to the contact
diagram in the earlier example' of Li ('S). The
reason for the completely different behavior of the
contact diagrams in the 'S and 'P cases is that for

D2 (-.I 736 ) D3(-.000 5)

DI (-1.6I 75 )
2p
Q

04 (-.OOOI i D5(-.0038) D6 (-.0032 )

IS D
K D 2p 2p

I

D7(+0002) DS(-,0006) D9(-IO s)

0 Ii P
K i IS

FIG. 12. (0, 0), (0, 1), and (1, 1) magnetic dipolar
diagram s.

TABLE G. Contribution (in Mc/sec) to the contact
and dipolar (0, 1) diagrams fx'om individual bound states
and from the continuum. Values for the contact diagram
represent contributions from s states while those for the
dipolar diagram are from d states.

the latter the 2s orbital is now available as an ex-
cited state. The 2P hole state can have a strong
interaction with the 2s particle state by virtue of
both the small energy difference and large over-
lap. For the 'S case, on the other hand, the
nearest-bound particle state is 3s which does not
interact strongly with the 2s hole state. Corre-
spondingly for the (0, 1) diagram D2 in Fig. 12,
the nearest bound particle state is 3d which ex-
plains the smaller effect of bound states in this
case as well.

Another sharp contrast between the dipole-
dipole and contact diagrams. is seen in the hole-
hole and hole-particle ladders of the (0, 1) dia-
grams. In the contact case the total contribution
from such ladders is quite negligible (0. 02%)
while ladders to the dipole-dipo1e diagram contrib-
ute over 40% of the total. This is not surprising
since the d states were calculated in a potential
appropriate for states of I' symmetry. The lad-
der contribution corrects for the difference be-

OI2(-.0446)
0

2p Kp

Ol 4(i.6159)

OI3 (-.0030)

2p

Zpg

OI5 (-.03623

Source

n=2
n=3
n=4
n=5
n=6
n=7
n=8

Contact

-5.9227
—0.2067
—0.0608
—0.0268
—0,0142
—0,0084
—0.0054

Bipolar

0.0004
0.0002
0.0001
0.0000
0.0000
0.0000
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FIG. 11. (0, 2) orbital interaction diagrams.

All bound

Continuum

Total

—6.2449

—2.3746

—8.6196

0.0006

0.1730

0.1736
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tween the actual d-state potential and that as-
sumed here.

The (1, 1) contribution consists of diagrams
D3 through D9. The first of these is again an
example of hybrid effects. All others represent
various types of correlation. These diagrams
are quite similar to the orbital case. Diagrams
D4 and DV are quite small since they enter only
as residues. Diagrams DB and D9 are of a
type which has always been small. D6 and
D6 are the largest diagrams for the same reason
as given for 06 and OV of Fig. 10.

The diagrams representing the (0, 2) contribution
are given in Fig. 13. The first two of these rep-
resent ladder-like effects of employing a central
potential approximation T.he rest of the (0, 2)
diagrams, D12 through D25, are further examples
of hybrid and correlation effects.

D. Electric Quadrupole Interaction

As opposed to the magnetic interactions con-
sidered above, the field-gradient operator cor-
responds to an electrostatic polarization. The
spatial part of the operator is identical with the
dipole-dipole operator which leads to certain
similarities in the diagrams of the two cases.
However, the spin independence of the quadrupole
operator as well as its electrostatic nature in-
troduces additional diagrams not encountered pre-
viously. As indicated earlier we will consider the
quadrupole-shielding factor y explicitly, rather
than the gradient q itself. Thus if the value of q
ls desired, it may be obtained from the diagrams
simply by multlplylng with go = —0. 0234Qg ob-
tained from Eq. (29).

In this case there are two (0, 1) diagrams as
shown in Fig. 14 (Ql and Q2). The first of these
is again the result of anistropic exchange polar-
ization as seen in the dipole case. Diagram Q2,
on the other hand, appears for the first time since
it is associated with purely electrostatic quadru-

QI (4 .I069) Q2 (".2650)
Q

polar polarization of the 1s core by the valence
electron. Both of these effects were first identi-
fied by Sternheimer. " Of the (1, 1) diagrams, Q4
through Q10 are quite similar to those obtained
for the magnetic dipolar interaction. Diagram Q3
is a hybrid effect of correlation with electrostatic
polarization which occurs here for the first time.

In (0, 2) order the number of diagrams is larger
than in any of the magnetic cases because of the
addition of electrostatic effects and lack of cancel-
lation due to spin. These diagrams are given in
Fig. 15 and include various hybrid and correlation
effects similar to diagrams contributing to the di-
pole interaction, Fig. 13. The dominant (0, 2)
diagram, Q12, contributing to y is of the new hy-
brid type, being a combination of electrostatic
polarization and intrashell correlation effects.

IV. RESULTS AND DISCUSSION

The value of every diagram for each of the inter-
actions is given in the previous section. These
results are summarized in Table III. The contri-
butions to each operator from (0, 0), (0, 1), (1, 1),
and (0, 2) orders are shown in this table together
with the totals. As seen here the results show
marked decreases with increasing order jn the
perturbation. And in addition, as shown for the
contact interaction in Fjg 9 djagrams of the
next higher order are more than an order of
magnitude smaller. Loosely speaking the (0, 0)
and (0, 1) contributions are one-electron effects
while (1, 1) and (0, 2) orders introduce many-body
corrections. This relationship will be clarified
in a comparison with specific other methods em-
ployed in calculations on this system.

%e first turn our attention to one-electron per-
turbation theory approaches which have been used

Dill~ID 5}

OIZ (-,0005)
0

Q5 (-0.0024) Q6 (-0.0005)

Q
K IS

DI4 I+A)004)

0
Dle j+ iooozI

0

Q~ (-0.00OI) QS (-0.0002) Q9 (+0.0004)

2p 2p
l
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FIG. Z3. (O, Z) diagrams for the magnetic dipole
interaction.

FIG. 14. Nuclear quadrupole shielding factor dia-
grams up to (1, 1) order.
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to obtain exchange polarization corrections to
magnetic hfs and the Sternheimer shielding factor.
The results of these calculations should agree
exactly with our (0, 1) diagrams for each interaction
with the following cIualifications. The (0, 1) dia-
grams must be considered as including all ladders
arising as corrections to the particle states while,
in the differential equation approaches, small dif-
ferences are introduced by the use of a localized
exchange potential. In view of these facts we find
good agreement between results of the two ap-
proaches as seen from Table IV. In this table the
method referred to as MP is a calculation of the
interaction energy between the valence electron

and the 1s core perturbed by the nuclear magnetic
or quadrupole moment. The EP method involves
an application of these perturbations in the re-
verse order. These calculations of the magnetic
interactions utilized the same zero-order Hartree-
Fock wave function" as used in the present cal-
culation. On the other hand, the shielding factor
calculation used a wave function obtained from an
empirical potential" and may be expected to in-
directly include some correlation. However, the
results of our calculation of y (see Table III)
show that correlation effects are not of great im-
portance in this case. Thus we compare the
strictly one-electron part of our calculation, the
(0, 1) diagrams, with Sternheimer's one-electron
procedure. These results are seen to differ by a
factor of about 30%. Since the two procedures are
very different, it is impossible to pinpoint the
reason for this discrepancy. Two likely sources
are the use of quite different starting wave func-
tions and Sternheimer's use of a localized po-
tential approximation. It is interesting to note
that the MP calculation ofad3 of Rao et al. "' is

Order
aC3

(Mc/sec)

0
—8.6196
~ 0.4701
—0.4786

ao-32
(Mc/sec)

+ 8.0877
0

+ 0.0578
+ 0.5270

Qd3

(Mc/sec)

—1.6175
—0.1736
—0.0081
—0.0951

-0,1561
—0.0013
-0.0126

Total —9.5683 + 8.6725 —1.8 943 —0.1700

closely related to the exchange part of Stern-
heimer's result. The fact that there are similar
discrepancies between these two one-electron re-
sults and our corresponding (0, 1) diagrams in-
dicates that it is likely that the localized approxi-
mation, common to both, is responsible.

We consider the unrestricted Hartree-Pock
(UHF) method separately from the other one-
electron approaches since it includes consistency
and some accidental correlation" effects. In
order to compare our results with the VHF value
for the contact term, it is more meaningful to
combine the hybrid diagrams C2, C'7, and CB with
our (0, 1) diagram. This gives a total of —10. O'I

Mc/sec which is in good agreement with Gooding's
UHF result' of —10. 'I Mc/sec. The difference
between this value and our final contact result in
Table III is a consequence of correlation effects
not included in the VHF approach.

Before comparing our results with experimental
measurements we will discuss the reliability of
our calculation. Possible sources of error in this
work are the truncation of sums over angular

TABLE III. Contributions from each order to the three
types of magnetic hyperfine interaction and the nuclear
quadrupole shielding constant for the J'=

2 state.
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TABI E IV. Comparison of (0, 1) diagrams with earlier one-electron core-polarization calculations.

Method
ac3

2
(Mc/sec)

a
(Mc/sec)

Sternheimer shielding factor
Direct Exchange Total

MP
EP

(0, 1) diagram

9a
—8.5b

—8.6196

0 1113c
~ 0 ~

-0.1736

—0.1819
~ ~ 0

-0.2630

+ 0.0663
~ ~

+ 0.1069

-0.1156
0 ~ 0

—0.1561

See Ref. 10.a

M. H. Cohen, D. A. Goodings, and V. Heine,
Proc. Phys. Soc. (London) 73, 811 (1959).

c
See Ref. 11.
See Ref. 12.

momentum states at l = 3, truncation of the wave
function after second order in ~3.; and numerical
accuracy of the computations. The effect of con-
sidering only up to f angular momentum states
was discussed briefly in connection with Table I.
As seen in that typical example there is a definite
decrease in the size of the contributions in going
from s to f states. Furthermore there are few
diagrams in which f-state contributions are al-
lowed at all and their total effect on tbe coupling
constant is quite small. Thus, while it is clear
that higher / states will contribute in a few cases,
we are confident that the total for all remaining
t' values will be very small. Our conservative
estimate is that the error resulting from this
source is less than 0. 5/0. The second subject to
be considered in this discussion is convergence in
orders of perturbation theory. The value of
Brueckner-Goldstone perturbation theory as a
computational tool for atomic problems certainly
rests in large measure on whether the wave func-
tion to second order has converged sufficiently to
give accurate results. For larger atomic systems
it would be prohibitively difficult to calculate the
third-order wave function by techniques heretofore
employed. However, we feel the present calcu-
lation gives strong evidence that at least for hy-
perfine effects, the second-order wave function
is extremely good. In Table III we have given the
sums of all contributing diagrams in each order
of the perturbation. The higher-order values
there are significantly smaller than those of lower
order. Even more revealing is the fact that (0, 3)
and (1, 2) diagrams of the types which predominate
in lower orders have dropped off by atleast another
order of magnitude. And, in addition, because of
our choice of potential and the nature of the par-
ticular operators being considered, the majority
of diagrams of high orders can contribute only as
residues. Thus we feel that'inclusion of all dia-
grams from higher orders in the perturbation,
bX, would not change the calculated result by
more than 1/o. The third of the possible sources
of error mentioned above is the actual accuracy
of the numerical approximations. This consists
mainly of the error inherent in the numerical
technique for integrating the one-electron equation,
Eq. (4), and in the integration formulas utilized in

a, = 9. 5683 Mc/sec,
C2

(43)

a ~ = 17.3450 Mc/sec,
02

ad ~ = 18.9430 Mc/sec,
2

(45)

giving a total of

a &
= 45. 8563 Mc/sec. (46)

The experimental measurement of a & by Ritter'
yielded the result

(a~) =46. 17+0.35 Mc/sec.
expt

(47)

Thus our value is within the experimental error
bars and, in fact, differs from Ritter's value by
less than 0. 7'%%uo.

Ardill and Stewart" have published a configura-
tion interaction calculation of the hfs of Li ('P)
based on a 45-term wave function of %'eiss. '4

However, the specific form of the configurations
included is such that the excitation required to
provide the anisotropic exchange polarization con-
tribution is not present. Thus we would not ex-
pect this effect to be adequately taken into account
in their calculation. Their value for a,+ is 45. 70
Mc/sec, in quite good agreement with ours. How-

ever, this agreement is questionable since their
contact result, 12. 85 Mc/sec, differs markedly

both coordinate and momentum space for evaluating
the diagrams. This total computational error is
estimated to be well under 0. 1'%%uo. As the result of
the foregoing considerations, we feel that a con-
servative estimate of the error limits of our cal-
culated results for each of the interactions is
about l. 5%. Thus, for example, the approximate
error range in the contact parameter, a &, iscd''
+ 0. 15 Mc/sec.

As indicated previously the only experimental
value available for this system is a,&,. In order
to compare with this result we must utilize Eqs.
(36) through (38) to obtain a ~ from a 3. Our

Z2 $2
values thus obtained are



HYPERFINE STRUCTURE IN 2I' STATE OF I i

a,z = - 2. 7906 Mc/sec.

Since no dix'ect measurement of thi8 quRntlty 18
available, we would hope to encourage experi-
mental vex'iflcRtlon Gf this theoretical prediction.
At the present time the closest to an experimental
result for a», that has appeared is R calculation
from level - crossing data by Brog, Eck, and
Wieder. " This derivation was based on the one-
electron theory and did not consider anisotropic
exchange polarization. In fact their value for
a», of —3.40 +0. 23 Mc/sec is based on the as-
sumption that the one-electron relation
(ao ~ +~d ~ ) = 5(ao 3 +ad ' ) will hold in general. As
seen from our results the many-electron version
of this ratio is actually

(a, +a„,) = 5. 35(a g +a g )

which is a significant change from the one-elec-
t1 GQ equRtlon. A similar comment Rpplles to their
level-crossing relationship. It should be noted
here that, by utilizing the accurate values ob-
tained in this calculation for the matrix elements
of eRch Gf the 1ntex'Rctlons ovex' vRX'ious Ml Ms
states, a detailed and accurate analysis of the
level-crossing experiment is possibl. This could
be utilized either to make theoretical predictions
of the level-crossing field values Gx altexnatively
to obtain values of the hyperfine constants ap-
propriate to the J = & level from the experimental
level- crossing fields. "

The quadrupole moment Q may be obtained from
the i.nteraction energy

W=- e'a 'qQ (cgs).8 (50)

from ours and all other calculations of this param-
eter. They have quoted only the total of the or-
bital and dipolar interactions combined, giving
32. 85 Mc/sec, to be compared with our result of
36.2880 Mc/sec. This again demonstrates the ad-
vantage of the BG technique in that no arbitrary
choice of configurations has to be Inade and thus
no important contributions missed.

As shown in Sec. II our single calculation yields
both the x'esults for J = & Rnd 4= 3. Thus our value
fol ns&2 18 Just Rs Rccux'ate Rs thRt given fox' A, &~.
This vRlue ls

The negative sign on the right of Eq. (50) occurs
because the field gradient q of Eq. (27) arising
from electrons must be multiplied by —ea& 3 to

btai & g 't . 8 g f, L. bt d
—0. 18 +0. 12 Mc/sec for W. Thus using Eq. (28)
for q in terms of the shielding factor y our result
fox' the quadrupole moment of I l is

Q = (- 3 9 + 2 6) x10 "cm'. (51)

The authors are indebted to R. K. Nesbet and
P. G. H. Sandars for several discussions which
greatly clarified a number of points of importance
to this work. We are also grateful to N. C. Gutta,
Miss C. Matsubax'a, and Dr. T. Ishihara fox con-
siderable help throughout much of this investi-
gation.

This result is quite a bit larger in magnitude than
the valuegivenby Brog ef al. of (- 3+2)x10-" cm'.
The difference can easily be accounted for in that
their calculation is entirely one electron in nature
and also they did not employ a shielding factor for
q. Kahalas and Nesbet" have published a value of
Q = —4. 4&10 "cm' using a measurement of the
quadrupole coupling constant of I lH by %harton„
Gold, and Klemperer. " Our result agrees well
with theirs bothin sign and magnitude. It ishoped
thata technique may be devised whereby a more
reliable measurement of Wwill be possible, thus
enabling a more accurate determination of Q.

We have demonstrated for the first time in this
payer the use of the BG technique for obtaining
Rll the hypelflQe px'opex'ties of R nonsphex'1cR1 sy8-
tem. The results have been shown to be quite ac-
curate and in excellent agreement with experiment.
It is to be hoped that this calculation will encour-
age fux ther experimental analysis of lithium in the
I state. From R theoretical po1Qt of viewq oux'

success in this system, combined with similar
favorable experience in spherical systems, sug-
gest that it would be fruitful to use this procedure
in larger atomic and moleculax systems. Not
only would this enable us to bridge the gap between
one-electron theox'y and experiment, but also in
the px'ocess px'ovlde Rn improved Understanding of
the role of many-electron effects.
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Mean Lives of Some Doubly Excited Levels in Lithium I*
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Three doubly excited levels in Li x produced upon passage of 56-keV Li ions through a
thin carbon foil have been identified. Their mean lives were measured using the beam-
foil technique with the results given below:

7(1s2P P) = (6.4 +0.3) x 10 sec,
~(1s2s3s'S) = (9.7+0.7) x10 ' sec,
~(1s2s3d'D) = (4.5+0.4)»0-' sec.

In the optical spectrum of lithium certain spec-
tral lines appear which cannot be assigned to the
normal tel nl scheIQes of Ll I ox' Ll II . It has
been suggested by several authors' 4 that these
lines originate from radiative transitions between
doubly excited quartet states in Li I, lying be-
tween the first and second lonizat1on potential.

Due to selection rules these levels cannot auto-
ionize through Coulomb interaction. Auto-ioniza-
tion, because of magnetic interaction, is much

1s2s3d'D -1s2s2P 4I'

1s2s3s 48 -1s2s2P 4P
1s2P24/ - Is2s2p 4P

1s2P3P 4P -1s2s3P 4P

X2337A,
A, 2934 A,
A.3714A,
X4607A .

less likely and this process is too slow to com-
pete with radiative decay to the lowest doubly ex-
cited level.

Four lines in the visible region classified as
transitions between doubly excited levels are


