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the constant phonon mean free path at very low

frequencies, was found to have values much less than
the specimen diameter. This could be due to a precipita-
tion of cadmium impurity in the alloy matrix.

Finally, in order that the reader might easily obtain
a feel for the relative magnitudes of the eftects discussed,
we summarize the results by listing in Table III the
various conductivities discussed for the most impure
sample, No. 7. It is evident from the last two columns
that the additional phonon scattering mechanism
evident in our data is of quite comparable size to the
electron-phonon interaction. It is seen that, to within

experimental error, the columns add properly, indicating

internal consistency of analysis.
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The transport properties of an interacting fermion gas in the presence of randomly distributed scattering
centers and a weak longitudinal force field are studied on the basis of a transport equation for the bare-
particle distribution function. This equation, valid for arbitrary wavelength, frequency, and temperature,
is derived by a generalization of a simple method due to Resibois. For the case of electrons, the transport
equation is given in terms of the mean total electric field in the medium, thereby allowing a direct calculation
of the transport coefn.cients of physical interest. The general theory is applied to the case of a slowly and
smoothly varying driving field, low temperatures, and weak and dilute scattering centers. It is shown, up to
second order in the interfermion interaction, that a transport equation for a quasiparticle distribution func-
tion can be derived. This equation has the form originally suggested by Landau with the interparticle and
impurity scattering terms added. The connection between the bare-particle and the quasiparticle distribution
functions is also obtained.

1. INTRODUCTION

HE linear electromagnetic properties of solids,
such as metals and semiconductors, at low tem-

peratures are determined to a large extent by the im-
purities in the crystal. Within the one-electron approxi-
mation, these properties are calculated on the basIs of
quantum transport equations, which have been derived
by various authors. ' ~ All these theories neglect the
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ophy at the Massachusetts Institute of Technology.

t Operated with support from the U. S. Air Force.
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I D. A. Greenwood, Proc. Phys. Soc. (London) 71, 585 (1958).
IK. Yamada, Progr. Theoret. Phys. (Kyoto) 28, 299 (1962).' C. V. Chester, Proc. Phys. Soc. (London) 81, 938 (1963),

electron-electron interaction and are, therefore, inca-
pable Of describing u priori such effects as the screening
of the impurity potential, electron-electron scattering,
and other more subtle many-body efI'ects. Although the
eGects of the screening and the electron-electron scat-
tering have at times been considered in various applica-
tions in a qualitative way, no convincing and self-
contained theory has been given as yet even for these
simple effects.

Recently progress has been made in the calculation
of the transport properties of a degenerate, homoge-
neous, normal interacting electron gas in dilute random
impurities. Langer' in a series of papers has been able

' P. N. Argyres and E. S. Kirkpatrick, Ann. Phys. (N. Y.) 42,
513 (1967).

J. S. Langer, Phys. Rev. 120, 714 (1960)~ 124) 1003 (1961);
127, 5 (1962). See also remarks by P. C. Martin, ibid. 161, 143
(1967).
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to evaluate the current in this system induced by a
static and uniform longitudinal electric field at low

temperatures, taking into account all many-body
effects. Betbeder-Matibet and Nozieres' have derived
a transport equation for the Landau quasiparticles for
the same system. Their equation describes the linear

response of the system to an electric field of long wave-

length I/q and small frequency co, taking into account
again the many-body effects to all orders in the electron-
electron interaction. Since it is valid, however, only at
zero temperature, their equation does not describe the
effects due to electron-electron scattering. Actually,
such transport equations for the Landau quasiparticles
in the presence of random impurities and at zero tem-

perature have been suggested by Silin, ' Heine, and
Heine e] al."on the basis of the original phenomenologi-
cal theory of Landau" —"for the pure Fermi liquid.

The investigations of Langer' and Betbeder-Matibet
and Nozieres7 make use of the sophisticated mathe-
matical techniques of Green's functions and many-

body perturbation theory. "' They parallel the deriva-
tions of the Landau-Silin transport equation for the
Fermi liquid in the absence of impurities, as sug-

gested by Landau" and developed by Luttinger and
Nozieres"' for zero temperature and by Eliashberg"
for low temperatures. All these works are very com-
plicated mathematically, but have the redeeming fea-
ture that they take into account rigorously the electron-
electron interaction to all orders, once the convergence
of the expansion in powersof thestrength of theelectron-
electron interaction is assumed. However, so far only

the macroscopic limit (i.e., q«k~ and co&&co&, where kr
and cop are the wave vector and frequency associated
with the Fermi surface of the system) and the case of

zero temperature have been treated successfully for the

homogeneous Fermi liquid in the presence of dilute im-
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17 (1966).
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9 V. Heine, Phil. Mag. ?, 775 (1962). See also Ref. 15.
' V. Heine, P. Nozieres, and J. W. Wilkens, Phil. Mag. 13,
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3, 920 (1957); S, 101 (1957); 8, 70 (1959)g.

~ V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957);33, 1282
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New York, 1964).
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2nd ed.
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purities. That is, no transport equation describing both
the impurity and interparticle scattering has been
derived.

In the present work we approach the same problem
of the transport properties of a homogeneous system of
interacting fermions in the presence of randomly dis-

tributed scattering centers from a different point of
view. %e wish to focus our attention on bare particles
rather than on quasiparticles and thus derive a trans-

port equation for the bare-particle distribution function,
which is sufhcient for the evaluation of the linear re-

sponse of all interesting one-particle observables, such

as the particle and current densities. As we shall see,
such a transport equation for the bare-particle distribu-
tion function can be established with fairly simple
mathematical techniques and for arbitrary wavelength,

frequency, and temperature. AVe thus have a sufficiently
broad basis from which we may attempt various ap-
proximations in different cases. Furthermore, whenever
a quasiparticle description proves possible and useful,
we can find the connection between the bare-particle
and the appropriate quasiparticle distribution functions.

For the case of a homogeneous normal Fermi liquid
in the absence of impurities, Resibois' has derived
recently a transport equation for the bare-particle dis-
tribution function by simplifying and improving a
method due to Konstantinov and Perel."The method
is based on a reclassification of an expansion of the dis-
tribution function in powers of the interparticle inter-
action. This is carried out with the help of a suitable
diagrammatic representation of the terms of the series,
once use is made of the usual contraction theorem. "
The coeScients of the transport equation are given in
a power series in the interparticle interaction, repre-
sented by appropriate diagrams. Resibois" applied this
transport equation to a neutral Fermi liquid (i.e., with
short-range interaction) in the macroscopic limit
(q«kg, co«cop) and at zero temperature and proved, up
to second order of the interparticle interaction, that the
Landau" transport equation for a quasiparticle dis-
tribution function results. The connection between the
bare-particle and quasiparticle distribution functions
was also found. Watabe and Dagonnier" considered the
collision term at low temperatures within the same
framework and were able to prove that it can be ar-
ranged in the form of the interquasiparticle scattering
term suggested by Landau. "

In this work we generalize the method of Resibois'
so that it can be applied to the case of the inhomoge-
neous system of interest, namely the interacting fermions
in the presence of impurities. The bare-particle distribu-
tion function is defined and its average over a random

'9P. Resibois, Phys. Rev. 138, B281 (1965)."O. Konstantinov and V. Perel, Zh. Eksperim. i Teor. Fiz. 39.
197 (1960) I English transl. : Soviet Phys. —JETP 12, 142 (1961}j."C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958).

"See Appendix C of Ref. 19, and P. Rdsibois, Bull. Acad. Sci,
Belgique SO, 1287 (1964).

~' M. Watabe and R. Dagonnier, Phys. Rev. 143, 110 (1966).
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distribution of the impurities is formally expanded in
powers of both the interparticle and impurity inter-
actions in Sec. 2. In Sec. 3, the diagrammatic repre-
sentation of the terms of the series is given with particu-
lar emphasis on the new elements that the presence of
the impurities and the process of averaging over their
distribution engender. Some important lemmas, that
eliminate or simplify a large number of diagrams, are
stated and their proofs indicated in the same section.
The statements and/or proofs of these lemmas have
been generalized to allow for the presence of the im-
purities. In Sec. 4, we make use of some of these Lemmas
to reclassify the diagrams representing the distribution
function and thereby derive, quite simpLy, a general
transport equation for the impurity-averaged bare-
particle distribution function for arbitrary wave vector
and frequency of the longitudinal driving 6eld and all
temperatures. The coeKcients of the transport equation
are given in a power series in both the interparticle and
impurity interactions.

The important case of electrons, interacting with a
long-range Coulomb force, is considered in detail in
Sec. 5. In this case it is desirable, and at times neces-
sary, to express the distribution function in terms of the
average electric field in the medium, rather than the
external electric 6eld. We accomplish this within the
framework of this theory by showing that, in terms of
the mean total electric 6eld, the distribution function
is given by a subset of diagrams, all of which are
regular as q ~ 0. A transport equation forthedistribu-
tion function is then obtained with coefficients which are
regular as q-+ 0.

In Sec. 6 we carry out the 6rst application of this
theory. We examine the transport equation in the
macroscopic limit (g(&'k), oK&'o)r) for low temperatures
and dilute and weak scattering centers. This case is of
interest in the theory of the transport properties of
metals. The scattering due to impurities is evaluated
to first order in their concentration and the first Born
approximation for the cross section of each scattering
center. The effects of the interparticle interaction are
considered only up to second order. Higher-order terms
are forbiddingly complicated and, on the other hand,
a second-order calculation provides most of the physical
information of interest. We show that the transport
equation for the bare-particle distribution function
contains terms of obscure physical signi6cance. How-
ever, a transformation is possible that introduces a
quasiparticle distribution function which is shown to
satisfy a transport equation of the Landau" form with
interquasiparticle and quasiparticle-impurity scatter-
ing terms simply added. This quasiparticle distribu-
tion function, however, which is appropriate when the
impurities are present, is diGerent from that of the pure
Fermi liquid.

We wish to report that we have applied the general
theory developed here to the derivation of a transport

equation for a system of dynamically independent
fermions interacting with random impurities. No re-
strictions on the wave vector, the frequency, or the
temperature have been made. The coeKcients of the
equation have been calculated to all orders in the
potentia1 of a single impurity and up to second order in
the impurity density. This equation represent. ts a
generalization of the one derived by Luttinger and
Kohn. ' The details of this work will appear in a future
publication.

We plan to apply the general theory developed here
to other cases of more physical interest in subsequent
publications.

&=&o+&'=&o+V,+V', (2.1)

consists of the kinetic energy IIo, the interparticle
interaction V„, and the interaction of the particles with
the impurities V;. In terms of the creation and destruc-
tion operators c~t, c~ for fermions, we have

o
—p o))cotco, oo ko/2tt—o (2.2)

where k denotes the wave vector k of a plane-wave
one-particle state and its spin 0., and fi is taken as
unity. The interparticle interaction energy is

Vv= ~~ Q V(kit'k')cotcPcpco. ,
kll'k'

(2.3)

the use of the antisymmetrized interaction matrix
element

V (kll'k') = )tv(k k') v(k l')5—ho+i,—o.+i. —(2.4)

will bring about an important simpli6cation later in
the diagrammatic analysis. Here v(k —k') =v(k —k') b„
is the Fourier transform of the interparticle potential
v„(r,—r,), i.e.,

e(ee) fd'r e-"'e,(r), = (2.5)

with v(q) a real and even function of q. The interaction
energy of the particles with the set of e; identical im-
purities fixed at positions R; is taken to be of the

2. BARE-PARTICLE DISTRIBUTION FUNCTION

In this section, we define and study formally the bare-
particle distribution function for a normal Fermi liquid
in the presence of random scattering centers. This
function determines the linear response of some one-
particle properties of the system to an external longi-
tudinal field of force.

In the absence of any external 6eld, the system under
consideration consists of e„interacting fermions in the
presence of e; impurities, all within a unit volume. Its
Hamiltonian,
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form

V;=p Q N(r; —Rt)

ni
= P Lqt(k —k') g e—'k'-') aIjcqtcq . (2.6)

Here N(k —k') is the Fourier transform of the inter-
action between a particle and a single impurity, i.e.,

&e(k —k') k. f=&)'r.e '&" '&'&e(x). (2.7)

Without loss of generality we take u(t1=0) =0.
In the presence of an external longitudinal field of

force of wave vector q and frequency co,

F ~i(q r-tet) +y es(q r-cot) (2.8)

the interaction Hamiltonian is

(We use the summation convention for repeated
Cartesian indices. ) Note that the simple form (2.13) of
the current density is a consequence of the fact that all
forces on the fermions can be described in terms of
scalar potentials independent of the velocities of the
particles.

We are specifically interested in the response of the
system as it manifests itself on quantities like the
induced current density, particle density, and, in
general, all one-particle quantities. Let A be the sum
of one-particle operators, i.e., of the form

~=& e(t) =& (k—qq'lolk+qq')p", (2»)

where p," is given by (2.10); then the change in the
mean value of such an observable induced by the ex-
ternal field is given by

Tr(&[p(t) —pojj=P (k 2q'lttl k+qq')f (kt), (2.16)
kq'

gPk(t) —y e
—i&et g p &k

k
(2 9) where

f'(kt) =Tr( p''5 (t) —poj) (2.17)

Here we have introduced the operator

Pe t k &f& C&+q~2
t (2.10)

and co is understood to have a positive imaginary infini-
tesimal part to insure the adiabatic switching of thefield.

We assume that in the remote past, i.e., before the
external field has become significant, the system is in
thermal equilibrium at temperature T= 1/kP. Its
density matrix is then

pq
—e e(tr )e)q) jTr-e-t)(B )e&) -(2 11)

where Ã is the fermion number operator and p, , the
chemical potential, is determined from the condition
Trp~=n~. The density matrix at time t, up to terms
linear in the external Geld, is given by Grst-order
perturbation theory as

ei&) e f &)
='"'—L)k"(&—) eA' ' (e kk)

Using an identity given by Kubo'4 which expresses
$H",pqj in terms of the Fourier transform of the cur-
rent density operator,

is the bare-particle distribution function for a particular
arrangement of the impurities. The observed macro-
scopic quantities are determined by an ensemble average
over an appropriate distribution of impurity centers.
In the following we shall take this distribution to be
completely random, i.e., we define the averaged bare-
particle distribution function as

(j(k!))f,&) Rf;=—&) R'j, ;&k'&)., (2.18)

where
(fq(kt)), = fq (k)e '"', (2.19)

With this we can calculate, using (2.16), macroscopic
quantities such as the induced current and particle
densities, for which the corresponding operators a do
not depend on the impurity distribution. The important
feature of this averaging is that it restores "momentum
conservation. " We conclude that (f, (kt)); is ditferent
from zero only for q'=q, the wave vector of the driving
field. Using (2.14) and the cyclic invariance of the
trace, we have for the desired averaged bare-particle
distribution function

k k
J-q Z P qZ ~q+qlq C)r-—q/qx

S$ Is fg
(2.13) fq (k)=Fq dr e'"'

0

we find, with the help of (2.8), for the steady-state
linear response

dy Tr p|)e~lJ e ~ ei 'p~j'e '~' 2.20

Oo

p(t) pq e kxekp ex dr ejeeT dy e iHrp

0 0

HJ ae ~ eie.
'4 R. Kubo, J. Phys. Soc. Japan 12, 570 {1957).

(2.14)

The primary purpose of this work is to derive a general
transport equation for fq (k) for neutral and charged
normal Fermi liquids.

In order to obtain a transport equation for fq (k), we
first rewrite (2.20) in terms of the time-development
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operators which are de6ned by the equations

e ihi—r —e- iHorU(r P) eiirr U(0 r)eiffor

e &+=e &~'U( iy,—p), e&~= U(0, iy—)e"~'

We have from (2.20)

(2.22) ~f ~
b—etHQrg g- iHpr

&
—iegj;r&Iky7'g (2.24)

and ( . ) denotes the average over the free particle
grand-canonical ensemble, i.e.,

tors in the interaction picture for either real or imagi-

nary times, e.g.,

f.-(k) =F.- d '" dv((U( tt —v)~ —:( v-)—
0 0

(A)—=Tr(e p&~r»A}/Tre p'~r & i. (2.25)

&& U( i& 0) U(P r)& a(r) U(r 0))(U( iP P))
—i), (2 23) A Perturbation exPansion of f, (k) in Powers of

H'= V„+V; is obtained by inserting in (2.23) the ex-
where I, (r) and p, '(r) are the corresponding opera- pansions for the quantities U. These are

r tR

U(r, p) = P ( i)"— dh„. . dh, H'(t, ) 8'(t,),
0 0 0

(2.26)

r tR

U(p, r) = P i' dt, '
dh, 'H'(t, ') "H'(t, '),

p~0 0

(2.27)

'yR

U( iX, —imp)—= Q (—1)" dy . . dyiH'( iy )—. 8'( iyi)—,
n=o

(2.2S)

where H'(t) is the perturbation H in the interaction
picture, defined as in (2.24). The resulting imaginary
time integrals can easily be rearranged so that all
integration variables y; can be put in increasing order
form 0 to p, i.e., p& . . - &y;+.l+y;& &0. The real
time integrations, on the other hand, consist of two sets
of integrations, arising from U(r, p) and U(p, r), the

limits in one set being independent of those in the other.
As Resibois" pointed out, great advantage results if
all integration variables are arranged in an increasing
sequence. Such an ordering greatly facilitates the real-
time integrations. This transformation is achieved with
the help of the following identity" for arbitrary func-
tions qh;(t), 4,'(t):

f
r tRI r t,R

dtir ' ' ' dti 4'n (ti) ' '4'i (4) dtr' ' ' dhi4r(hr)' 4'i(ti)
0 0 0 0

r rR

dr~r dri Q 6'ik„'(r~) i''(r p) iver(rr) 4'i(r p), (2.29)
o o

where (P represents all possible permutations of the (p+r) arguments such that r «rp and rr) . .)rp.
This identity expresses two series of integrals, each running independently from 0 to ~, as a sum of integrals ordered
along a single time scale 0 to r. Thus, with the use of (2.29), we find for the averaged bare-particle distribution
function the perturbation expansion

O' R QO

fq (k)=F«P P (—1)"+~1"(—z)' dy„+~i ~ dpi dre'"'
nm 0 pr 0 0 0 0 0

XP hP((8'( —iV„+~,) L, ( iV„+i) 8'( i—Vz)8'(r ) —8'(rp).
(P

&&p'(r)8'(r ) . 8'(rp))(U( —iP,O)) ) (23o)

where the permutation operator (P has been defined in
(2.29). The factor (U(—iP,O)) ' has not been expanded
in powers of II' for reasons to become clear in the
following.

By decomposing the expression (2.30) in a way which

is most conveniently represented by a certain set of
diagrams, we shall be able to derive a transport equa-
tion for f«(k). A systematic expansion of the coefficients
of this transport equation will also be represented in
terms of diagrams.
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3. DIAGRAMMATIC REPRESENTATION

In this section, we develop the connection, previously
mentioned, between the expansion (2.30) and a certain
set of diagrams. These diagrams, which represent the
various terms in the expansion, are quite similar to
those of Resibois. " Differences occur, however, be-
cause of the presence of the impurities and because of
our use of the antisymmetrized matrix element of the
interparticle interaction (2.3). The use of the matrix
element (2.4) results in the advantage that both direct
and exchange interactions are handled together, so that
fewer diagrams need be considered. At the end of this
section, we shall consider the method by which the
average over the random distribution of impurities is
incorporated in the diagram technique.

From (2.3), (2.6), and (2.13) we note that H'(r)
and J, (r) are just sums of products of destruction and
creation operators in the interaction picture, as given
by (2.24). Thus, for the evaluation of (2.30), we need
the average of a product of fermion operators over the
free-particle grand-canonical ensemble as in (2.25).
According to the theorem of Bloch and DeDominicis, "
such an average is given by the sum of all possible com-
plete systems of contractions of pairs of fermion opera-
tors. The only nonvanishing contractions are

C

p+r Y2

~ Y

~ ~n

~n+1

n+ m+1
-ip

(b)

Fro. 1. (a) The time sequence of the operators in the expansion
(2.30). (b) The contour C determining the order of operators in
contractions.

where
Pq L1+cs( k-y) j-1

(3 1)

(3.2)

is the Fermi distribution function for the unperturbed
energy qq, and p the chemical potential. Note that (3.1)
holds also for imaginary T T'.

We shall represent a complete system of contractions
by an appropriate diagram. To begin with, in order to
represent the time sequence of the various operators
as they appear in (2.30), (a) we draw r dots at points

, T~ just above a horizontal axis running from 0
on the right to T on the left; these dots correspond, re-
spectively, to H'(r&), , H'(r, ) Lsee Fig. 1(a)j.The
end of the axis at r represents pqq(r). (b) We draw P
dots at points r, , rs corresponding to H'(r ),
H'(rs) just below the horizontal axis. Note that a
particular permutation (P in (2.30) corresponds to a
particular ordering of the p dots below the axis in rela-
tion to the r dots above the axis and that all permuta-
tions (P are taken into account by considering all such
possible relative orderings of the dots below the axis
with respect to the dots above the axis. (c) Along a
vertical axis connected to the horizontal axis at 0 and
running down from 0 to iP, we d—raw (n+m) dots at
the points —iy~, . , —iy» —iy„+2, , —iy„+~+~
correspcnding to H'( iy~~r), , H'( iy~) a—nd a-
dot at iy +~ co—rresponding to J ( qiy„+~) L—see
Fig. 1(a)]. Thus, for a given arrangement of the dots
the ordering of two fermion operators in a contraction

is uniquely determined. Since each fermion operator is
associated with a dot, the operator associated with the
dot farther along the oriented contour C shown in
Fig. 1(b) is always placed to the left of the other opera-
tor in the contraction. Of course, it follows from the
form of the Hamiltonian that in a contraction of two
operators associated with the same dot the creation
operator is always placed to the left of the destruction
operator.

We can now draw a diagram corresponding to a com-
plete system of contractions in the usual way: A con-
traction of two operators cA~, cj, is drawn as a solid line
directed from the vertex where cj,t is found to the vertex
at which cq appears (this is a fermion line of momentum
k). Since H'= V~+ V;, we have two types of vertices
for O'. The interparticle vertex V„ is drawn simply as
the point of intersection of two fermion lines. " The
impurity vertex V; is indicated by a point where two
fermion lines meet a dashed line of (incoming) mo-
mentum k k' (k being —the momentum of outgoing
fermion line and k' the momentum of the incoming
line). The current vertex J q is indicated by a point
at iy~~ where two —fermion lines (of incoming and
outgoing momenta k' —-', q and k'+-', q, respectively) meet
a wavy line of momentum q. Finally, the vertex p,~ is
simply denoted by the end of the horizontal axis at T,
where one fermion line of momentum k ——,'q leaves and
another of momentum k+-,'g enters. Because of the

"For more details, see Ref. 14.
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-ip
(a)

Pg~~y

Frc. 2. (a) G, : a typical connected diagram for the distribution
function before impurity averaging. (b) A disconnected diagram
with a connected part G, .

summation over the permutations 6', diagrams with
diferent relative orderings between the vertices above
and below the horizontal axis are distinct, i.e., the con-
tributions of all such diagrams should be added. A
typical diagram contributing to f,„(k) is found in
Fig. 2(a).

The contribution of a diagram to f, (k) can easily
be written down with the help of (3.1), the Bloch-
DeDominicis theorem" and (2.30). Before we do this,
however, we shall note and prove a few lemmas which
considerably simplify (2.30) and make possible the
derivation of a transport equation for f,„(k).

I.ensezu 2'. Any diagram with a real time vertex to the
left of all fermion lines directly connected to it may be
ignored.

To see this, we note that for each diagram with such a
vertex below the real time axis, there is another diagram
that divers from it only in that the vertex in question is
above the axis. The condition that the vertex be to the
left of the lines connected to it implies that the orienta-
tion of the lines with respect to the contour C in Fig.
1(b) is the same in both diagrams and thus their con-
tributions to (2.30) are equal except for a difference in
sign due to the factors i&( i)" It f—ollow. s that their
sum vanishes.

Lemnsa Z. In (2.30) we can keep only the connected
diagrams for the numerator and ignore the denominator.

This is the "linked cluster theorem" for this problem
and it is of the essence in any perturbation theory of a
many-body problem. To prove this lemma, we note first
that we can expand the denominator (U(—iP,O)) in a

power series in H', as in (2.28), and represent it by
diagrams. These diagrams are similar to the ones we

have described above, except that their vertices
lie only along the imaginary axis and do not include
the vertex J, ( i—y„+~) T. hus, the graphs Gu for

(U(—iP, O)) can be components of a disconnected graph
for f,„(k) L.et us now consider a particular connected

graph G. of f, (k) Lwhich, therefore, includes the p,"
and J, vertices; see Fig. 2(a)j as well as all possible
disconnected graphs with G, as a component Lsee

Fig. 2(b), for example] and sum their contributions to
f,„(k). First note that the sum of the disconnected
graphs with real time vertices (other than the vertices
of G,) is zero; this results from lemma 1. Thus, only
disconnected graphs with vertices (other than those of
G,) exclusively on the imaginary time axis need be
considered. That is, in the set under consideration we
need keep only the graph G, along with any of the
graphs Gu for (U(—iP,O)). We can now sum the con-
tributions of all disconnected graphs for the numerator
of f,„(k) consisting of G, and a particular Gu with its
vertices in any possible relative ordering with respect
to the vertices of G,. Since none of the factors in the
contributions of G, and GU is altered upon change of the
relative ordering of the vertices of one part with respect
to the other, the sum is given by the product of the
contributions of G, by itself and G& by itself. Ke
therefore conclude that the contribution to f,„(k) of
all graphs with the same connected part G, is just the
contribution of G, alone, ignoring the factor (U(—iP, O) ) '
in (2.30).

(a)

TL

(b)
FIG. 3. (a) A diagram for f,„(k) with a "left insertion. " (b) A

diagram for f~„(k) with a "right insertion. " (The bunching of irn-
purity lines is not indicated. )
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In order to complete the proof, we must show that a
diagram in which the part connected to the p, ~ vertex
is disconnected from the part connected to the J,
vertex may be ignored. For this purpose, we observe
that in the case of the homogeneous system with no
impurities such graphs are trivially vanishing, because
neither part conserves momentum. When impurities
are present, however, this argument does not hold and
a diRerent proof is necessary. We first note, as before,
that summing over all relative time orderings of the
vertices of the two diGerent parts of the diagram, we
can make the time (real and imaginary) integrals of the
two parts completely independent of each other, and
thus conclude that, leaving aside the integration

f 87' e )
0

we can multiply the contributions of each part as if the
other part were not present. Next, let us consider the
sum of all parts connected to the J, vertex. If any
of these parts has a vertex on the real time axis, then it

has one to the left of all lines connected to it; by lemma

1, we can ignore all such parts. The sum of all other
parts with vertices con6ned to the imaginary time axis
is proportional to

Q= dy(U( ii—I, i—r)I, ( i—y) U( i—y,0))
0

X(U(—'8,0)& ', (3 3)

as can easily be seen by a perturbation expansion of
(3.3). But Q can also be written as

Q= dy Tr{pqer J e r")=P Tr{p(J q~) (3.4)
0

due to the invariance of the trace under cyclic permuta-
tion. The last expression of (3.4), however, vanishes, as
it is the average current density in thermal equilibrium.
Thus, the sum of such disconnected graphs for f, (k)
vanishes.

The lemma having been established, we can now
rewrite (2.30) as

'ys 00

fq (k) =F g P (—1)n+™iq( i)" —dy„+~+q dye dr e'"' dr~,
n, m~o y, s ~0 0 0 0 0

XZIP((&'(—iv-+-+)" I-. (—iv-+) "&'(—7)&'( -)" &'( )p."()ff'(.)" &'( )». ', (33)

where now the subscript c prescribes that only con-
nected diagrams are to be summed.

In order to discuss the next lemma, we first de6ne an
"insertion": this is a part of a graph for f,„(k) which in-

cludes neither the J, nor the p, ~ vertices and is con-

nected to the rest of the graph by only one entering
and one exiting fermion line. Furthermore, a "left
insertion" is an insertion in a fermion line with any
of its vertices lying to the left of both ends of that line

[see Fig. 3(a)]. Clearly, a graph with a left insertion

can be ignored, according to lemma 1. A "right inser-
tion" is de6ned as an insertion in a fermion line with all
its vertices to the right of both ends of the line [see
Fig. 3(b)].

Lemma 3. Consider the graphs of f„.(k) which have
right insertions on a line leaving [entering] a real time
vertex r R with momentum k and entering [leaving] a
real time vertex rc(rc) r«) with momentum L In cal-
culating the sum of these graphs, we may ignore all

right insertions with real time vertices if we replace the
factor e'"'"[e '"'R], which occurs because the line
leaves [enters] the vertex r«, by e""R[e "'"R]. In
other words, the contribution of the fermion line be-
tween vertices at 7 g and 7-I, plus the sum of the contribu-
tions of this line with all possible right insertions may

be written

Tr{pqc~cqt)e'"~'~'c~ or (—1)Tr{pqcq c~)e'"~'R 'c

[( I) Tr{p~&'fc )e ~ ~ ((1'R 1L)'
or Tr{pqcqc~t)e '"'« 'c&], (3.6)

respectively, for the case in which r& lies farther along
the oriented contour C in Fig. 1(b) than r«or the
inverse.

To prove these assertions, 6rst note that in consider-
ing a right insertion, we can sum all diagrams which

diRer only in the relative orderings of the vertices in the
right insertion with respect to the vertices in the rest of
the diagram. This makes the integrations involving the
time arguments of the vertices in the right insertion in-

dependent of all the other times in the diagram (ex-
cept, of course, that rg provides an upper limit of these
integrations). Thus, the sum of the contributions of all

right insertions in the line between r«and rr, is [for
the case: momentum k leaving and 7.1. beyond rz in
the oriented contour C of Fig. 1(b)]
S=e""R '"c'(U( i9,0) U(O, r «)cgcqt U—(r«0)),

=e"«'R 'c~(U( ip, O) U(0r «)c~(r—«)cq (r R) U(r «,0) )
X(U(-iP, O)&

' (3 7)

The second form of (3.7) can be rewritten with the use
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of (2.21) and (2.22) as

5'=e' ~ «'& '» Tr(p "' '-ee e '«'&e'«'&e tel k

—e') ~ ) (Te TL) T—r{pQ)Q»r}
—erat)(rR rI)(—p(»p O)e)e»t) (3.8)

the second equality following from the cyclic invariance
of the trace. This proves the lemma.

The importance of the lemma is seen as follows: Since
all right insertions with real time vertices can be ignored,
the time dependence of the sum of all contributing
diagrams can be thought of as the time dependence of a
line going directly from v & to rI. with momentum l, i.e.,
e+'"'L '». This feature is crucial, as we shall see, for
the derivation of a transport equation.

We wish to mention here that lemma 3, proven above,
is a generalization to the case of inhomogeneous systems
of a lemma used by Resibois" for homogeneous systems.

The real time integrations in (3.5) can be carried out
explicitly, in view of the fact that every contraction has
the simple time dependence shown in (3.1).The follow-

ing lemma gives the result of these integrations in a
convenient form.

Lemma 4. For a diagram of (3.5), the real time
integrations yield the result

The integrations over the imaginary times can be
carried out in a similar way. However, since they are
not essential in the derivation of the transport equation
for f,„(k), we shall not do this.

The last point to consider in connection with the
evaluation of (3.5) is the averaging over the random
distribution of the impurities. This point has been dis-
cussed by Edwards" and has been applied to a system
with interparticle interactions by Langer. ' From (2.6)
we see that in any diagram of (3.5) with r impurity
(dashed) lines we have the factor

g(N(q, ) Q e '&'"-),
s 1 j~1

(3.12)

~
—

aqua Rg'

ns

O'Rl. e—'q'Rj 3 13
a 1 j=l

where q, =k,—k, ' (k„k,' being the momenta of out-
going and incoming fermion lines at the sth impurity
vertex, respectively). Thus, impurity averaging amounts
to evaluating, according to (2.18),

where
)-) i(D»; »))— (3.9)

l.e.,
expL —i(A», —s))(r,—r, ))j,

n+r+1
e '(~" )1" '-'), (3.11)

0 0 j=0

where 6», is given by (3.10). The multiple integral in
(3.11) can be carried out by elementary means and is
found to give (3.9). The provisions for the fermion
lines connecting to a right insertion (with vertices on
the imaginary time axis) are easily seen to be the result
of lemma 3.

A», =Lsum of the energies of all fermion lines going
from right to left between 7.j 1 and v j minus the
sum of the energies of all fermion lines going
from left to right in the same time interval; the
two fermion lines connecting a right insertion
to the rest of the diagram are to be ignored
for all vj& v ~, where 7.g is the time associated
with the vertex to which the right-hand end of
the right insertion is connected). (3.10)

Here we have put 7-0=0 and v y+g+1
The proof is easy, once we note that the real time

integrals for a connected graph, like the ones in (3.5),
can be expressed as convolutions over the time intervals
r, r, , (j =1, ~ ~ ~,—p+r+1) of the function

Separating the integrand into terms that involve one
R, two R's, etc., it is easily found' that in the thermo-
dynamic limit with an impurity density n, , (3.13) can
be written as a series in powers of e;, namely,

r ns

e=1

+n P' b( P q.,0)b( Q q», 0)+ . (3.14)

Here (n), (p} are any pair of nonempty sets into which
the set {1, ,r) can be partitioned. The sum P' is a
sum over all possible distinguishable pairs of sets (a},
(P), and b(a, O) is the usual Kronecker delta b„». The
result (3.14) expresses the connection between the
average over impurity positions and expansions in
powers of the impurity density n;; note that in this
formula the term proportional to n has l Kronecker
deltas.

We can incorporate the result (3.14) in the diagram
matic representation of (3.5). Impurity lines, the mo-
menta of which are constrained to sum to zero by a
Kronecker delta, are drawn so as to form a bunch
originating from a common point. Such a point diagram-
matically represents the factor n, b(gq, 0). Thus, the
impurity average of the contribution of a diagram is
calculated by bunching the dashed impurity lines to-
gether at points in all possible distinct ways and adding
their separate contributions. A diagram of order n

"S.F. Edwards, Phil. Mag. 3, 1020 {19S8).
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has l bunches of coalescing impurity lines. This dis-
cussion is summarized in the following lemma.

Leesma, 5. For each impurity vertex with momenta k

(outgoing) and k' (incoming) we insert a factor u(k —k').
For each point at which a bunch of impurity lines meet
we insert a factor n;8(g, q„0), where iI,=k,—k, '.

Note that we need apply these rules only to diagrams
that survive the previous lemmas. Also note that any
diagram with a bunch consisting of only one dashed
line can be ignored, since its contribution involves the
factor N(iI)8(iI, O) =N(0)8(i1,0) =0, according to the
statement following (2.7).

We can now complete the diagrammatic representa-
tion by giving the rules for the contribution of each
diagram that has to be considered in the calculation of

f,„(k). These are easily verified by referring to (3.5),
(3.1), and the previous lemmas. Clearly, only connected
diagrams are to be considered, and only those with no
left insertions or right insertions with real time vertices.
The numerical value of such a diagram is found accord-
ing to the following rules:

(1) For each fermion line of momentum k leav-
ing an imaginary time vertex at —ip and entering
another at iy„,—insert a factor (1—F~)e"&&" ~', or
( Fi,)e'~&»—~"&, depending on whether the line runs
along the contour C in Fig. 1(b), or against it. If any
of the vertices is on the real time axis, simply put its
corresponding p equal to zero. In addition, for each
closed loop of fermion lines insert a factor of —2.

(2) For each interparticle vertex, insert a factor
V(kll'k') given by (2.4). k, l(l', k') are the momenta of
the outgoing (incoming) fermion lines. For the correct
sign, the incoming line of momentum k'(l') must always
cross over to the outgoing line of momentum k(l) For.
the whole diagram, we insert a symmetry factor (-,')";
vs= number of pairs of equivalent lines. Here "equiva-
lent lines" are any two fermion lines which begin at one
interparticle vertex and meet again at another, even if
they go through other (noninterparticle) vertices in
between. (For more details, see Ref. 27.)

(3) For each impurity vertex, insert a factor u(k —k')
given by (2.7), where k(k') is the momentum of the
outgoing (incoming) fermion line. For each point at
which a bunch of impurity lines meet, insert a factor
n,b[ g, (k,—k, '),0].

(4) For the J, ( iy~i) v—ertex, insert a factor
F, k, '/m, where k'+-,'q(k' ——,'q) is the momentum of
the outgoing (incoming) fermion line. For the p ~

vertex, insert a factor 2.
(5) Insert a factor fi(Ae, ru) j ' for ea—ch inter-

mediate state j(j=1, , P+r+1) on the real time
axis, where Ae, is given by (3.10) for the fermion lines
running between the vertices at v; and 7-, ~.

(6) Integrate over all imaginary time variables as
indicated by foe dy„+ +i . fo 'dpi.

"J.L. Sigel, thesis, M. I.T., 1968 (unpublished).

(7) Sum over the momenta of all fermion lines, ex-

cept the momenta k+~g, and k —
&q associated with the

two lines connected to the p,~ vertex.
(8) For each interaction vertex above the real time

axis, insert a factor of —i, and for each interaction
below, a factor i. For each interaction vertex on the
imaginary time axis, a factor of —2.

Care must be taken to include all distinct diagrams,
including the ones that arise from different orderings of
the vertices above and below the real time axis.

4. DERIVATION OF A TRANSPORT EQUATION
FOR THE DISTMBUTION FUNCTION

In this section, we use some of the features of the
diagrammatic description we developed in the previous
section to derive an inhomogeneous integral equation
for f,„(k); this is the desired transport equation. The
method of derivation parallels that of Resibois. "The
impurities necessitate only trivial modifications in the
derivation of the transport equation, once the averaging
over their random distribution is effected.

The key to this derivation is the realization that in a
collision process the system goes from an initial state
to a final state each with 6~~0 in the limit q —+0,
while for all intermediate states Ae, /0 (in the same
limit). We thus separate contributions to any diagram
for f, (k) by looking for denominators (A», —ar) Lsee
rule (5)j such that in the limit il —+ 0, Ae;~ 0, where

Ae, is given by (3.10). The simplest example of such a
denominator occurs when only two fermion lines are
involved in Ae, and the whole diagram is cut into two
unconnected pieces by cutting these two fermion
lines. (This implies that all impurity lines belonging to
a single bunch are part of one or the other of the two
pieces of the diagram so cut. ) This assertion follows

because the momenta of the two severed lines are con-
strained by the over-all momentum conservation for
the random impurity distribution to difter by the ex-
ternal momentum q; thus for these lines, the energy
diA'erence h6j=6/p+q/2 6l, —q/2 vanishes in the limit

q —+ 0. In fact, not only is this the simplest way for
limh~, —+ 0, but it is the only way a h~, can vanish in

any diagram which gives a nonzero contribution to
f,„(k) To see this, we r.ecall that, according to (3.10),
the fermion lines of right or left insertions must not be
considered in calculating Ae, , therefore, the only way
that a denominator de, can vanish is to have one or
more pairs of lines, the contribution of which to Ae;
vanishes separately as q —+ 0. Now if there are two or
more pairs of lines involved in this he;, then there will

be at least one vertex to the left (other than the p, i
vertex) which is to the left of all lines connected to it;
by lemma 2, however, we may ignore such a diagram in
the evaluation of f,„(k) We conclude that .in looking
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Frc. 4. A destruction diagram.

for denominators with h~; ~ 0 as q —+ 0 we have to
consider only denominators of the form

(~&'+el& ~&' al2 ~) —~

%e wish to emphasize that without the reestablish-
ment of momentum conservation by the process of
averaging over the random impurity distribution there
mould be no denominators of the type discussed above;
the averaging makes the existence of such denominators
possible and they are found in the same way for both
pure and impure systems. As we shall see below, the
derivation of the transport equation also depends
crucially on this point.

If the fermion lines are cut for all j with A~;~0 as

g ~ 0, the most general diagram for f~ (k) is split into
several unconnected pieces. These consist of the
"destruction region, " a sequence of "diagonal frag-
ments, " both of which we define and evaluate below,
and the two cut fermion lines connected to p, ~ vertex.

The "destruction region" is defined as that part of
the diagram which is connected to the J, vertex on
the imaginary time axis and which includes all of the
diagram up to the first pair of cut fermion lines en-
countered as one goes from right to left on the diagram.
Note that right insertions in lines belonging to other
parts of the diagram are not included in the "destruc-
tion region. "To calculate the contribution of a destruc-
tion diagram, one includes all imaginary time integrals,
summations, denominators, and factors of all vertices
and unbroken fermion lines (as stated in the rules of
Sec. 3) which are part of the "desctruction region" of
the diagram. For the two broken fermion lines to the
left of the "destruction region" one does not include
the corresponding denominators, (he; cg) or the summa-—
tion over k, but one does include the statistical factors
(1—Fi+, i~) or ( Fi+,~2) ass—ociated with these lines.
(It is easy to check from the earlier definitions that the
statistical factors of the fermion lines are completely
determined by the associated interaction vertices to
their right. ) Thus, the contribution of a destruction
diagram depends, in addition to q and co, on the mean
momentum k of the broken fermion lines. The over-all
sign is chosen so that if we draw a destruction diagram
with the two cut lines brought together at the end of the
real axis, we can calculate its contribution by use of the

rules for the evaluation of diagrams for f, (k) Lexcept
that we delete the denominator i(he, —co)j.An example
of such a diagram is shown in Fig. 4.

We now define the driving function D, (k) as the
sum of the contributions of all destruction diagrams
with a fermion line of momentum k+&-g leaving and
another of momentum k ——,'q entering at the left end
of the diagrams.

A "diagonal fragment" consists of the part of a
diagram for f, (k) that is found between two pairs of
cut fermion lines. Note that any right insertion in one
of the lines of the "diagonal fragment" is taken to be
part of the fragment. To calculate the contribution of a
fragment diagram, one includes all imaginary time
integrals (associated with right insertions) summations,
denominators, and factors of all vertices and unbroken
fermion lines (as stated in the rules of the previous
section) which belong to the "diagonal fragment. "For
the broken fermion lines to the left (of momenta k~ 2g)
and to the right of the fragment (of momenta k'&~g)
one does not include the corresponding denominators
nor the summations over k and k'; however, one does
include the statistical factors (1—Fq+, ~2) or ( FQ+q/i)—
associated with the lines to the left of the fragment
diagram. (As noted before, these factors are completely
determined; the factors associated with the broken
lines to the right are not included, as they are attached
to the following fragment diagram or to the destruc-
tion diagram. ) Thus the contribution of a fragment
diagram depends, in addition to q and ~, on the mean
momenta k and k' of the left and right broken fermion
lines, respectively. In drawing a fragment diagram in
the following, we shall bring together the broken fermion
lines to the left and right at 7 and 0 on the real axis,
respectively. Its contribution can then be calculated
according to the rules for the diagrams for f~„(k);we
need only omit the statistical factors of the two fermion
lines at the right brought together at the origin, and
multiply by —1 to account for the extra closed loop
introduced by the joining of these two lines. Examples
of such diagrams are exhibited in Sec. 6.

We now define the collision function W, (kk') as the
sum of the contributions of all fragment diagrams
with lines of momenta k&-,'g to the left and of momenta
k'~-', g to the right.

With the help of the functions D, (k) and W, .(kk'),
we can derive a transport equation for the distribution
function f, (k) as follows. We classify the diagrams for

f, (k) according to the number of denominators with
Ae, ~ 0 as q ~ 0. We then add together the ones that
have the same number of such denominators. For ex-
ample, the contribution to f, (k) of all diagrams with
one such denominator is simply

as follows from the definition of D~„(k). The contribu-
tion to f, (k) of all diagrams with two such denomina-
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tors is

Q I e(ee+q/e —e/ q/e
—qe) 1 '—Wq~(kki)

XLe(e&H-q/e e» q/e —e/—)j 'D,„(ki) .

Summing all the contributions, we get

fe~(k) = L&(e/+q/e ee —q» -qe)3—'

X{Dq (k)+Q Q . . Q Wq. (kki)
n=l kI kes

XLi(e»+q/e e» q/e —~)] ' ' 'Wqu(kn 1k')—

XLi(e& + /e e& q/e /A/)3 —De (k )) (4 1)

Expression (4.1) is clearly the iteration of the integral
equation

fq (k) =L&(ee+q» ee /e
—/d) j—'—

X {Dq-(k)+Z Wq-(kk')fq-(k')), (4 2)

or equivalently

i(e/, +q/e e/ q—/e /d) f,„(k)—

=D, (k)+Q W, (kk') f,„(k'). (4.3)

be used, however, as a starting point for various ap-
proximations in different directions that, hopefully,
will throw some light on the correct description of
the effect of interparticle interactions on transport
phenomena.

5. CASE OF COULOMB INTERACTIONS

In this section we consider the physically important
case of electrons, which interact among themselves via
a long-range Coulomb force. In this case one is not so

much interested in the actual value of the induced cur-

rent density as in the conductivity, since the latter, in

conjunction with Maxwell's equations, determines all

electromagnetic properties of the system. Since the
conductivity is defined in reference to the electric Geld

in the medium and not just the external electric field,
it is desirable to have a transport equation for the dis-

tribution function in which the driving term is given in

terms of the electric field in the medium. We shall

derive such a transport equation for fq (k) in this
section.

It is convenient to note that the distribution function

f,„(k) can be written in a form different from (2.20).
If we use for p(t) the form given by (2.12), rather than
(2.14), in Eqs. (2.17) and (2.19), we find

Equation (4.3) is the desired transport equation for the
(impurity-averaged) bare-particle distribution function

f, .(k). The inhomogeneous term in (4.3), the driving
function D,„(k), is naturally proportional to the ex-
ternal driving field and may be conveniently written

Here,
f,„(k)= ix, —(k)/ti, „

xq„(k)= dr e*"'P hxq(k'k~r),

X(kq'k fr) =& (kq'k
f
0+&r) X,(k'kt0—,r) )

(5 1)

(5.2)

(5.3)

De-(k) =~q- Gq- (k). (44) and the latter functions are the correlation functions

It gives the effects of the acceleration of the particles
due to the external field in the presence of the particle-
particle and particle-impurity interactions. In particular
it describes the effect of the external field of force on the
collision processes of the particles. The kernel of this
integral equation is given by the collision function
W,„(kk'), which describes the effects of all interactions
of the particles in their full complexity (i.e., renor-
malization, scattering, etc.) in the absence of the driving
field.

As described above, the coefficients D,„(k), W„.(kk')
are given as the contributions of certain diagrams.
Determining the coefIicients in this way amounts to
giving their values in terms of power series in the inter-
particle and particle-impurity interaction strengths;
the convergence of these series is assumed here once and
for all. Up to this point, no restrictions have been made
on the magnitudes of the wave vector q, the frequency
cv, or the temperature T. Furthermore, both D and IV
can be expressed in a power series of the impurity
density n;, assuming such an expansion converges.

This transport equation is too general and too com-
plicated to be capable of any direct application. It can

Here qt(q)=4ere'/g' is the Fourier transform of the
Coulomb interaction between the electrons, according
to (2.5). Thus, combining (5.1), (5.6), and (5.7), we
can write

-ix,„(k)
f.-(k) = . , 4.-,

1 iq/(g) ge, x—,„(k')
(5.g)

which gives the distribution function in terms of the
mean total potential for the field of force in the'medium.

Xq(k'k~0, r)=( Tr p{eq'+'p "e '~'p ~')) (5 4)

&q(k k~0,r) =(Tr{pqp q' e'~'pq'e '~')), (5.5).
Recall that @,„is the Fourier transform of the potential
of the external longitudinal field of force.

The potential of the total field of force in the medium

@@~ ls
(5.6)

where h(gee) is the wave-vector and frequency-depen-
dent longitudinal dielectric constant of the medium, i.e.,

(5 7)
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l- q/2 k+ q/2 k+ q/2 L-q/2 l-q/2 k+q/2 form

I'.=q Z Z Lv(V)-v(k-t)7
kl q

Xcq+q/2 cl q/2 cl+q/qcq —q/2 q (5 14)
l+q/2

where in the case under consideration
k-q/2 C+q/2 k-q/2 C+ q/2 k-q/2

FIG. 5. The decomposition of the antisymmetrized
interparticle vertex.

v(g) =4qre'/g', g/0
=0, g=0. (5.15)

We shall now show that the coefficient of pq„ in (5.8)
can be represented by a particular class of diagrams con-
tributing to fq„(k)/qt/q„The . method of proof is similar
to that used by Izuyama" for the longitudinal conduc-
tivity of the electron-phonon system.

A perturbation expansion of X(k'k
I
0+,r) in powers of

B' is obtained by use of (2.21) and (2.22), i.e.,

X,(k'k
I O, r) = ((U(—iP,O) U(0,r)pq'(r) U(r, 0)p q"')

X(U(—iP,O)) ');, (5.9)

x,(k'k
I 0, )= ((U(—P,O), ,'U(0, ,), (.)U(.,0) &

X(U(—iP,O))-');, (5.10)

where the evolution operators U are given by (2.26)—
(2.28). These can be represented by diagrams quite
similar to those for f, (k), and a linked-cluster theorem
can similarly be proved for them. If we now consider
the points on the contour C in Fig. 1(b) and denote by
t" the point t(0& t&r) on the upper section of C be-
tween 0 and 7., by t the corresponding point on the
lower section of C, and by —iy(0~& y &~P) a point on the
section of C along the imaginary axis, we can write
symbolically

X,(k'k
I
0+,r)
= ((P(UC(—iP,O')p, '(0+)p, '( )}),), , (5.11)

where Uo( iP,O ) is the —evolution operator along the
contour C and P an ordering operator on the contour C.
For any two points s~, s2 on the contour C, we can
define more generally

xq(k'kI i,zq)=(& (Uo(—iP,O')p-q'(»)pq"(»)})
x &U(—ip, o))-'),

=«P{U (—PO)
Xp,"'( )p,'( )}).);. (5.12)

x,(k'kIzi, zq)=&(P{Uo( ip, 0+)p qq( z)i—

Xp q(z )})) prover (5 16)
We note a property of this function, namely,

The vanishing of v(0) results from the presence of the
uniform neutralizing background charge. It proves con-
venient to separate in (5.14) the direct and exchange
terms. For this purpose, we depict each interparticle
vertex by the two elements shown in Fig. 5. The first
element in Fig. 5 represents the direct term v(g) while

the second represents the exchange term v(k —l) in—

(5.14).The wavy line in the first element is seen to carry
momentum q and gives a contribution v(q) according to
rule 2 of Sec. 3; we shall refer to such wavy interaction
lines as Coulomb lines. We now define aconnected
diagram of Xq(k'kIzi, zq) as improper if eliminating a
single Coulomb line splits it into two unconnected
graphs. All diagrams that cannot be split into two
separate parts by eliminating a single Coulomb line are
called proper.

It is clear that in an improper diagram of X,(k'k Izi, zq)

a bunch of impurity lines belongs entirely to one part
or the other into which such a diagram can be split by
eliminating a Coulomb line. Since we have an over-all
conservation of momentum for every bunch of impurity
lines, it follows that the Coulomb line of an improper
diagram of Xq(k'k

I zi,zq), the elimination of which
would completely split the diagram, must have mo-
mentum equal to the wave vector q of the external field.
Also, one of the vertices p qq'(zi), pq~(zq) must belong to
one of the separated parts of the diagram, while the
other must belong to the second part. The exclusion of
q=O in (5.15) eliminates the possibility of both vertices
p q~, pq~ belonging to the same separated part of an
improper diagram.

Let us now denote the sum of the contributions of all
proper diagrams of Xq(k'kIzi, zq) by Xq(k'kIzizq, ), i.e.,
we define, in a symbolic notation,

X,(k'k
I
t~, r) =X,(k'k

I
0+,r —t) . (5.13)

This is easily shown to follow from the definition (5.12)
and the invariance of the trace under cyclic permuta-
tions. It will prove useful below, where we demonstrate
that X,„(k) can be expressed in terms of its proper
diagrams.

In order to define these, we first observe that in the
case of interacting electrons in a uniform neutralizing
background, the interaction V„can be written in the

'8 T. Izuyama, Progr. Theoret. Phys. {Kyoto) 25, 964 {1961).

This function has the properties

x,(k'k
I
0+,t+) =x,(k'k

I
0+,t ) =x,(k'k I0+,t), (5.17)

x,(k'BIO-, t+) =x,(k'k IO,t )=x,(k'BIO, t), (5.18)

x,(k'kI0+, iy)=xq(k'k—I0 ) iy), — (5.19)

which will prove useful later. To prove the first, we note
that in

Xq(k'k
I
0+,t+)= (&U(—iP,O) U(0, r) U(r, t)

xp.'(t) U(t 0)p-.').)"""'
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we can put U(o, r)U(r, t)= U(o, t) even if only proper
diagrams are considered, since the contribution to
Uc(t, t )= U(t, r)U(r, t) of each diagram that has one
or more vertices on the section (t+,t ) of C vanishes.
This replacement proves that

x,(k kiO+, t+) =x,(k'kiO+, t).
Similar arguments prove the remaining relations in

(5.17)—(5.19).
Considering a general improper diagram for

x,(k'k ~O+,.)
as made up of a proper diagram of X p(k'1'~0+, z) con-
nected with the p,"'( 0+) vertex and the rest of the
diagram of x,(lk ~z, r) connected with the p,"(r) vertex
along with the connecting Coulomb line at s, we 6nd,
in direct analogy with Izuyama, 28 that the functions
x,(k'k ~0+,r) satisfy the integral equation

X,(k'k
~
O~, r) = Xp(k'k

~
0+,r)

iv(q—) ds g X,(k'l'~ 0+,z)x, (lk
~
z, r), (5.20)

where the integral is taken over the contour C. By
subtraction we have

Ax, (k'k
i r) =Ax, (k'k

~
r)

where

—iv(q) dz Q Ax (kp'1'~ )xz, (lk
~

r)s, (5.21)

x,„(k)= dr e'"' g AXp(k'k
~ r), (5.24)

0 k'

in direct analogy with xp„(k) Lsee (5.2)j, and performing
the indicated operations on (5.23), we ffnd with the
help of the convolution theorem

x,-(k) =x,-(k)-iv(q)x, -(k) Z x,.(k') (5.25)
or

x,„(k)
x,„(k)=

1+iv(q) Z p x.-(k')
(5.26)

Substituting (5.26) into (5.8), we finally find

f,„(k)= ixp„(k)y p
— (.5.27)

Comparing this with (5.1), we see that the distribution

AXp(k'k j s) =x,(k'k
i 0+&z)—x,(k'k

~
O-,z) . (5.22)

Now AXp(k'k Js) on the imaginary part of the contour
C vanishes due to (5.19), whereas on either side of the
real axis it has the same value AX,(k'k jt), according to
(5.17) and (5.18). We thus ffnd, if we use (5.13), that

Axp(k'k
~ r) =AX, (k'k

~
r)

r
—iv(q) p dt AXp(k'1'~t)Ax, (lk~r t). (5.23)—

o
Defining

function can be obtained by keeping only the proper
diagrams if at the same time we replace the external

6eld by the mean total 6eld in the medium.

Proceeding as in the previous section, we can now

construct a transport equation for f, (k) which in-

volves the mean total field of force in the medium

F, (k). Noting that the concept of a proper diagram is

independent of the technique used for handling time in-

tegrations, we ffnd in analogy with (4.3) and (4.4)

v(p&+p/& pppl& ~-)fr~(k)

= Pp„-G,„«»+.P Wp„(kk') f,.(k ), (5.28

where now W,„(kk') is just the sum of all proper
diagrams for the collision function W,„(kk'), and

Qp„(k) is the sum of all proper diagrams for the driving
function G, (k).

We shall see in Sec. 6 that this form of the transport
equation for the electron gas is particularly useful in

the case of slowly varying disturbances.

6. TRANSPORT EQUATION FOR SLOWLY
VARYING FIELD, WEAK IMPURITY SCATTER-

ING, AND LOW TEMPERATURES —A
QUASIPARTICLE DESCRIPTION

Kith this section we begin an application of the
general transport equation (4.3), or (5.28), to the case of

long-wavelength, low-frequency, weak impurity scat-
tering and low temperatures. As we shall see, this case
is of practical importance for a degenerate Fermi gas of
suKciently high Fermi energy, as for example, the
conduction electrons in an impure metal at low

temperatures.
For short-range interparticle and impurity inter-

actions the various functions involved in the theory are
regular as q-+0, and thus the coefficients G, (k),
W, (kk') in the transport equation (4.3) can be ex-

panded about q=O without diKculty. For the case of
Coulomb interactions, the coefficients C,„(k),W, (kk')
of the appropriate transport equation (5.28) are also
nonsingular at q=O, due to the fact that the improper
diagrams, which involve the singular function v(q)
=4xe'/q', have been identified with the average in-
duced electric 6eld in the medium. Thus, we can obtain
a transport equation for long wavelength and low fre-
quency in both cases by Taylor expansions of the
coeKcients of the transport equation around q=co=O.

Thus in the limit of small q and co, we have

g
——

Ca) q(y k

88'p„(kk') BW,„(kk')
q
— —+p- f,„(k')

k' oo oo

—F, Gpp (k) =Q Wpp(kk') f,„(k') (6.1)
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for the short-range interparticle case and similarly for
the Coulomb case. The third and fourth terms on the
left-hand side of (6.1), involving the derivatives of
8',„evaluated at q=~=0, describe the nondissipative
e6ects of the interactions on the free motion of the
particles as given by the first two terms. The term on
the right-hand side of (6.1) involving Woo(kk') describes
the collision processes of the particles and is the same
as in the static, homogeneous case. This term is made
up of two contributions: (1) an impurity scattering
part (i.e., one that involves a b function of two energy
arguments) of order 1';, where 1', is the width of the
state due to impurity scattering, which to the lowest
order is proportional to n;, the impurity density; (2)
an interparticie scattering part (i.e., terms that involve
h functions of four energy arguments) of order I'~ the
width due to interparticle collisions, which for low
temperatures is I'„~ T2, as we shall see. In the in-
homogeneous term of (6.1) we have kept only the
lowest-order term Gap (k) ' it describes the acceleration
of the particles by the external field in the presence of
the other interactions a6'ecting the particles. It will
turn out, as we shall see, that the inhomogeneous term
essentially forces k to be on the Fermi surface and thus
by small a& and q we mean a&/p«1 and q/k~~qsp/p&&1,
where vp is the Fermi velocity.

Foregoing a discussion of internal consistency, we
shall further restrict ourselves to low temperatures and
weak impurity scattering. EGectively, this means that
we shall formally treat I'„/p and I',/g as small quantities
of the same order of magnitude as

qadi/p,

and &o/p, for
convenience, we characterize all these by a parameter X.
%'e shall calculate the coefBcients of the transport
equation (6.1) to lowest nonvanishing order in
making, however, no assumption about the relative size
of the four parameters listed above. Doing this, we shall
be able to evaluate the distribution function tothe
lowest order, namely, X '. This limitation to a deter-
mination of f,„(k) to order X ' allows us to ignore the
eBects of the particle-impurity interaction on the driving
term G00 (k), and on the renormalization terms as-
sociated with the derivatives of W,„(kk'). Thus, for
all terms of the left-hand side of (6.1) no impurity
sects have to be calculated; only in evaluating
Woo(kk') do we have to include the eBects of the im-
purities. These will be considered up to second order in
V;. This approximation makes the impurity-scattering
terms proportional to the concentration n; of the im-
purity centers and to the scattering cross section of
each center evaluated in the lowest Born approximation.

A. Results for the Case of No Impurities

Ke now proceed to calculate the coeKcients of the
left-hand side of the approximate transport equation
(6.1) in the absence of the impurities. Actually this cal-
culation is the same as for a pure system and the results
have been stated by Resibois. "Since the details of the

evaluation of all relevant diagrams have been con-
sidered in the thesis of one of us,"we shall give here
only the necessary results.

These calculations are performed up to second order
in the interparticle potential V„. We limit ourselves to
this order, not because we expect higher-order terms to
be negligible, but because we are unable to sum the
diagrams to all orders. Higher-order terms in this
method are very tedious to calculate and, on the other
hand, the second-order calculation demonstrates all
the new features of the quasiparticle description of the
problem first introduced by Landau. "

We find up to second order in V~ for the left-hand side
of (6.1)

k aW, „(kk')
iq —f,„(k)-q Q f,„(k')

ye oo

&a (k.+ k.')
=iq. f,„(k)+—P y„.

I

—

I1,„(k')
s„2

'"
a E es

aug)
+SIc — — Ilcy~ q~ k, 6.2

aF.~& ~

aW, „(kk')—~f,„(k)—co Q f,„(k')
00

ice((1/sg')—f, (k)+P gpss f, (k')j,
and

sg ( a1VI, aF.,~
Goo (k)=--

I

— +Zv' —I

—
I

(64)
s I az, ~ mE a.„,i

Here we have introduced some new quantities which
simplify the writing and will prove extremely useful
later for the quasiparticle formulation of the transport
equation. These include the transformation and quasi-
particIe interaction matrices, defined by

~,'~I v(ku'k') I2
'ykk' — Q Rc

(&I +~t rr sI )——
Ag"'I v(kk'll') I'

+ ', Q Re -—,(6.5)
(~I +~I —

&i
—st')

Il, l,. V(kk'k'k) —Q I
V——(kll'k')

I

'

Fi(1—F( )—(1—Fi)Fi
xR-. —-,'P

I
v(kk'if')

I

2

~~ +~t—~~ —~I

Fbi.—(1—Fi)(1—Fi )
XRe (6.6)

where Re denotes the "real part of," eI,+= ~p+ig, with
g a positive infinitesimal, and

2,"=F„(1—Fi)(1—Fi,)+(1—Fg)FgF( . (6.i)
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In addition, we have introduced the renormalization
constant. sl„ the quasiparticle energy E&, the quasi-
particle velocity el, , and the equilibrium quasiparticle
distribution function

/Vo
—t zz &zo»-+ 1j-& (6.g)

These are conveniently dedned by means of the self-
energy function Eo((), which is just theself-energy
part of the temperature Green's function. Up to second
order in V„ this function is

where
Eo(()= Eo&'&+Eo&'&((')

Eo&»=Q V(kllk)F&

(6.9)

(6.10)

is just the "thermal Hartree-Fock" correction to the
single-particle energy, and

Eo&o&((') =g V(kllk)E&&'&JF&/&io&

tion function, defined by

no (k)=n, „(k)
+ (—BiV„/BEo) Q zozo.I».no„(k'), (6.1/)

with I». given by (6.6). n,„(k), which is seen to be a
functional of n,„(k), measures the departure of the
actual distribution function /Vo+no„(k) from the local
equilibrium distribution function. "In (6.16), only terms
up to second order in V„are to be kept. I.et us recall
from the earlier discussion, that to the order of the
parameter l& introduced there, (6.16) is accurate for the
left-hand side of (6.1) even in the presence of the
impurities.

We must now calculate the right-hand side of (6.1),
i.e., 8 pp(kk'), again up to second order in Vo, and up to
second order in the impurity interaction V;. We find, ""
denoting by superscripts the orders of V„and V;,
respectively, that in the absence of impurities

~,&'&"
(
V(kii'i")

(
z

+g g . (6.11)
&l'&" 1+o&—op —opt

8'oo &' '& (kk') =0,

Q @'oo""(kk')fo.(k') = g or
~

V (kll I")
~

'
(6.1g)

sg, '=1—Rc
BEo(() —1—R-

+

~Eo "&(f)
(6.13)

k 8Eo((')
=sg, —+Re

m Bk g,

k 8
=zo—+ (Eo«&+ReEo&'&(() ~,„+j. (6.14)

m Bk

The names of these quantities E&, si„e are justi6ed
by the roles they play in a quasiparticle interpretation
of the transport equation. It is easily checked that if we
introduce the quasiparticle distribution function,
de6ned by

n.-(k) =2 (~-/" +v )f.-(k'),

the left-hand side of (6.1) can be written in theform
(as Resibois" showed)

left-hand side (6.1)=g (//oo /zo. +y» )

XP i&on, (k')—+iq &&o.~o„(k')

+Fo po. (d/Vo. /BEo )], (6.16)

where n,„(k) denotes the "local" quasiparticle distribu-

Note that the 6rst term of Eo&'&((') is real and in-
dependent of g and corresponds to a second-order
Hartree-Fock correction to the single-particle energy.
In terms of this function Eo(l), the quasiparticle
quantities are defined by

Eo op+ ReEo(Eo—+—)=oo+Eo&'&+Eo&'&(op+), (6.12)

X8(op+ o& ot' —ol")Sk& PFo+ fo~(k)j, (6.19)

where the functional StFo+f, (k)j denotes the usual
statistical factors appropriate for a two-particle col-
lision process, i.e., if we put fo=Fo+f,„(k),
So&"'Pfoj=&(f&f&-(I fo) (1—f&)—

—(1—
f& )(1—f&")fof&)

with 2 denoting the linearization operator with re-
spect to f, (k).

Since this term is of second order in V„, we have no
way of knowing the appropriate expression of (6.19)
in terms of the quasiparticle distribution function
n, (k). To determine this, the evaluation of thescat-
tering term up to fourth order in V„ is required. This
calculation was carried out by Watabe and Dagonnier. "
They conclude that up to (V„)' we may write, ignoring
three-particle collisions,

Q IVoo(kk') fo„(k')
ko

=Z (4o'/so+a»)~o'"'Ln, „(k')j, (6.21)

where the interquasiparticle collision operator is

Co&»Lno„(k)j= Q or~ T(kll'l") ~'
ill ltd

Xb(Eo+E& Ev E&")So&"'PXo+no—„(k)j—. (6.22)

In (6.22), T(kll'l") is the l matrix for two-quasiparticle
scattering, i.e.,

& T(ku'i") i o=zoz&z, ',-
(
V(ktl'i")

t
z

+Lcorrections to the two-quasiparticle scattering
matrix of order higher than V&,'j. (6.23)
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tion n,„(k). By comparison of (6.5), (6.10), and (6.12)
we find that yI, I,. has the properties

= —si '+1, (6.25)
8$

Q k.pic =k.'( si '+—1). (6.26)

FrG. 6. A shorthand diagram representing all "scattering-out"
terms in 8"pp( ' )(kk )

The function SL j is given by (6.20), where now the
statistical factors involve the quasiparticle equilibrium
distribution function Ãi, defined by (6.8), and the
"local" quasiparticle distribution function n,„(k)
defined by (6.17).

Taking (6.21) as the appropriate generalization of

(6.19), which agrees with it to second order in V„,
and multipliying (6.16) and (6.21) by the inverse of the
matrix (bii /xi +pic.), we get for the Fermi liquid in

the absence of impurities the Landau transport equa-
tion for the quasiparticle distribution function n,„( k),

imam, „(k)+—iq vi, nq (k)+F, «vi (BLVD/BFa)
= Ci &"'(Rq„(k)j. (6.24)

With the help of these relations it is immediately seen
that the induced particle and current densities are

(6 27)

k
fe-(k)—=Z ~e-(k), (6.28)

where we have used the deanition (6.14) of e,„(k).
In the following we shall examine the way in which

the impurities modify all these results and to what ex-
tent a quasiparticle description of the problem can be
recovered.

Note that the second term on the left-hand side as well

as the collision term on the right-hand side involve the
"local" quasiparticle distribution function n, (k), as

given by (6.17).
Let us now discuss the temperature dependence of the

collision term in (6.24). According to our earlier dis-

cussion, we are to evaluate the terms of the left-hand
side of (6.24) to lowest order in X; therefore, they should

be evaluated at T=O'K. The inhomogeneous term and,
consequently, n, (k) and n,„( )kare then singular
functions like b(Eq —p). This gives us easily the result
that the scattering term is proportional to T', as was

anticipated earlier.
In order to complete the quasiparticle description, we

must calculate the particle density and the current
density in terms of the quasiparticle distribution func-

FIG. 7. Some of the diagonal fragments
represented by Fig. 6.

FrG. 8. All diagrams for g 00& ') (kk').

B. Scattering in the Presence of Impurities

We recall that for a random distribution of impurities
the terms of first order in V; vanish. Thus, in our ap-
proximation of weak scattering, we have to evaluate
only the terms of second order in V;. In the diagrammatic
representation we have adopted, this means that we con-
sider only diagrams for IVOO(kk') with one bunch of
only two-impurity (dashed) lines. As before, we shall
evaluate all such diagrams up to second order in the
interparticle interaction V~.

In order to reduce the number of diagrams, we shall
adopt a shorthand that represents by a single diagram the
sum of all diagrams that differ from it only in that the
interaction vertices (V„or V;) on the real time axis are
displaced above or below the real axis and the direction
of all fermion lines is reversed. For example, the diagram
in Fig. 6 stands for the sum of the diagrams in Fig. 7
plus the "conjugate" diagrams, i.e., those obtained
from Fig. 7 by reversing the directions of all the
fermion lines while moving all real time vertices above
(below) the real axis below (above). It is easily proved
from the rules of Sec. 3 that the contributions of two
"conjugate" diagrams for %00(kk') are just complex
conjugates of each other. In addition, a diagram with
vertices on the imaginary time axis (as one with right
insertions) will denote the sum of all similar diagrams
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which de er only in the relative ordering of these
vertices.

In this shorthand, the diagrams for W«(kk') in the
absence of interparticle interaction are the two shown
in Fig. 8. Their contribution is simply

W«&o »(kk') =I;2~1 [u(k k—')
~

2a(., .—,)
—app g ~u(k —l) ~'b(eg —e&)], (6.29)

i.e., the usual "scattering-in" minus "scattering-out"
terms of the collision kernel of the transport equation
for dynamically independent electrons in the Born
approximation.

To the 6rst order in V„, there are 16 diagrams for
W00"'&(kk') of the shorthand type, some of which are
shown in Fig. 9. Two of them make vanishing contribu-
tions and the sum of the contributions of four others is
zero. Of the remaining, four are of the type in Fig. 9(a)
and give the Hartree-Fock modification of the one-
particle energies appearing in W«'0 2&(kk'), as given by
(6.29). Thus, the contribution of the diagram in Fig.
9(a) and a similar one with the V, vertex on the lower
fermion line is

Wo, '"'(kk') =e,2m.
~
u(k k')

~

—'

8 8
X X,&»—+Kg. &'& a(&p —es), (6.30)

86g 8&) ~

whereas the other two diagrams of this group give the
"scattering-out" term corresponding to (6.30) ~ Another
set of four diagrams of the type shown in Fig. 9(b)
give the modi6cation of the particle-impurity inter-
action u(k —k') due to the interparticle forces, i.e.,
the "screening. " LIn Fig. 9(b) the placement of the
vertex to the right of the small vertical line indicates
that the vertex lies on the imaginary time axis.]Thus,
the contribution of the diagram in Fig. 9(b) and a
similar one with its vertices on the real time axis
permuted is

W»t' &(kk') =e,2m'(k —k') Ug g&'&+Usa &"u(k' —k)]
xa(e.—~a), (6.31)

whereas the other two diagrams of this group give the
"scattering-out" term corresponding to (6.31). In
(6.31) we have introduced U- &'&, the modification of
u(k —k') to first order in V„, which is defined by

Ugg. &'&=u(k' k) P V(—k'll'k)(F& —F& /e& —
e& ). (632)

FIG. 9. (a) A diagonal
fragment representing the
Bar tree-Fock renormaliza-
tion of the energies in
IVpp( ~)(kk'}. (b) A diagonal
fragment representing the
screening of the impurity
potential in W00&")(kk'}.
(c) A diagonal fragment
representing the lineariza-
tion of the fermion oc-
cupation in the Hartree-
Fock energy with respect to
the external Geld.

ta)

(b)

(c)

which arises from the Hartree-Fock renormalization of
the one-particle energy in the equlibrium distribution
function F~ and the subsequent linearization with re-
spect to f,„(k) in (6.29). It should be noted that only
the exchange part of the interparticle potential con-
tributes to (6.33).

The calculation of W00" "(kk'), i.e., of order V»'V'
is unfortunately very long. There are 252 diagrams (in
our shorthand) involved, although some of them are
quite similar. These terms describe the effects of energy
renormalization and of the modi6cation of the impurity-
particle interaction due to the interparticle forces on
the impurity scattering, and conversely, the analogous
sects of the impurity-particle interaction on the inter-
particle scattering. Furthermore, there are terms that
cannot be simply interpreted as renormalization of
energies or modi6cation of interactions. Here we shall
present a few diagrams as examples, which at the same
time help us define the modification of the impurity-
particle interaction to second order in V&, and give the
6nal results of this lengthy calculation. For more
details the interested reader is referred to the thesis of
one of us. ~~

In Fig. 10 we present a diagram for W»&'»(kk')
which is typical of a group of 12 diagrams which are

Finally, the last set of two diagrams, of the type shown
in Fig. 9(c), give a contribution

Wppt"&(kk') =u;2m P [u(k —l) ['PV(kk'k'k)
g

v(N'k'l))(aF, /—a~,)a(f E ), (6.33)
FrG. 10. A diagram representing a simple contribution to the

e8ective impurity potential of order Y&I in W'(kk ).
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F14. 11. A somewhat more complicated contribution to the
effective impurity potential of order V~ in W00(kk').

obtained from this one by placing the impurity-
particle vertex occurring in the right insertion in other
allowed positions. The contribution of this group of
diagrams is, according to the rules of Sec. 3,

Wop«o&(kk )= n;2&r(u(k —k') Ua, a&co&+ U„,, &p &„(k k )]
Xb(oa —oa )—[scattering-out term). (6.34)

This is analogous to (6.31), but with Uaa &'~& given by

E&&» (F& F&~ BF&)—
U„&"&=P u(P l) V (kl—l'k')

llI p, ., & e,—.&. —ao,)
Itv«& (F& F& aFr )—+- -I
p& ep E p—

& p&
—Bop'

+ Q [V(l'l"l"'l)
i i i

. (6.35)
l"&' E O& a&a ( p& pp» I—

The diagram in Fig. 11 is typical of a group of diagrams
obtained from it by placing the impurity-particle
vertices in all possible relative arrangements. Their
contribution is found to be

Wpp&"'(kk') = n 2&rLu(k —k') Ua a" '(oa )
+Uaa &Pa&(pa+)u(k' k)]b(pa—oa ), —(6.36)

where now

V(l'"l'lk')
Uaa &Pa&(l) =u(k —k') Q V(kll'l")

which plays the role of an impurity-quasiparticle inter-
action, as we shall see presently.

Collecting all the terms for Woo(kk') up to second
order in V„and V;, we note that they are of two types:
(1) terms with a b function of two energy arguments or
derivatives of it; (2) terms with a b function of four
energy arguments or derivatives thereof. Terms of
the first type will be designated as impurity-scattering
terms, while terms of the second type will be referred
to as interparticle-scattering terms. This designation
will be justified below.

All impurity-scattering terms can be expressed quite
simply, after some algebra, in terms of the quasiparticle
quantities introduced earlier and the new quantity
Uaa (f'), given by (6.38). We 6nd for the impurity-
scattering terms, denoted by Wpo&'&(kk'), up to second
order in both V„and V;,

Z Woo&'&(kk') f, (k')

=2 (baa/sa+v» )Ca «'Lnp. (k')], (6.39)

where the impurity-quasiparticle collision operator is

Ca &'&Ln p„(k)]=g n, 2&rsaza.
~
Uaa (Ea+)

~

'

X b(Ea —Ea.)Lnp„(k') —n, (k)], (6.40)

with the "local" quasiparticle distribution function
n,„(k) given by (6.17).

Note that the form of the impurity-quasiparticle
collision operator as given by (6.40) is the same as that
suggested' " on phenomenological grounds. The scat-
tering amplitude U» is explicitly given in this approxi-
mation by (6.38).

Among the interparticle-scattering terms, there are
some that are easily described in terms of impurity
modifications of the particle energy, he»', the renor-
malization constant 8s»', and the transformation matrix
p» '. Up to second order in V,, these are defined by

iu(k —k') i'
hea'=n; Q R-—

~» —~»

A &"' ) 1 V(l"l'l"'k')
X — i+-

op ep i+a& f pp op~+a&& 2 e&
—pp~ ~

(6.41)

iu(k —k') ('
hsa'= n; Q R—"

(ea —pa )
(6.42)

Ei' p&' ol''+ol"' f pl' pl"+p&~—

The quantities U». &", Uaa. &e &, U» &ea&(|'), given by
(6.32), (6.35), and (6.37), have a simple connection
with the temperature Green's-function diagrams. For
convenience in the following we define, up to second

iu(k —k')
i

'
P»»I

~» —~»
(6.43)

order in V~, the quantity Reasoning as before, in connection with the replacement
of (6.18) by (6.20) on the basis of the work of Watabe

Uaa (f)=u(k k')+Uaa "'— and Dagonnier, "we can reorganize these interparticle
+Uaa. &"&+Uaa &"&Q'), (6.38) scattering terms, Wee" (kk'), up to second order in Ve
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and V;, as

Q lVooc»(kk') f,„(k')

f,„(k) to order X '. Thus, we may rewrite (6.16) and

(6.39), respectively, as

left-hand side (6.1)=P (4o /so +too )

and its "local" value is

aS'o
flo (k) =no„(k)+~ — Q soso Ioo n,„(k'). (6.47)

BEo

The remaining interparticle scattering terms can be
written in the form

g (4o/so+goo)&o, (6.48)

Here 4o'»PAo„(k)] is identical to (6.22) with all quasi-
particle quantities s&, E&, no„(k) replaced by s&, 8&,
8, (k). The tildes or carets on these quantities denote
the corresponding quantities for a new quasiparticle,
more appropriate in the presence of the impurities.
That is, if we define

so —zo+Azo p Eo Eo+Aoo

f oo =goo +goo', Eo= [e«s~»+1] ', —(6.45)

an appropriate quasiparticle distribution function in the
presence of both interparticle and impurity interactions
1s

(6.46)

XP i—con,„(k')+icl vo. &,„(k')

+F,.-e,.-(aS,,/aE, ,)) (6.49)

Z Woo&'(kk') fo„(k')

=g (boo /So. +goo )Co c"f@o.(k')], (6 50)

where Co"'LRo„(k)] is identical to (6.40) with so, Eo,
n,„(k) replaced by so, E&, 8, (k), and vo~ ——BEo/Bk .
The transport equation consists now of equating (6.49)
to the sum of (6.50) and (6.44). If we multiply this
equation by the inverse of the matrix (boo /So +f o& ),
we have simply

urn, „(k)—+iq r7o 8o.(k)+Fo r7o (&+o/&Eo)
= Co"'PR, (k)]+Co&"'Po„(k)]. (6.51)

This looks very much like the Landau transport
equation" for a quasiparticle distribution function
n, (k), defined by (6.46), with terms for impurity and
interparticle scattering added. Furthermore, it is easily
checked from (6.41)—(6.43) that, to the order of interest
here, the mean induced particle and current densities
are simply

p „=Q n „(k), j „ =Q (k /m)n „(k) (6.52. )

where Ak consists of the impurity modifications of the
interparticle scattering which cannot be interpreted as
simple renormalization. AI, is, of course, proportional
to n;~u~'. An analysis of the temperature dependence
of this term shows that for low temperatures it is also
proportional to T'. We conclude that (6.48) is of order
X f,„. According to our earlier discussion, in our ap-
proximation such terms may be ignored.

We may now collect all the terms that enter the trans-
port equation (6.1) for small X )the parameter represen-
tative of the quantities co/p, qeo/p, I';/p, and I' /p
cc(kT)'). Keeping only terms of order 7cfo„ for the
homogeneous terms and of order X' for the inhomoge-
neous term, we find that the left-hand side of (6.1) is
given by (6.16) and the right-hand side consists of the
sum of (6.39) and (6.44). When solved this equation
enables us to calculate the mean induced quantities up
to order X '. In this form, the equation for f, (k) is
unrevealing; we can, however, transform it to a simpler
and physically more transparent equation for the quasi-
particle distribution function n,„(k), the solution of
which will enable us to evaluate the mean induced
quantities to the same order in A..

To achieve this, we note that insertion of terms of
order X'fo„and 7c into the terms of (6.16) and (6.39)
can have no eGect on the results of the calculation of

Alternatively, now that we have derived Eq. (6.51)
for n, , we may drop terms of order X'f„ in the ho-
mogeneous term of (6.51) and of order X in the in-
homogeneous term; again, this will not aEect the results
to order X '. This procedure simply replaces n, (k)
by n,„(k), and similarly for all other quantities with
tildes, and (6.51) becomes

icdno„(k)+iq —oo no„(k)+Fo„oo (BLVo/BEo)
= Co &*&Lno.(k))+Co &"Ln,„(k)), (6.53)

where now n,„(k) is the quasiparticle distribution func-
tion, defined by (6.15), appropriate for the pure system.
The left-hand side of (6.53) evaluated at T=O'K,
when equated to zero, is just the Landautransport
equation for a pure Fermi liquid at T=O'K. The
right-hand side gives the impurity scattering, as defined
by (6.40), and the (low-temperature) interparticle
scattering, as defined by (6.22). The quasiparticle dis-
tribution function n,„(k) can be used to calculate the
induced quantities according to (6.27)—(6.28), to the
lowest order in A, .

The transport equation (6.53), the left-hand side of
which should be taken at T'= O'K for consistency, along
with (6.27)—(6.28), constitutes the main result of the
application of the general theory established in the
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earlier sections. Let us recall that we have proved these

results only up to order V„'.
It may be wondered why our calculation led to Eq.

(6.53) for n,„(k) via Eq. (6.51) for n, (k). Observe that
the method we have used gives a transport equation for
the bare-particle distribution function f, (k). If we

had gone directly from f, (k) to n,„(k), i.e., had we

transformed from bare to quasiparticle distributions
with the matrix (Bpq /zp +ypp ), we would have found

terms involving y~I, ', the physical signi6cance of which

would have been obscure. Using the transformation
matrix (Bpp/zp+ypp ), on the other hand, we found

that these terms can be eliminated without any con-

sequence, to the order of the parameter X in which we

treat the problem. That is, these terms just eITect the
correct transformation from bare-particle to quasi-
particle distribution function; since this produces terms
in the current density, etc., of order P', it can be
dropped altogether.

C. Results for the Case of Coulomb Interactions

As we saw in general in Sec. 5, for the important case
of Coulomb interactions among the electrons, the
coefficients of the transport equs, tion for f,„(k) consist
of the proper diagrams for 8', (kk'), denoted by
W,„(kk'), and the proper diagrams for G,„(k),denoted

by Gp (k), multiplied by the total field F, in the
medium. Thus, for small p and co the transport equation
is identical to (6.1), except for the replacements just
indicated.

Examining G, (k) to order V and up to second order
in V~, we have found that all improper graphs give
vanishing contributions, i.e., G,„ is the same as

Gp„. Using this result and the fact that for Coulomb
interactions

F, =F, +i 'q v(q) Q-n, (k), (6.55)

where use of (6.27) was made. That is, in this approxi-
mation the driving 6eld for the quasiparticles is the sum
of the external 6eld and the average 6eld associated
with the induced quasiparticle density.

Thus, the transport equation for n,„(k), which
involves F,„,is to be solved self-consistently in con-
junction with (6.55), if the values of p,„and j,„are
desired for a given external field. If, however, the con-
ductivity or dielectric constant is desired, one has only
to solve the transport equation treating E,„as given.

V(kk'k'k) = v(0) —v(k —k') = —v(k —k'), (6.54)

we have that Cpp (k) is formally identical to Gpp~(k)

calculated for a short-range interaction. Similarly, we

6nd, up to the orders considered in this section, that
with the identification (6.54) Wpp(kk'), BWp„/BQl~pp,
and BW, /Bq jpp are identical to the corresponding
quantities for the short-range case. Ke can thus pro-
ceed as before and derive a transport equation for the
quasiparticle distribution function n, „(k), given by
(6.15) in conjunction with (6.54), identical to (6.53),
except for F,„which is replaced by F,„, the total
force field in the medium. In fact, to the order of interest
here, this modification arises from the improper dia-
grams for W,„(kk'). There are only three such, the
contribution of which for small q in the transport
equation can be shown to amount to the replacement of
Fq„by


