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Lattice Thermal Conductivity of Impure Tin*
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Measurements of the normal- and superconducting-state thermal conductivities (K" and K') were made

on seven cadmium-doped tin single crystals in the temperature range 1'K(T(4'K. Data from six specimens

measured previously are also included in the analysis. Cadmium concentrations range from 0.04 to 0.97
at.%.The crystal orientations are grouped in the near perpendicular direction (direction of heat Bow approx-
imately perpendicular to the tin tetrad axis). The small fractional size of the normal-state lattice conductiv-

ity, K,",precludes its direct determination from the normal-state data alone. However, the superconducting-

state thermal conductivity is employed in a "universal curve" type of analysis, from which we deduce for

K,"a T'"+0 04 dependence upon temperature and a po ( "~~) dependence upon residual resistivity. As the
solid solubility limit is approached we find an additional lattice resistivity varying as T '4 and increasing in

magnitude with increasing impurity concentration. This is ascribed to phonon scattering by point defects
and boundaries, using adjustable parameters describing the distortion about the impurity and the mean free

path for boundary scattering. The best fit to our data yields values for the strain field size that are in good
agreement with the x-ray data of Lee and Raynor. The apparent boundary scattering mean free path is much

less than the sample diameter; this indicates large clusters of impurities in the alloy.

I. INTRODUCTION

HIS paper describes an experimental investigation
into the lattice thermal conductivity of tin and

dilute tin alloys at low temperatures. The thermal
conductivity of tin has been the subject of several recent
studies. These have centered on the gross effects of
alloying on the thermal conductivity, ' the effects of
the superconducting-state energy-gap anisotropy on

the thermal conductivity, " the normal-state lattice
thermal conductivity for very impure tin specimens, 4'
and the variation of the electronic thermal conductivity
in both the superconducting and normal states with

crystal direction. '7
Previous experiments on specimens suSciently im-

pure so that the fractional lattice conductivities would

be large employed polycrystalline samples. It is well

known that the transport properties of tin are highly
anisotropic. ' Therefore, the present work has been done
on alloy single crystals, eliminating ambiguity of
interpretation resulting from possible net orientation
effects in polycrystalline samples.

The normal- and superconducting-state thermal
conductivities are conventionally expressed as the sum
of two terms, one electronic (e) and one lattice (g), viz. ,

E"=E,"+E," (normal state), (1)

E' =E,'+Eel (superconducting state) . (2)
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We shall refer to the ratios E'/E", E,*/E,", and

E;/E, ", and'denote them as RT, R„and R„respec-
tively.

The normal-state lattice conductivity of very impure
tin alloys in the temperature interval 1—5'K has been
investigated by Hulm4 and Gar6nkel and Lindenfeld. ~

They found that E," is a smaller fraction of E" in tin
than is normal for most alloy systems, s and, as a
consequence, heavy doping is necessary even to make
the fractional size of E,"only a few percent. In both of
these investigations, E," was obtained directly from
the normal-state data alone. In our recent investigations
into the effects of alloying on the thermal conductivity
of tin' and into the energy gap anisotropy of tin' we
noticed that, for our most impure specimens, the
superconducting-state data could be used along with
the "universal curve" formalism of Lindenfeld and
Pennebaker' to draw quantitative conclusions as to
the behavior of E,". We have thus undertaken the
present investigation into the lattice thermal conduc-
tivity of tin, and have chosen the characteristics
(orientation, impurity concentration) of the specimens
to be measured with this objective specifically in mind.

The theoretical ratio of superconducting to normal-
state lattice conductivity E, was calculated as a
function of reduced temperature t= T/T, for super-
conductors in general by Bardeen, Rickayzen, and
Tewordt~ for the case when phonon-conduction electron
scattering dominates both E,' and E~". Klemens and
Tewordt" extended the calculation to include point-
defect scattering of phonons by impurities of different
mass, and found that R, is expected to be a function of

P. Lindenfeld, in Proceedings of the Seventh International Con-
ference on Lm-Temperature Physics, 1060, edited by G. M.
Graham and A. C. Hollis Hallet (University of Toronto Press,
Toronto, 1961), p. 279.' P. Lindenfeld and W. B. Pennebaker, Phys. Rev. 127, 1881
(1962).

'o J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,
982 (1959)."P. G. Klemens and L. Tewordt, Rev. Mod. Phys. 36, 118
(1964).
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any additional phonon scattering should become
evident in the E'-versus-t data. We expect that K,'
will be abnormally depressed if such scattering is
present in signi6cant amounts.

In two recent investigations, '" we have obtained
information on the superconducting properties and the
electronic thermal conductivity of tin single crystals
containing cadmium. We have again chosen cadmium as
the impurity so that data on our most impure previously
measured specimens might be incorporated in the
analysis. Single crystals having orientations in the
near-perpendicular (cylindrical-specimen axis perpen-
dicular to tetrad axis) direction were again selected so
that any orientation eGect will to a 6rst approximation
be the same for all specimens and can therefore be
neglected. Impurity concentrations ranging up to the
solid solubility limit of cadmium in tin (=1%) were
introduced so as to produce the maximum relative
magnitude of E '/E' and E "/E"

In summation, the speci6c goals of this work are
FxG. 1.E"versus T for specimens measured in this @rory. The solid
lines are calculated from the %'iedemann-Franz lair, Ep =IoT/po.

point-defect content, which is proportional to po when
the density of point defects is large. Experimental
determinations of R, are few; our two previously
mentioned papers treat this ratio only peripherally.
One of our objectives is thus to experimentally deter-
mine the dependence of R, on t in the case when phonon-
conduction electron scattering is the primary contrib-
utor to the superconducting and normal-state lattice
thermal resistivity.

The scattering of phonons either by point defects or
by imperfections associated with impurities can become
signi6cant as impurity concentrations increase. " "
Since well below the transition temperature few
electronic excitations are present to scatter phonons,

Tmzz I. Summary of sample characteristics.

Sample 1/GX 100
po W cm) (at 'Fo}'

1a
2a
3a
4a
5a
1
6a
2
3

5
6
7

0.0675
0.0704
0.0894
0.173
0.357
0.381
0.460
0.595
0.808
0.94
1.015
1+275
1.35

0.042
0.049
0.063
0.122
0.251
0.274
0.32
0.43
0.58
0.68
0.73
0.92
0.97

(deg} I {mm}

59$ ~ ~ ~

75 ~ ~ ~

78$ ~ ~ ~

8+ ~ ~ ~

78$ ~ ~ ~

57$ ~ ~ ~

77 ~ ~ ~

68$ ~ ~ ~

77 0.30
72$ 0.60
79$ 0.135
79 0.09
7Q 0.08

~ ~ ~

0.1
0.02
0.1
0.06
0.1

& Calculated using po ~1.39 pcQ cm/at. % (Ref. 15).
b Pa&gle between the tetrad axis and the cylindrical axis of the specimen.

~ P. G. Klemens, Solid State Phys. 7, 1 (1958).
& K. Mendelssohn and H. M. Rosenberg, Solid State Phys. 12,

223 (1961).
14 H. M. Rosenberg, I.om Temperatlre Solid StaIe Physics

(Oxford University Press, London, 1963), p. 59.

(i) to determine the size of E," in tin and its depen-
dence on po and T using the universal curve formalism
of Lindenfeld and Pennebaker;

(ii) to determine whether the dependence of R, on t
is adequately described by the theory for the case of
phonon scattering by conduction electrons;

(iii) to determine whether additional phonon scatter-
ing processes associated with the cadmium impurities can
be observed in K,' as the solubility limit is approached.

II. EXPERIMENTAL DETAILS

The cadmium-tin solid solution crystals were
prepared and orientations determined in a manner
previously described, "with two exceptions:

(i) The molds in which the crystals measured in
this work were grown were 3-mm precision-bore Pyrex
tubing. Our previous measurements were on 2-mm diam
crystals. The larger cross-sectional area is desirable
for the more impure (lower-thermal conductivity)
specimens.

(ii) Measurements of po as a function of annealing
time (at 200'C) on a 0.2% Cd crystal showed changes
even after 72 h, the annealing period in the previous
work. We therefore annealed the specimens in this work
for =300 h at 200'C. We consider this to be sufBcient
for specimens of impurity concentration not near the
solubility limit. However, for our most impure specimens
po continued to decrease by about 2—3% over a period
of 3—6 weeks at room temperature, suggesting that a
slow rearrangement of impurities was continuing.

The thermal conductivity apparatus was identical to
that shown in Fig. 1(b) of Ref. 2, and the experimental
procedure was the same as that described there. The
present specimens were suKciently impure so that
"J.K. Gueths, C. A. Reynolds, and M. A. Mitchell, Phys. Rev.

150, 346 {1966).
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magnetoresistance corrections were unnecessary, but
small corrections were made to the data for heat
generated in the current leads to the heater and heat
lost by conduction along the leads from the hot ther-
mometer and heater.

A microvolt potentiometer was used to determine
electrical resistivities on sections of crystal sym-
metrically located with respect to the thermometer
clamps (separation =6.5 cm). Measurements were
made at 4.2'I and are reported as p0, since the tempera-
ture-dependent resistivity for samples having impurity
concentrations typical in this work is negligible.

Resistivity determinations at 77 and 273'K were
consistent with the orientation and impurity concentra-
tion dependent values determined in a previous work. "
The characteristics of the samples included in this work
are given in Table I. Samples 2-7 are those measured
in this work. Samples 1a-6a are samples 7-12, respec-
tively, previously reported. '

I

l.o- (a) ~o

~C
(b)

I.O-

0.8-

(c)

I.O.

III. RESULTS AND DISCUSSION

A. Normal-State Thermal Conductivity

The thermal conductivity in the normal state for all
specimens measured in this work is plotted versus
temperature in Fig. 2. The solid lines associated with
each set of data represent the normal-state thermal-
conductivity curve the data would be expected to
follow if the conductivity were totally electronic and
the Wiedemann-Franz law were obeyed (Ke"=IoT/po,
where J-0= 2.45X10 ' W 0 'K '). Within experimental
error, the data satisfy the Wiedemann-Franz law. In
fact, only two specimens (Nos. 1 and 5) exhibit slight
variations from the solid line. In these cases, plots of
E"/T versus T exhibited zero slope. We conclude that
a significant lattice conductivity is not evident in Fig. 2.

This result is somewhat disturbing, as we anticipate
that our most impure specimens (Nos. 6 and 7) should
exhibit fractional lattice conductivities of 4% at
T=3.5'K if the normal-state lattice conductivity
follows the universal curve of Lindenfeld and Penne-
balcer' scaled to tin. (We shall later use the super-
conducting-state thermal-conductivity data to show
that this, in fact, is the case.) Small geometrical
uncertainties in the thermal conductivity measurement
and errors in the po determination have apparently
thwarted our eGorts to resolve E," in the normal-state
data alone.

B. Superconducting-State Thermal Conductivity

We indirectly exhibit the superconducting-state
thermal conductivity as a plot of Rr versus t= T/T. in
Fig. 2. The data were obtained by dividing the E' data
by the values of E" lying on a smooth curve drawn
through the K"-versus-T data. Superconducting-
transition temperatures (T,) were obtained using the
known T;versus-po dependence for cadmium-doped tin

08.

0.6

0.4-

0.2-

Q6
/Tc

Q8 I.O

F&0- 2. Rz =E'/X" versus t for all specimens measured in this
wo«. (a) (Q), sample No. 7, pp

——1.35. (+), sample No. 6,
po=1.27. (b) (Q), sample No. 5, pp=1.01. (+), sample No. 4,
po=094 (c) (Q), sample No. 3, pp=0. 81. (+), sample No. 2,
po=0.595. (d) {Q),sample No. 1, pp ——0.38. (————), sample
No. 6a, pp=0. 45, from a previous work (Ref. 2). ( ), the
R,=E,'/E', "curve using 2b, (0)/k~T, =3.7 in a calculation of the
KadanofF and Martin type.

single crystals. " The advantages of using this form
of the superconducting-state thermal-conductivity data
for analytical purposes has been discussed previously. '
The eBects of geometrical uncertainties rooted in the
Gnite width of the thermometer mounts and systematic
errors of various types are minimized in the ratio Rz.
We will attempt to employ the variation of Rp with pp,
at constant T, to investigate K," and R,.

We obtain the lattice conductivity in the supercon-
ducting state from

Kg'/K"= K'/K" E,*/K"= Rr R„— —

and, since for all our specimens K,"/K"(0.04, we can
approximate E"=E,"in the denominator. In particular
for K,'/K" we can use the ratio R,=K;/E, ", given by
the theory of KadanoG and Martin. "

"Leo P. KadanoG and Paul C. Martin, Phys. Rev. 124, 670
(1961).
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Fxo. 3. Plots of E~'/E" versus
residual electrical resistivity po at
six values of reduced temperature.
Estimated uncertainties due to
scatter in E' and E" are indicated
by the error bars. (~}, samples
ia-6a from a previous work (Ref.
2}. (O), all samples measured in
this work. The solid lines drawn
through each set of data are paral-
lel. The abnormal depression of
E'~'at larger po and lower t indicates
that another phonon-scattering
mechanism is contributing to W;.

To obtain the values of K,'/K" we have had to
assume the variation of R, with temperature and po.

We had previously demonstrated' that the effect on
R, of the anisotropy of the energy gap essentially
disappears in the case of tin when po exceeds 10 ' ohm
cm. With continued introduction of impurities, one
reasonably expects only small e6ects on the ratio R„
and that it should vary only slowly with concentration.
It was also shown previously that R.(t) is well approx-
imated by the theoretical results of Kadano6 and
Martin" using an isotropic energy gap of 26(0)/kBT
=3.7. In the present work it is assumed that this
functional form of R,(t), shown as the bottom line
in Fig. 2(d), applies to all specimens. Values of K;/E"
thus obtained are plotted in Fig. 3.

We also assume that K," is given iu form by the
universal curve of Lindenfeld and Pennebaker, ' so that
E," as functions of po and T is given by

tl/p T C(2 /p )n—I (4)

where C and n are constants to be determined experi-
mentally. Taking logarithms, writing K,"=K,*/R„
using (3) and using the Wiedemann-Franz law for K,",
we obtain

ln (K'/K" K;/K, ")=—ln (Rr R,)—
= ln(CR t"-'T,"-'/L, )

+ (3—rt)in pa. (5)

If we now take the ratio R, to be independent of po,
we can determine the index n from the slope of the
logarithmic plot of (Rr —R,) against po at constant
temperature. This assumption is almost certainly valid,
provided phonon scattering by defects can be neglected
in the superconducting state. We shall see later that
this is not entire1y true, particularly at lowest tempera-
tures (where phonon-electron scattering in the super-
conducting state is smallest) and for the highest

hC

E
O
E
„"IO'-
O

O

Ck

- loo

-IO
IX

IO'-

04 0.6 0.8
T/Tc

l.o

Fj:G.4. Values of R,C/Jo obtained from the solid lines in Fig. 3
plotted versus reduced temperature t. The error bars represent
uncertainties in the locations of these lines due to data uncertain-
ties. The solid line is an R, versus t plot taken from F/g. 1 of Ref. 11
which has been adjusted vertically for the best 6t to the data
(see the scale on the right side of the figure). The uncertainty in
the determination of C/Io ——(4.6~0.4})&1(Pis represented in the
lower right-hand corner of the figure. The shape of the theoretical
R~-versus-t curve is well represented by our data.

impurity concentrations (where either the solute atoms
or imperfections genetically related to them add to the
phonon scattering). A second requirement is, of course,
that K," is not affected by these other scattering
mechanisms; ho~ever, E," will always be less affected
than K,'. These plots will also give us ln(CR, (t)), and
we can obtain C separately from the requirement that
Ra=1 at t=1.

Thus, Fig. 3 is a plot of ln(E';/K"), or the left-hand
side of (5), against ln(po) at six reduced temperatures
for the seven specimens measured in the present work,
and the six most impure crystals of our previous work. '
The data are seen to fall on straight lines, except for
marked deviations at lower temperature and higher po.
These deviations are interpreted as being due to a varia-
tion of R, with po via an additional phonon-scattering
mechanism, and will be discussed below. The solid lines
drawn through each set of data were constrained to be
parallel and to Gt the data at each reduced temperature
in the regions of lower po. The line slope (3—n) in Eq. (5)
is determined to be 0.79&0.04, so that K," varies as
T"'~ ~ in regions of high-temperature and low-
impurity concentration.

The ordinates of the straight lines in Fig. 3 are a
measure of the product CR, (t) for phonon scattering by
electrons. These values are plotted in Fig. 4 as a function
of reduced temperature t. These may be compared with
the theoretical R, (t) curve of Klemens and Tewordt"
in the case when there is no point-defect scattering. On
a logarithmic scale the theoretical curve, i.e., the solid
curve of Fig. 4, can be moved vertically to 6t the
experimental points; each experimental point is
compounded from the straight line best 6t of Fig. 3.
If we now require that R,= 1 at t= 1, we can determine



178 LATTICE THERMAL CON DUCTI V I TY OF I M PURE Sn 1013

C and R, (t) separately. It is seen that the experimental

R,C/I 0 curve as a function of i agrees quite well with

the theoretical R, (t) curve.
In this way we obtain a value of C= (1.13&0.10)

X10 ' in the % 0 cm 'K system of units, so that we

can fit the normal-state lattice thermal. conductivity to
the form given by (4) as follows:

RDO ~

l00-
\

80
60 '

40

(1 13~0 10)X10 sT2.u~04

0.21~.04Po'
(6)

RO-
M
so

0

where K,"has units of W/cm 'K, po is in 0 cm, and T
is in 'K. Figure 5' represents a "universal curve"

scaled to tin, on which this result is shown as the

dashed line. The solid line represents the result of

Lindenfeld and Pennebaker' for the case when the

longitudinal and transverse modes interact with the

electrons nearly independently of each other.

C. Additional Phonon Scattering

Ke now direct our attention to the additional phonon

thermal resistivity apparently present in our more im-

pure specimens, as suggested by the data in Fig. 3. Al-

though the additive resistance approximation may be a

poor one, we have little choice but to use it in the first

instance, as we do not have any way of a priori deter-

mining the scattering mechanism(s) leading to the

increased phonon resistivity. Thus, we write

40'
s

V
hC 20-0 80-
I P

60.
'O R

~ 40
gg

RO-
80-
so i

RO
80
80

20
LO

TpK)
5.0

10-
6
Cl

E
cs

Ol
st

10
cs

Wg'= Wg'(p-e)+ Wg*(x), FIG. 6. Plots of 8'; versus T for the five most impure specimens
in this work. Impurity concentration increases from bottom to
top. The solid lines represent values to be expected if the only
significant lattice thermal-resistivity mechanism is phonon-
conduction electron scattering. The additional lattice thermal
resistivity is most evident at the lowest temperatures, where the
number of conduction electrons available to scatter has been
reduced via condensation into the super state. %e note that sample
No. 4 does not exhibit as much additional phonon scattering as
might be expected. This indicates that the additional term in
W~' may not be a simple function of impurity concentration or
that sample No. 4 is unusual in some manner.

tO'-

Io
iO' iO' 107

T/p ( K/ohm cm)
0

io'

'~ M. H. Jericho, Phil. Trans. Roy. Soc. London A257, 385
(1965).

Fro. 5. Comparison of our expression for the normal-state
lattice conductivity of tin with the universal curve scaled to tin.
The solid line represents the theoretical curve of Lindenfeld and
Pennebaker for the case in which the longitudinal and transverse
phonon modes simply sum. The O's, +'s, and &'s are representa-
tive points taken from the curves for silver (Ref. 17), copper
(Ref. 10), and indium (Ref. 19) scaled to the tin curve. The
dashed line is a plot resulting from our expression, Kq. (9), for
the lattice conductivity. The error bars represent the uncertainty
in the location of the line due to the uncertainties in the constants.

where W, '=1/K, ' is the total superconducting-state
lattice thermal resistivity, and W, '(p-e) and W, '(a)
are the resistivity terms appropriate to phonon scatter-
ing by conduction electrons and the unknown mecha-
nism, respectively.

The straight lines in Fig. 3 are taken to represent
W"/W, '(p-e) as a function of po at the various values
of t. Using the po values and the curves for our five
most impure specimens (where another scattering
mechanism is present as indicated by significant
deviations from the straight lines in Fig. 3), along with
the measured K" values, we construct W, '(p-e) as a
function of t for each of these specimens. These are
shown as the solid lines in Fig. 6. The K,'/K, " curve for
26(0)/k&T, =3.7 (bottom solid line in Fig. 2) is then
subtracted from the K'/K" data in Fig. 2 to obtain
K,' K/"-ver ssu-t data for each specimen. W, ' values
were then obtained by employing smooth curves drawn
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approximation. (iii) The failure of the assumption that
R, is approximately independent of impurity concentra-
tion in the range of lower po, and higher temperatures.

A lattice thermal resistivity TV, ~ T" with m between
—1 and —2 would indicate scattering of phonons by
dislocations or by stacking faults. " It should be
remembered, however, that e has been determined
over a limited temperature range only, and may be
the result of two different imperfections acting in

combination.
Since boundaries and isolated point defects certainly

scatter phonons in these specimens, it is tempting to
try to explain W', ' in terms of these two scattering
mechanisms. One can write

10
9
e
7

I.5
T ('K)

FrG. 7. 8','(x), the dUFerence between the data and solid line
of Fig. 6, plotted versus temperature. The average slope of the
lines drawn through the data is =1.4, indicating that 8'~'(x)
~ 1 ~ 4. In general, we see that W~'(x) decreases with decreasing
impurity concentration. The dashed lines are the point-defect—
boundary scattering theory 6tted to each sample with I. and &
values given in Table I.

through the E" data in Fig. 1. These data are also
shown in Fig. 6.

%e note that all 6ve of these specimens exhibit some

degree of additional phonon scattering of an unknown
nature. The difference between the lV, ' data and. the
W, '(p-e) solid lines is taken to represent W, '(x). This
is subsequently plotted versus T on full logarithmic

paper to establish the temperature dependence of
W, '(x) if one exists. This is shown in Fig. 7. It is seen
that W, '(x) follows a similar simple temperature
dependence for all five specimens [i.e., W, '(x) =AT",
where n= —1.4]. Although the slopes of the individual
lines vary slightly about this value, it must be remem-
bered that we are dealing with very small differences
and a rather limited temperature interval. Further,
systematic error could be introduced into Fig. 7 by
the following: (i) A systematic variation of R, with
impurity concentration (although we expect this to be
small, it could enter into the data in Fig. 7 to a signif-
icant degree). (ii) The failure of the additive-resistance

TABLE II.a versus I(a).

1/Wp* ——Kp ——-', Q S, ((a)p,A((p)dpp,

where S;(co)dip is the specific heat per unit volume due
to phonons of frequency co, the sum is over polarizations

j, v; is the phonon velocity and A(ip) the phonon mean
free path. For boundary scattering and point-defect
scattering

1/A = 1/h. a+ 1/Ap, (9)

In (10), a' is the atomic volume and G the reciprocal
of the defect concentration (per atom). The parameter
S' describes the strength of the scattering.

Using a Debye expression for the specjL6c heat and.

approximating e with the transverse sound velocity,
we obtain, for E„

where

Kp ——(4xLha4/w'h') T'I(n)
=0.00562LT'I (n),

x4e dx
I(n) =

p (e* 1)'(1+—nx')
(12)

and L is expressed in mm, and T is expressed in 'K.
The parameter o, is given by

n = $3(2')'ha'a'LT' j/xv'h'G
=3.92 (S'/G) LT4. (13)

where A&=L is a frequency-independent mean free
path which, in a perfect crystal, should be comparable
to the specimen diameter, awhile the point-defect mean
free path is given by""

(10)

10 6

10 5

10 4

6X 10-'
10-$

I(a)
25.92
25.59
23.49
18.75
16.90

5X 10
10 '
5X10 '

10-I
5

I(a)

10.65
8.202
3.935
2.734
0.2443

The definite integral I(n) has been evaluated for
various values of u on the University of Connecticut
IBM 360 computer, and some values are given in
Table II.

By adjusting L and S' for each sample it was possible
to fit (11) to the data. The values of L and S' required

'8 P. G. Klemens, Proc. Phys. Soc. (London} A68, 113 (1955).
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Tmxz III. Various contributions to the thermal conductivity of sample No. 7.

1.49
2.60
3.72

0.0270
0.0471
0.0666

0.0192
0.0405
0.0666

K ssb

0.0270
0.0470
0.0631

KID

0.00552
0.0334
0.0631

K»d

0.00046
0.0016
0.00357

K''
0

0.0133
0.00648

K,'(p-e)'

0.0302
0.00735

K, (s)s

0.0233
0.0513

»A11 thermal conductivity values are given in units of W/cm K.
Geometrical uncertainties limit the accuracy of the superconducting- and
normal-state thermal conductivities K& and K», respectively, taken from
the raw data to 2%.

b The normal-state electronic conductivity calculated from K» TLo/po.
po is known to &3% for samples near the solubility limit.

& The superconducting-state electronic conductivity as found from Ka»R&.
For R& the curve of Kadano8 and Martin (Ref. 16) with 26(0)/kaT~ 3.7
was used.

~ The normal-state lattice conductivity as calculated from the results
of the "universal curve" analysis LEq. (6)7. The small fractional size

of Ky» and experimental uncertainties predude direct evaluation from
K» -K,».

+ The superconducting-state lattice thermal conductivity equal to K+-K&I.
Found from a smooth curve drawn through the data points of Fig. 6.
(K,' 1/Wp').

f K&& as limited by phonon-electron scattering. Based on the "universal
curve" analysis. Found from the family of solid lines in Fig. 3 as plotted
versus temperature in Fig. 6.

& K~& as limited by the "extra" phonon-scattering mechanism equal to
f1/Kp& —1/K&+(p-e)7 '. Found from the straight line of best fit (solid line)
to the data points in Fig. 7.

to do so are given in Table I. The curves of S',' thus
obtained are given in Fig. 7 as dashed lines.

The mass cMerence between Cd and Sn is too small
to account for the point-defect scattering. Theoretically,
S'= (1/12) (d3II/M)', and in this case one would obtain
S2=3X10 .The observed values seem grouped around
1X10 ' or a little less. This scattering should probably
be ascribed to the anharmonic scattering of the distor-
tional strain Geld about each impurity. This mechanism
should yield a valu99 for 52 of

precipitate is large enough to scatter independently of
frequency, a mean free path of 0.1 mm requires pre-
cipitate concentration of the order of N=10" per cm'.
This would require 10"atoms/cm' to be in precipitates.
The total impurity concentration is of the order of 10
per cm', only a small amount of precipitation is therefore
needed to account for the small mean free path. As we
are dealing with alloys near the limit of solid solubility,
and since it has been observed that po decreases slowly
on annealing, this precipitation is quite possible.

ST= 3~2(m/R)2 (14)
IV. SUMMARY

where y, the Gruneisen constant, should be about 2,
and dR/R is the fractional radial distortion of the
impurity. To fit the data, one would require AR/R
=9X10 '. From the change of lattice spacing of Sn-Cd
alloys with increasing Cd concentrations, " it appears
that M/R=4X10 ', so that the point-defect scattering
needed to Gt the data appears to be of reasonable
magnitude.

The boundary mean free path required to Gt the data
is much smaller than the external diameter of the
specimens. Since the specimens w'ere single crystals,
and since the scattering by small-angle grain boundaries
is very weak, this scattering cannot be due to bound-
aries. It is suggested here that the frequency-indepen-
dent scattering mechanism limiting h.g is due to
precipitates of cadmium in the alloy matrix. In order for
scattering to be frequency independent, the diameter of
the precipitates must be at least 100 atom sites in
diameter. ~ If a precipitate contains n atoms, and there
are N precipitates per unit volume, and if the scattering
cross section is equated to the geometrical cross section,

1
Ng2n2/3

h.

while the fraction of cadmium atoms thus involved in

precipitation is 1/S a'n. Taking n=10', so that the

"P.G. Klemens, Phys. Rev. 169, 229 {1968).
~ J. A. Lee and G. V. Raynor, Proc. Phys. Soc. (London) B67,

737 (1954).

We have utilized the superconducting-state thermal
conductivity to determine an expression for the normal-
state lattice thermal conductivity of impure tin in
terms of po and T for the case when the lattice conduc-
tivity is limited by phonon-conduction electron scatter-
ing. This expression is qualitatively and quantitatively
consistent with the universal curve formalism for dilute
alloy normal-state lattice conductivities proposed by
Lindenfeld and Pennebaker. The ratio of superconduct-
ing to normal-state lattice thermal conductivity as
calculated by Klemens and Tewordt for scattering of
phonons primarily by electrons is supported by our
experimental results. At low temperatures and impurity
concentrations approaching the solid solubility limit,
another lattice thermal-resistivity term was observed
in the superconducting-state data and subsequently
isolated. The magnitude of this additional lattice
resistivity was found to increase with increasing

impurity concentration.
A theoretical expression for the lattice thermal

conductivity limited by point-defect and frequency-
independent or "boundary" scattering, which contained
two adjustable parameters S' and L, could be Gtted to
the experimentally determined additional resistance.
The parameter S2, a measure of the eGectiveness of
point-defect scattering, was found to have values of
similar magnitude to those that would be deduced from
the fractional change of lattice pa,rameter with increas-
ing impurity content. The parameter I, a measure of
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the constant phonon mean free path at very low

frequencies, was found to have values much less than
the specimen diameter. This could be due to a precipita-
tion of cadmium impurity in the alloy matrix.

Finally, in order that the reader might easily obtain
a feel for the relative magnitudes of the eftects discussed,
we summarize the results by listing in Table III the
various conductivities discussed for the most impure
sample, No. 7. It is evident from the last two columns
that the additional phonon scattering mechanism
evident in our data is of quite comparable size to the
electron-phonon interaction. It is seen that, to within

experimental error, the columns add properly, indicating

internal consistency of analysis.
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Transport Equation for a Fermi Liquid in Random Scattering Centers.
I. A Quasiparticle Description in the Macroscopic
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The transport properties of an interacting fermion gas in the presence of randomly distributed scattering
centers and a weak longitudinal force field are studied on the basis of a transport equation for the bare-
particle distribution function. This equation, valid for arbitrary wavelength, frequency, and temperature,
is derived by a generalization of a simple method due to Resibois. For the case of electrons, the transport
equation is given in terms of the mean total electric field in the medium, thereby allowing a direct calculation
of the transport coefn.cients of physical interest. The general theory is applied to the case of a slowly and
smoothly varying driving field, low temperatures, and weak and dilute scattering centers. It is shown, up to
second order in the interfermion interaction, that a transport equation for a quasiparticle distribution func-
tion can be derived. This equation has the form originally suggested by Landau with the interparticle and
impurity scattering terms added. The connection between the bare-particle and the quasiparticle distribution
functions is also obtained.

1. INTRODUCTION

HE linear electromagnetic properties of solids,
such as metals and semiconductors, at low tem-

peratures are determined to a large extent by the im-
purities in the crystal. Within the one-electron approxi-
mation, these properties are calculated on the basIs of
quantum transport equations, which have been derived
by various authors. ' ~ All these theories neglect the

~ Based in part on a thesis submitted by J. L. Sigel in partial
fulfillment of the requirements of the degree of Doctor of Philos-
ophy at the Massachusetts Institute of Technology.

t Operated with support from the U. S. Air Force.
f Permanent address: Physics Department, Northeastern

University, Boston, Mass.
'%'. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957);

109, 1892 (1958).
I D. A. Greenwood, Proc. Phys. Soc. (London) 71, 585 (1958).
IK. Yamada, Progr. Theoret. Phys. (Kyoto) 28, 299 (1962).' C. V. Chester, Proc. Phys. Soc. (London) 81, 938 (1963),

electron-electron interaction and are, therefore, inca-
pable Of describing u priori such effects as the screening
of the impurity potential, electron-electron scattering,
and other more subtle many-body efI'ects. Although the
eGects of the screening and the electron-electron scat-
tering have at times been considered in various applica-
tions in a qualitative way, no convincing and self-
contained theory has been given as yet even for these
simple effects.

Recently progress has been made in the calculation
of the transport properties of a degenerate, homoge-
neous, normal interacting electron gas in dilute random
impurities. Langer' in a series of papers has been able

' P. N. Argyres and E. S. Kirkpatrick, Ann. Phys. (N. Y.) 42,
513 (1967).

J. S. Langer, Phys. Rev. 120, 714 (1960)~ 124) 1003 (1961);
127, 5 (1962). See also remarks by P. C. Martin, ibid. 161, 143
(1967).


