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Spin Density Wave in Chromium and Its Alloys
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Antiferromagnetic, helical, and sinusoidal spin density waves (SDW) in chromium and its alloys with Mn
and V are studied on the basis of a simplihed model of the known band structure of chromium. Octahedral
Fermi surfaces of different sizes are assumed for the electron band and hole band, and these bands are con-
sidered to play the main role in the formation of a SDW; other bands having free Fermi surfaces are con-
sidered to supply electrons to these bands during the formation of a SDW and are called the reservoir. The
exchange potential for each electron due to the SDW mixes the electron band and hole band, and produces
the SDW itself, so that a self-consistency equation is set up and solved. It is found that the sinusoidal SDW
gives the lowest energy. Its wave vector 0 at absolute zero (as well as that of a helical SDW) is the distance
between the parallel surfaces of the electron and hole octahedra, but the distance changes with the supply of
electrons from the reservoir. With the rigid-band model for alloys, it is found that Q jumps at a small
concentration of Mn to a higher value not equal to that for the exact antiferromagnetism, in agreement with
neutron observations. The observed abrupt transition to the exact antiferromagnetism at a higher concen-
tration is not predicted, however. The Neel temperature for a second-order transition is calculated. The
value of Q at the Neel temperature increases rapidly with increasing Mn concentration and attains the value
for the exact antiferromagnetism, in agreement with observations. A discussion of the magnetic moment
amplitude is given.

I. INTRODUCTION
' JURE chromium has a sinusoidal spin order below

T&=310'K, as observed by neutron diGraction
experiments. ' Its wave vector is parallel to one of the
cubic principal axes, the crystal being bcc, and has a
magnitude close to 2 /az(a being the lattice constant),
with some variation with temperature. The spin polari-
zation is perpendicular to the wave vector down to
121'K but becomes parallel below this temperature.
The fact that the spin order remains purely sinusoidal
down to very low temperatures, as far as neutron
diGraction can tell, and that the specific heat anomaly
at the Neel temperature is very small, ' suggests that
the spin ordering is the formation of a spin density wave
(SDW) from exchange-interacting conduction-electron
spin s.

Neutron diGraction experiments on binary alloys, '
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Cr-Mn and Cr-V, and ternary alloys, ' Cr-Mn-V, show
that the addition of 3d electrons increases both the
average magnetic moment per atom and the Neel
temperature. Also, it increases the magnitude of the
wave vector, Q. At a certain concentration that corre-
sponds to a few tenths of an atomic % of Mn and at
temperatures immediately below T~ the magnitude of
Q jumps to the exact value 2 /as. At 4.2'K, however,
a smaller jump (or a smaller rapid increase) to a value
less than 2'/a is observed at about the same concentra-
tion. Furthermore, for concentrations exceeding 1.5
at.

%%uo th ecornmensurabl eantiferromagnetis m, with
2s/u, is observed. The subtraction of 3d electrons
decreases both the average magnetic moment and T~,
and it also decreases the magnitude of Q, all mono-
tonically.

The purpose of the present paper is to develop a
theory for the SOW in chromium and its alloys on the
basis of the band picture of chromium and to interpret
thereby some of the interesting observations mentioned
above. In order to make detailed calculations possible,
the band picture will be somewhat simplified, and the
rigid-band model will be assumed in discussing the
alloys.

As is well known, the idea of the spin density wave
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was proposed originally by Overhauser. ' He expected a
SDW state, having Q of magnitude equal to twice the
Fermi radius, to be the stable state in a free electron
gas. However, a number of investigators, including
Hamann and Overhausers as well as Fedders and
Martin, ~ both of whom took properly into account the
screened Coulomb interaction for the exchange inter-
action among the electrons, have disproved the stability
of a spin density wave in a three-dimensional free
electron gas. On the other hand, a study of a specialized
single-band model made by Tachiki and Nagamiya'
and Nagamiya and co-workers, ' as well as that made
by Penn, " have shown that a spin density wave is
stable in a certain range of the values of the param-
eters involved in the theory. The band models they
assumed are, however, remote from the band in
chromium. All these theories are based on the Hartree-
Fock approximation, as will be the theory of the present
paper.

The band structure of chromium has become known
well in recent years by a theoretical consideration of
Lomer, " indirect information gathered from experi-
ments on Mo and W,"and band calculations made by
Loucks, "Mattheiss'4 (for W), and Asano and Yama-
shita. ' In the paramagnetic state, there is an electron
Fermi surface of nearly octahedral shape at the center
of the Brillouin zone, and there are hole Fermi surfaces
around the (100) corners of the Brillouin zone, which
also form an approximate octahedron in the repeated
zone scheme. Furthermore, there are six smaller electron
Fermi surfaces located between the central electron
Fermi surface and the hole Fermi surfaces at the corners,
and it was shown" that a high density of states is
associated with these six Fermi surfaces. "It was sug-
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"There are also hole Fermi surfaces centered at each face

center of the Brillouin zone dodecahedron. These are reported to
be associated mainly with p-type wave functions. We neglect
them or we may include them in what we call the reservoir.
Other Fermi surfaces reported are associated mainly with d-type
wave functions.

gested by Lomer" that the central electron Fermi
surface and the corner hole Fermi surfaces would be
responsible for stabilizing a SDW. A SDW having
Q that measures the distance between one side of the
electron octahedron and the same side of the hole
octahedron will couple the Bloch states of the electron
band to the Bloch states of the hole band in such a way
that the occupied states in both bands are lowered and
the unoccupied states are elevated. A self-consistent
treatment based on this idea was made by Fedders
and Martinr in a simpli6ed way, and they obtained
good results for the relation between T~ and the ampli-
tude of the SDK at absolute zero, as well as for the
variation of the amplitude with temperature. However,
they assumed spheres of the same size for the electron
and hole surfaces and disregarded the periodicity of the
energy surfaces in the reciprocal-lattice space, so that
they could not give any information about the value of
Q nor could discuss the relative stability of a helical
SDW and a sinusoidal SDW.

In the present paper we replace the near octa-
hedra of the electron and hole Fermi surfaces by exact
octahedrons, a smaller octahedron being assumed for
the electron Fermi surface than for the hole Fermi
surface in the case of the pure chromium. In the case
of alloys the sizes of these octahedra are varied in
accordance with the number of 3d electrons, using rigid-
band model. We discuss the relative stability of three
SDW's: helical and sinusoidal SDW's with Q not equal
to 2 / sraand exact antiferromagnetic SDW with
Q= 2s./u. We also consider a flow of electrons from the
third band (having six Fermi surfaces at intermediate
positions) to the electron and hole bands that partici-
pate in the formation of the SDW. This fl.ow, which
occurs in the process of the formation of the SDW, is
found to be important. Finally, we study the Neel
temperature and the value of Q at the Neel temperature.

II. GENERAL IDEA OF THE THEORY

To avoid complications that we would meet in the
exact Hartree-Fock treatment, we adopt in our line of
thought an approximation introduced by Slater' where
the exchange effect is taken care of by an exchange
potential common to all electrons. If, further, the
electron system is approximated at each local point
by an ensemble of free electrons, then this exchange
potential is given by 3es(3/47—r)'t'(n~)'ts, where n~
are the number densities of up-spin electrons and down-
spin electrons, respectively, at a point under considera-
tion. LAn electron with up or down spin digs a hole of
radius r+——(4s-n+3) "' in the sea of up- or down-spin
electrons by the Pauli principle, and this hole gives an
electrostatic potential energy for the electron which is
approximately equal to —3e'(3/4nr)'ts(n+)'ts. ] If we
denote by V~(r) the exchange potentials for up-spin
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electrons and down-spin electrons, respectively, and
write —,'PV+(r) —V (r)j= V(r), then an up-spin electron
is subject to the potential V(r) and a down-spin
electron to —V(r), besides to the common exchange
potential 2LV+(r)+ V (r)j and the Coulomb potential.

When there is a SDW, the net spin density, S(r), is a
function of position r; both its magnitude and its
direction vary with r If. the direction of S(r) at point
r is denoted by f, the potentials V(r) and —V(r) may
be written collectively as V(r)or, where or is the Pauli
spin matrix. If we denote by x, y, s the coordinate
system 6xed in space and by /, m, n the direction
cosines of f', then we can write or fo——,+.mo.„+no,
Writing V(r)/= V, (r), V(r)m= V„(r), V(r)e= V, (r),
we have

V(r)or= V,(r)o,+V„(r)o„+V.,(r)a, = V(r) e.

Thus, each electron is subject to the spin-dependent
potential V(r) e besides the spin-independent Coulomb
and exchange potentials. If there is no variation of
electron density in association with the SDK, the
Coulomb potential is a periodic function of the lattice.
Still, the spin-independent exchange potential, -,'t V+(r)
+V (r)j, may vary with the period of the SDW, since
n '~'ande '~'cannot be identified with L(e++m )/2$'"
unless the difference between e+ and e is small. We
shall, however, assume that e~—e is small (compared
with e++e ) so that the spin-independent potentials
are functions with the lattice period only and they
determine the Bloch functions. In this approximation
we obtain the proportionality between V(r) and S(r),
i.e., V(r)= —JS(r), where J is, in general, a periodic
function of the lattice but we assume it to be a constant.
(For our discussions in subsequent sections it does not
matter whether J is a constant or a periodic function
of the lattice. )

The self-consistent treatment of a SDW will be as
follows. We take linear combinations of Bloch functions
with up and down spins to diagonalize V(r) e. The
corresponding eigenfunctions will be denoted by f,~, i
being the index of the new bands and k the wave vector
of the representative Bloch function contained in the
eigenfunction. The spin density S(r) is then obtained
as g;Pqf, ~* (o/2)f, q, where the double summation
is extended over occupied eigenstates and the center dot
means summation over spin variable. While this is the
spin density at absolute zero, the spin density at a finite
temperature can be obtained by putting the Fermi
distribution factor to the summand and taking summa-
tion over all possible states. The spin density thus
obtained, times —J, must be equal to V(r), and this
equation is the self-consistency condition.

Instead of solving the self-consistency equation
directly, we may take the matrix elements of both
sides of it with respect to Bloch functions and solve
the resulting equations, since Bloch functions form a
complete set. This procedure will be followed in the

present paper. However, we shall take the average of
the matrix elements over the Bloch states and hence
deal with a single self-consistency equation, instead of a
system of equations.

In the present paper we study three types of SDW,
i.e., antiferromagnetic, helical, and sinusoidal SDK s,
and compare their relative stability by calculating
their total energies. Ke consider that the bands asso-
ciated with the Fermi surfaces of electron and hole
octahedra play the essential role in the formation of
a SDW and assume that the wave vector 0 for the
helical and sinusoidal SDW's is such that it measures the
distance between the parallel surfaces of the electron
octahedron and hole octahedron, as long as we are
concerned with absolute zero. This gives the lowest
energy, and in fact we checked it by some numerical
computations. However, we do not merely take the
Fermi surfaces that we have in the paramagnetic
state. We consider a possible Qow of electrons from the
third band (which we shall refer to as reservoir) to the
bands of electron and hole octahedra. By this Qow
the electron octahedron will enlarge and the hole
octahedron will diminish, if no SDW is yet formed. We
take the value of Q to be the distance between the
parallel surfaces of these new Fermi surfaces, but we
determine the amount of Qow and hence the value of

Q by minimizing the total energy of the system after
constructing the SDW. The total energy will consist
of two: the work necessary to transfer an amount of
electrons from the reservoir to the bands of electron
and hole octahedra, and the formation energy of the
SDK. The latter is calculated by taking the sum of the
one-electron energy eigenvalues of the occupied states
in the presence of the SDW and subtracting half the
sum of the one-electron exchange potential energies.

The Neel temperature is determined as the tempera-
ture where the amplitude of the SDW vanishes, pro-
vided we assume a transition of the second order. In
the present paper we shall not calculate the temperature
dependence of the SDW amplitude. We shall calculate
only the Neel temperature, assuming a transition of
the second order. Here the value of Q is not necessarily
the same as that for absolute zero. Ke have to determine
it by minimizing the free energy of the system; alterna-
tively, we may determine it by maximizing the Neel
temperature with respect to Q. Our calculation will
show that the value of Q thus determined is different
from that for absolute zero.

Furthermore, the Fermi level will, in general, vary
slightly with temperature, and this will affect the Neel
temperature and Q. We shall give some discussion on
this point in Sec. VII.

IH. ANTIFERROMAGNETIC SOW

In this section and in Secs. IV and V we shall disre-
gard the electron Qow from the reservoir to the electron
and hole bands participating in the formation of a
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SDW. By band u we denote the band having the octa-
hedral electron Fermi surface at the center of the Brill-
ouin zone, and by band b, the band having the octa-
hedral hole Fermi surface at (100) corners of the Bril-
louin zone. Matrix elements of the SDW exchange
potential between bands u and b will be considered,
but matrix elements within the same band and those
involving the reservoir will be neglected. The octa-
hedral form of the Fermi surfaces of bands a and b

will be assumed as exact, and writing the component
of V33 normal to the octahedral surface in each octant
(i.e., k,+k„+k, in the first octant) simply by k, we
assume the following linear energy spectrum for band u:

e, (k) =a(k —k.),
where k, is the value of k at the Fermi surface. Similarly,
for band b we assume

es(k) = —P(k —ks),

where k is again the normal component of v3 times the
wave vector measured from the center of the hole
octahedron (Fig. 1). Considering band calculations, we
assume for pure chromium k,=0.35 and kq=0.40 in
units of 2z-/a; these values are somewhat smaller than
those obtainable from Ref. 15. We write kI,—k.=80,
reserving 8 without su%x for the value of k~—k, that
we would have when we force a Row from the reservoir
in the paramagnetic state. 50 depends on the concentra-
tion of 3d electrons when we consider alloys.

We first consider antiferromagnetic SDW with
Q=2v./u at absolute zero. For convenience, the spin
polarization will be assumed to be along the x axis.
Then the exchange potential of the SDW will take the

ky

FEG. 2. Partition of the Brillouin zone into six octahedral
domains in the case of an antiferromagnetic SDW; the (k»k„)
cross section is shown.

form

P'(r)o, =-'s U(r)Leos(-,'K, r)+cos(-', K„r)
+cos(-,'K, r)]o. , (3)

where U(r) is a function having the bcc space group
synnnetry with maxima at atomic positions and
K,= (4ir/a, 0,0), etc. , are reciprocal lattice vectors
parallel to the cubic principal axes; the sum of cosines
in (3) represents the antiferromagnetic pattern, taking
a value of 3 at corner sites and a value of —3 at body-
center sites. Writing the Bloch functions of bands a
and b as

p, i, ——exp(ik r)us(r), psq ——exp(ik r)vs(r), (4)

we take the matrix element of the potential (3) with
respect to p sn and ass P, n and P being up- and down-
spin functions. This matrix element is nonvanishing
only when k'—=k+K,/2 (i=x, y, z), where = means
equivalency, or equality up to an additive reciprocal
lattice vector. The same matrix element exists between
Q~sP and P sq.u. We write

g.a*&(r)4 ss «

Vr exp +,~i; rlk*rek rdr. 5

H
/

//

///

Here we take &K; as follows. We divide the Brillouin
zone by (110)-type planes into six octahedral domains,
1, 2, , 6, as shown in Fig. 2. lf k is in domain 1,
then k'=k —K,/2 is in domain 2, so that we take
—K, for &K, ; if k is in domain 2, then k'=k+zK, is
in domain 1, so that we take +K„and so on.

Corresponding to nonvanishing V». given by Eq. (5),
we obtain energy eigenvalues from

e.(k) —E&'

Vkk'

Vkk'

es(k') —E
=0

FIG. 1. Schematic representation of the electron Fermi surface
of size k, and the hole Fermi surface of size ks in the Brillouin +=pa+= rLe, (k)+e&(k )jzone. Q is the magnitude of the wave vector of the helical or
sinusoidal SDW at absolute zero.
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and eigenfunctions as

fk= A kq4k~+Bk 4 ak P, fk'= A k4.4+Bk 4 t k ~, (&)

where

Ak= Vkk/(L~. (k)—&j'+I V» I'}'" (8a)

Bk. —P——g, (k) —Ej/(Le, (k) —Ej'+ ( Vkk. ('}'». (8b)

From Eqs. (6), (8a), and (8b) it follows that

A.B'=~lV-/(!L. .(k)—"(k)~+IV- I'}'» (»
The spin density S(r) can be calculated as the following
sum over occupied eigenstates:

S(r) = E L6* (k~*)&k+&k" (k~*)&k')

LAk Bk'Pak Qbk'+AkBk' 4sk4&bk'

= p LAk*Bk. exp(a-', iK; r)Nk. *~k.

+complex conjugate j. (10a)

This function has the antiferromagnetic pattern, since
by displacement r -+ r+ (-,' a,—,'a, ~~a) the exponential
factor in (10a) changes sign, Nk* and ek. do not change,
and obviously the function has cubic symmetry. The
two conjugate terms in (10a) are equal to each other
when summed over occupied states. To see that, we
choose for convenience the phase factors of the Bloch
functions in such a way that I &= I&*, e &= n&*. Then
V g, g =t/'gg*, so that A g*B g. ——AgBg.*——At,Bt,
(Bk. is real). In the sum of the 6rst term of (10a) we
replace k and k' by —k and —k', respectively. Then
we obtain the sum of the second term. Thus,

S(r)= p 2LAkBk. exp(a-', iK; r)ukvk j ~ (10b)

The self-consistency equation is V(r) = JS(r)—
Instead of dealing with it directly, we multiply both
sides of it by p,„*p&„(r.'= x&-',K;, j=x, y, s) and inte-
grate. Then we have

V„„=—2J Q AkBk. expL-', i(+K;+K,) r]
OCC ~

XQkvgi N~ v„l(k. (11)

(Here J could be placed after the integration symbol
if it is a periodic function of r.) We now make the
approximation of replacing the integral of Eq. (11)
by a positive constant p' and Vkk (also V„.) by a
positive constant g. The nature of this approximation
will be discussed later. Then, using Eq. (9), Eq. (11)
can be written in a simple form as follows:

g= Jy'g Q W{-,'Le, (k)—eg(k')7'+g'} '» (12)— .

(6) for e, (k)=eq(k'). The double sign in Eq. (12)
corresponds to that in Eq. (6). The solution g= 0 gives
the paramagnetic state, whereas the nonzero solution
gives the state of a SDW. The latter was computed
numerically, and the results will be presented in Sec.
VIII. For 6nite temperatures we have the Fermi
distribution factor f(Ek+) = Lexp(Ek+ —Er)/kT+1g '
in the right-hand side of Eq. (12).

In order to see whether or not the SDW state is more
stable than the paramagnetic state, we calculate the
total energy of the system in the SDW state referred
to that in the paramagnetic state. This energy is
expressed as

The 6rst surmnation is extended over occupied eigen-
states in the presence of the SDW and the second
summation over occupied states in the paramagnetic
state. The factor 2 to E~+ cares for the two eigen-
functions pk and pk' which have the same energy
eigenvalue, and the factor 2 in the paramagnetic term
is for the spin degeneracy. With the use of Eqs. (6)
and (7), and with the approximation made above,
EHD~ can be written as follows:

Zsnw ——2 2 Whirl —(x'+ g')'»

+ha'(*'+S') "'j (14)

g= g 6~ 6y (15)

Numerical results for EgD~ will be discussed also in
Sec. VIII.

In the rest of this section we discuss the validity of the
approximation of replacing the integral of Eq. (11) by
y' and V~q by g. This is made in two steps. We 6rst
assume that Nk(r) and vk(r) are well localized around
atomic positions. This assumption is supported by
band calculations. " We express Bloch functions in
terms of Wannier functions:

y.k(r) =X—'» g exp(ik R„)w.(r—R„),

pt,k(r)=X "kg exp(ik R )wq(r —R„),

where R 's are the atomic positions and E is the total
number of atoms. Then,

v„k.——x—' g P exp( —ik R„+ik' R„)

~--= Z (2E"—:L«.I V()-.i~.)

+«"*IV(r)~*16')j}
—g 2)e.(k)+eg(k) j. (13)

This is the self-consistency equation to determine g,
or the gap 2g which appears in the energy expression

V r m,* r— mg r—R„dr.
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The Wannier functions are well localized, so that the
integral has an appreciable value only when R„=R .
Hence, for k'= k'~-,'K;,

Then we have

exp W~z; r Spent dr.

V„,=z-i g exp(+-,'iK; R.) This is a positive real constant.

X V(r)w, *(r—R„)wq(r—R„)dr.

The exponential factor in this expression is 1 for corner
sites and —1 for body-center sites, and V(r) has
opposite signs at these sites according to Eq. (3).
Therefore we can write

V~q = V(r)w, *(r)wt, (r)dr,

which is a constant independent of k, k'. The integral
appearing in Eq. (11) can be treated in a similar way.
The vector —',(WK;&K;) is a reciprocal lattice vector,
so that expL:,'i(WK;~K;) R„]=1.Hence the integral
can be written as

w, (r) I

'
I w&(r) I

'dr

which is a positive constant.
In the second step we consider a more general case.

Since the bands a and b have cubic symmetry in k space,
their Bloch functions can be assumed as invariant
under simultaneous cubic rotations of the r space and
k space. Furthermore, they are invariant under simul-
taneous inversion of the two spaces. The inversion
gives the relations

N g(—r) =Ng(r) =Ng*(—r),
e i (—r)=~a(r)=~a'( —r).

By replacing the integration variable r in (5) by —r,
we see that V&& is equal to its complex conjugate,
i.e., it is real. This will support the replacement of
V&& by a real constant g, if we take its average over
k. Although the averaging procedure cannot be de6ned
precisely, we may consider that V» has cubic sym-
rnetry in k space and that the most important contri-
bution of V». to the self-consistency equation arises
from those k which are in the vicinity of the Fermi
surface of band a and for which the corresponding k'
are in the vicinity of the Fermi surface of band b.
Thus, taking an average of V~~ with some weight near
the Fermi surfaces, we may be allowed to replace
V~~. by its average value.

Since A&B& also has cubic symmetry, we may
replace the integral in Eq. (11) by its average over k.
Further, we take the average of the result over x.

IV. HELICAL SDW

If we suppose that the antiferromagnetic SDVf
pattern whose exchange potential is represented by
Eq. (3) is twistecl about the s axis with a wave vector
of magnitude q(=2~/a —Q), then we would have an
exchange potential of the form

V (r) (0, costs+0„sings),

where V(r) has the antiferrornagnetic pattern repre-
sented by Eq. (3). Generally, however, the spin direc-
tion may not turn uniformly as the position advances
in the 2 direction, that is, it may stay nearly constant
in the neighborhood of the 3d shell of an atom, turn
swiftly between atoms, and then stay again nearly
constant in the neighborhood of the 3d shell of the
adjacent atom. Therefore, the general form of the
exchange potential will be of the form

V(r) exp( —iq r)s++ V(r)* exp(iq r)s—, (19)
where

s 2 (&@+tired) y s —
2 (K~ $%t/) p

and where V(r) is now a complex function whose
phase angle varies with the period of the lattice in such
a way that it changes by x in going from a corner site
to a neighboring body-center site. The sum of the phase
angle of V(r)* and the angle q r is the angle specifying
the direction of the spin density vector in the xy plane.
Taking the origin of r at an atomic site, we assume for
convenience that the phase angle of V(r)* is zero at
r=O.

Furthermore, we may assume that the spin density
pattern has inversion symmetry with respect to r=0,
i.e., that we see the same rotation and the same varia-
tion of the spin density vector when we go from the
origin in any opposite directions. This means that
we may assume V(—r)= V(r)*. We will show later
that with this assumption we obtain a spm density
pattern having the inversion symmetry so that the
assumption is self-consistently supported. Other sym-
metry property of V(r) is its tetragonality, since we
assume q to be parallel to the z axis, i.e., the L001j axis.

The first term of (19) has a nonvanishing matrix ele-
ment between p,q~n and pi~.P for k'=k+q&i2K;.
This matrix element can be written in the same form
as (5). In the present case, we divide the Brillouin
zone into six domains by (110)-type planes in the way
shown in Figs. 3(a) and 3(b); these planes meet at the
point k= —q and the point k= q, respectively. If k is
in domain 1 of Fig. 3(a), then k'=k+q —2K, is in
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equation is

V(r) = —2J Q AkBk Nk(r)vk. *(r) exp(W-', iK;.r). (23)

kz kz

FIG. 3. Partition of the Brillouin zone into six domains in the
case of a helical SDW; (a): domains for h, (h): domains for
k'=k+g+~~K;, ~=@,y,s; q=-,'K,—Q.

S (r) = Q [yk* s pk+yk'* s y ']

= Q AkBk ukvk *exp(&sriK, "r) exp( —iq. r)
OCC.

+Q A kB k uk*vs exp(a-', iK; r) exp( iq r), —
OCC.

where in the first sum over occupied eigenstates k' is
k+q&-', K, and in the second sum over occupied states
k' is k —q&-,'K, . Replacing k and k' by —k and —k' in
the second sum, we see that this sum is equal to the
6rst sum. Thus,

S (r)=2 p AkBk Nkvk *exp(W-,'iK; r)

domain 1' of Fig. 3(b); if k is in domain 2, then k'=k
+q+ —',K, is in domain 2', and so on. The second term
of (19) has a nonvanishing matrix element between

P k*P and Psk n for k' —=k—q&srK;. The domains for
k and those for k' are interchanged. The matrix element
is the same as (5), except that V(r) is replaced by
V(r)*. Replacing the integration variable r by —r and
using the relations (16) (the first equality), we see that
the matrix element is V k, ~ . Furthermore, replacing
r by —r in (5) and using the second equality of (16),
we see that V~k = V~~.*. The eigenfunctions are,
therefore, expressed in the forms

leak Akp kQ+Bk'ljksk'P (k'=k+q+-', K,), (20)

4k'=A kp. ke+B kgsku (k'=k —q+-,'K;), (21)

where Ak and Bk are given by (8a) and (8b), respec-
tively, and are real.

The spin density can be calculated as follows. For
the minus component we have

Here the coefficient AkBk is given by Eq. (9). We
see from Eq. (23) that, by inversion, V(r) changes to
its complex conjugate. Furthermore, V(r) is clearly
a periodic function changing sign by displacement
r —+ r+ (sra, sian sa). Since q is assumed to be Parallel to
[001], k and k' of the occupied eigenstates have
tetragonal symmetry in k space, so that V(r) also has
tetragonal symmetry in r space.

We multiply both sides of Eq. (23) by p, „*ps„
XexP(—iq r), where x'=x+q+srK;, and integrate.
Then we have

V„„.= —2J Q AkBk exp[-', i(TK;+K,) r]
XNkvk *N.*v„.dr (2.4)

As in Sec. III, we replace V~~ and V„„by a constant

g [Vkk appears in Eq. (9) for AkBk ] and the integral
of Eq. (24) by a positive constant ys after replacing it
by its average over k and x, as expressed by Eq. (17).
The value of y' for the present case can be diferent
from that for the exact antiferromagnetic case, since
k and k' are not related in the same way. However, if
one replaces q by —q, the value of y' in the present
case, defined by Eq. (17), goes over to itself. To see

that, consider first that k and k' are related by k'=k
—q+srK; in Eq. (17) and that six domains for k and
six domains for k' are the inversion of those depicted
by Figs. 3(a) and 3(b), respectively. Then, replacing
r by —r in Eq. (17) and observing that Nk( —r)
and vk*(—r) are, respectively, equal to u k(r) and
v k*(r) [see Eqs. (16)], one finds an expression with

and —k' in place of k and k'. Now, invert the sign
of k and k'. Then, one finds the original expression,
where k and k' are related by k' =k+q& is K; and the
domains for k and k' are the same as Figs. 3(a) and
3(b). Thus, ys is an even function of q, and we neglect
its q' dependence.

For the self-consistent gap equation we obtain the
same equation as (12), where, however, k and k'

are related by k'=k+q&-,'iK, . For the total energy of
the formation of the SDW we obtain the same expres-
sion as Eq. (14), neglecting a small change of the
distribution of k and k' in k space in the process of the
formation of the SDW. Discussion of the solution will

be given also in Sec. VIII.

V. SINUSOIDAL SDW
Xexp( —iq r),

(k'= k+qa-,'K;). (22)

For a sinusoidal SDW we assume the exchange
potential in the form

The complex conjugate of this expression is obtained
for S+(r). The exchange potential (19) should be equal
to —J[S (r)s++S+(r)s ], so that the self-consistency

2V(r)o, cosq r, (25)

where V(r) is a real function having an antiferromag-
netic pattern and tetragonal symmetry as we assume
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q to be parallel to [001] (and small). A factor of 2 is
used just for the sake of convenience, but it makes us
write the matrix element of (25) as V1,2 with the
definition of (5). The potential (25) connects p, 1,12 to
both P b2 P and 1// b2 "P, where k'= k—q& 2 K; and k"=—k
+q&22K;. It connects Pb2P further to $,2".n, with
k'"—=k—2q, and gb1, p to p, 1, - n, with k""—=k+2q,
and so on. Here n and P may be interchanged. Thus,
we have to do with a matrix of infinite dimension.
However, even if we had solved the problem of diago-
nalizing this infinite matrix, we still have a difFiculty.
The spin density that we would obtain with the use
of the exact eigenfunctions would contain harmonics
having wave vectors 2q, 3q, etc., so that the starting
potential of the form of (25) would not be valid. In
order to obtain a SDW in a self-consistent way, we
have to start with an exchan'ge potential containing
harmonics of indefinite amplitudes and have to work
out self-consistent equations to determine these ampli-
tudes.

We assume that harmonics in the SDW are small and
start with (25). We take exactly into account the inter-
action between two Bloch states, one in band a and
the other in band b, when their energies, 2 (k) and
2b(k'), are nearly equal to each other, but we take the
neighboring two states with 2b(k") and 2,(k'") as
perturbing the former two. Here either

k'—=k—q+-,'K, =k+Q, k"=k—Q, k'"=—k+2Q (26)

ol

k'=k+q —-,'K, =k—Q, k'=—k+Q, k"'—=k—2Q. (27)

Furthermore, in the spin density function we neglect
harmonics. Thus, we set up a self-consistency equation
only for V(r) of (25), or for its matrix element V2b
which we put again to be a constant, g. This approxi-
mate treatment will not be valid for q —+0, unless g
tends to zero at the same time.

We have then to solve the following secular equation:

eb(k")-E
g
0
0

g 0 0
e.(k)-E g 0 0 (28)

g bb(k') —E g
0 g 2.(k"')—E

Taking states k" and k"' as perturbations, we obtain
energy eigenvalues up to order g' as follows:

2 (2s+ 2 b )+ (g2+ g2) 1/2 g2 (2~ 2 b )
—1

2g2(2b~l 2 )
—1~1g2g(g2+g2) —1/2

&&[(2.
"'—2b') '—(2b"—2.) '] (29)

Here 2, (k), eb(k'), etc., have been abbreviated as 2„
Eb etc., and x is defined by Eq. (15). The expression
(29) is valid when 2

"' 2b' and 2—b" 2, are m—uch
greater than g. This condition may not be satisfied for
some k for which 2,' —2b or 2b —2, vanishes or
becomes small. Still, (29) can be used when we take a
sum over such k, by taking the principal value.

b

kz
/'

//'r
/

/
/

/

/

H ~b
//

/

FIG. 4. Partition of the Brillouin zone for band a:I,+ for the left
half, II for the right half, + representing outside and inside the
Fermi surface. Also, partition of the displaced Brillouin zone for
band b with similar notation. These partitions are for convenience
in the calculation of the sinusoidal SDW.

= Q (A2B2. exp[i(k —k') r]N2v2. *
OCC ~

+A2C2~~ exp[2(k —k) 'r]N2 v2i~

+By D/,".exp[i(k' —k"') r]u2 .i*vb.

+c.c.+. ) . (31)

To decide which of (26) and (27) is to be used, we
divide the Srillouin zone into four regions, I, III, II,+, for band c, as shown in Fig. 4, where I and
II refer to the negative and positive sides of the k. axis,
respectively, and ~ indicate the regions of negative
and positive energies, i.e., inside and outside the Fermi
surface. We also divide the Brillouin zone displaced
by 2K. for band f/into four regions, Ib, I b+, IIb, IIb+,
with a similar meaning. Q (=-2E,—q) is the distance
between parallel Fermi surfaces as shown in Fig. 4.
Then, when k is in I, , k'=k+Q is in Ib+, and when
k' is in Ib, k= k' —Q is mostly in I,+, some of k=—k' —Q
being in other regions. In these cases we may assume
(26) and take the lower branch of the energy (29).
Considering in a similar way in other cases, we assume
as follows:

When either k is in I, or k' is in Ib, we assume (26)
and take the lower energy branch. When k is in I,+ or
k' is in Ib+, we also assume (26) but take the upper
energy branch. When either k is in II, or k' is in
IIb, we assume (27) and take the lower energy branch.
When k is in II,+ or k' is in IIb+, we also assume (27)
but take the upper energy branch.

Corresponding to the secular equation (28), we
obtain eigenfunctions in the following forms:

41=A24.1 ~+B~ 4 b1 P+C2"4 bW P+D1 -4.2- 12,

(30)
P/'=Ab4 bP+B/ 4b2 n+C1,"Pb/, "/2+D1, "g,& P

Here the coefFicients are all real. The spin density is

S(r)= P [y *.(-,'.,)P+y '*. (-,',g ']= P P *...y
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The three terms written explicitly in (31) are propor-
tional to exp(iq r) if Eqs. (26) are used or proportional
to exp( —iq r) if Eqs. (27) are used. Terms represented
by dots are harmonics which are proportional to
exp(&2iq r) or exp(+3iq r); they will be neglected.
As before, we multiply S(r) by —Jp,„*@&„,integrate,
and put the result equal to V„„,or g (the integral of
2V(x) cosq r times g, „*ps„ is V„„ if we define the
latter by Kq. (5)]. In the process of this calculation,
if we assume Eqs. (26) and put k'=k —qa2K; and
2t'= x—q+-,2K;, we obtain integrals

AkBk. is essentially the same as (9), with V». replaced
by g, but it contains an extra term arising from the
perturbation calculation. The remaining two terms in
Eq. (32) are due to the perturbation. Neglecting second-
order quantities of g/(e

"'—es') and g/(es" —e,) com-
pared with unity, we obtain the final result"

g
2 J~2g Q (~ (~2+g2)—1/2+ (e 1&1 eke) 1+ (eke—& e )

—1

~g(g2+g2) —1/2L1 Lg2/(g2+g2)]

&&L(e,
"'—es') '—(es"—e )

—']) (33)

expL22(WK;&K&') 'r]ukvk~ u„vs~dr 1

exppsi(aK;aK;) r]uk*vk u„*v„.dr,

exp)2i(+K;WK;) r]u," *vk u„*v„dr.

g +P Q P+k+k'++kck" +~k'Dk'"] ~ (32)

(Here the K s appearing in the three integrals are not
necessarily the same. The relation k'= k—q& 2K;
means that &22K; is so chosen that both k and k' are
within the Brillouin zone; this applies for the first
integral. In the second integral, &21K; corresponds to
k"—k=q+21K;, both k and k" being in the Briilouin
zone. In the third integral, +-2,K; comes from k' —k"'
=q+-2'K;, both k' and k"' being in the Brillouin zone. )
We replace all these integrals by the constant p'
defined by Eq. (17). This replacement is justified in
the case of well-localized Wannier functions, as we
have shown in Sec. III. In a more general case, we may
put q=0 and take an appropriate average over the
wave vectors. The errors to be introduced by putting
q= 0 should be of order q', since a sinusoidal SDW does
not change by reversing the sign of q (and the self-
consistericy equation to be derived below does not
depend on the sign of q). One might be worried about
whether or not the second and third integrals would
yield positive real values, since the asterisk (*) is on
both u's. However, on averaging over k or k' these
vectors pass a point in k space as well as its inversion
point with respect to the origin, so that for instance in
the second integral k and. k" can be replaced by —k
and —k", respectively, and u k*v k" can be converted
to ukvk. * by Eqs. (16). In the case where we put u'= 2t

+q&2K;, we obtain integrals of the same forms but
of diBerent values if we are to be exact. However, in
the present approximation they are the same.

The three integrals are the coeKcients of A~8~,
A~C~-, and B~.D~", respectively, in the expression
for the matrix element of S(r). Thus, we obtain the
self-consistency equation as

When we compare this equation with Kq. (12),
which is applicable to antiferromagnetic and helical
SDW's, we find an extra factor of ~ in the right side
of Eq. (33) besides terms arising from perturbation
calculations. However, in the sinusoidal case, half of
the Fermi surface of band a, lying on the side of nega-
tive k„ interacts with the same side of the Fermi
surface of band b situated at L001], and the remaining
half of the Fermi surface of band u interacts with the
corresponding side of the Fermi surface of band b

situated at L001], so that the Fermi surface of band a
vanishes completely. A similar situation occurs with
the Fermi surface of band b, although this may not
vanish completely because this is larger. In the case of
a helical SDW such vanishing occurs only on one side
of the Fermi surface. Since those values of k for which
x vanishes or x is of order of g make main contribution
to the sum in Eq. (33) through the first term, we have
about the same equation for the sinusoidal SDW as for
the helical SDW, the factor —,

' being nearly cancelled
because of the situation mentioned above. Thus, we
obtain about the same value of g in these two cases.
However, the energy of formation of the SDW, which
is negative, is about twice as large in the sinusoidal case
as in the helical case due to the same situation. Hence,
the sinusoidal SDW is more stable than the helical
SDW. We will show these facts by numerical computa-
tions in Sec. VIII.

Neglecting a small change in the distribution of
occupied k's in going from the paramagnetic state to
the SDW state, we obtain the energy of the formation
of the sinusoidal SDW as

Esr&w= Q (28k+—2LQk*~ 2V(r)o, cosq r~Pk)

+Qk'*~ 2V(r)o, COSq r~gk')])

—P 2Le.(k)+es(k)], (34)

where E~+ represent the upper and lower branches of
the energy (29). The potential energy term in Eq.

K. Motizuki, A. Shibatani, and T. Nagamiya, J. Appl. Phys.
89, 1098 (1968). Equation (6) of this reference differs from
Eq. (33) of the present paper in that the former lacks the term—(~)g'i(x'+g') which appears in the latter. We shaB discuss this
point in Sec. VQI.
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(34), i.e., the last two terms in curly brackets, is equal
to 2g(At,Bt, +At,Ct, +Bb,Db ), and the final result is

u and b. We will denote it by E&„,f„.We now con-
struct a SDW, antiferromagnetic, helical, or sinusoidal,
using k,' and kb' in place of k, and kb and in the way
described in previous sections. The formation energy
will be denoted by Esnw as before. Then Esnw+Etpg~s fey

is the change of the energy of the whole system, which
we will denote by hE. This dE is plotted as a function
of k@'—k,'=8, with k@—k, =80 as a parameter, and the
lowest minimum is looked for. By this minimizing pro-
cess we can determine the value of 8, and hence of e,
and we are assured of the equalness of the Fermi level
of the reservoir and that of the bands u and b. The
value of 8 is the value of the wave number q (=2~/a—Q) of the SDW in the helical and sinusoidal cases.
In the antiferromagnetic case, the wave number is
always 2s/a.

Esnw ——2 P ~{( g( —(g~+g&)~~P+~gP(g&+ gP)

~&g4g(g2+g2)
—3/2((p &&~ pbI)

—1 (pb&& p )-17) (3$)

VL ROLE OF RESERVOIR

Band calculations" show that a high density of states
is associated with the third band which we called the
reservoir in Sec. II. The density of states of this band
at the Fermi surface, which will be denoted by p (p/E
per atom), seems to be 2.4 times the total density of
states of bands u and b at their Fermi surfaces. In the
process of the formation of a SDW, a certain number e
of electrons will Qow from the reservoir to the bands u
and b. The Fermi level of the reservoir will be depressed
by n/2p, since there are both spins, and the work needed
to remove e electrons from the reservoir will be -', e(e/2p)
=n'/4p. If no SDW is yet formed, the Fermi level of the
bands a and b will be elevated from p p(=0) to a certain
value pb'. Using the energy spectra given by Eqs. (I)
and (2) and assuming that k, and kb have changed to
k,' and kI,', we have

VIL NOEL TEMPERATURE

pJ' n(k. ' ——k.)=p—(kb kb') . — (36)

We shall denote k ~—k,= bo and k ~' —k,'= b. The density
of states of band u and that of band b are, respectively,
(V/8mb)4k'/n and (V/8~')4k'/P where V= ~pea' is the
total volume and k is, as before, the distance from the
center of the respective octahedron to the corners of it.
Hence,

V '~' de, 'f' deq
n=2 4k' + 4k'

8s' p u p p

V
P(k."—k,')+ (kb' —kb")].

37r3
(37) du(p)

pb (T)= pp(0) —
—p,
s' ~ (k T)', (39)

p(p)dp ~ ~y(p)
k,' and k@' are determined from Eqs. (36) and (37)
for a given value of n.

The energy required to 611 the bands a and b by n
electrons and to evaluate the Fermi level from zero to
6p ls

and although we do not know the value of the coefficient
of the second term for the reservoir, the Fermi level
of the reservoir must decrease with rising temperature,
since the reservoir has electron-type Fermi surfaces
so that its density of states, p(p), is an increasing
function of e. On the other hand, for the system of
band e and band b we have

&a

4k'a (k k,)dk+ 4k'p—(k kb)dk— —

For finite temperatures we have the Fermi distribu-
tion factor in the self-consistency gap equation. In
this paper we discuss only the Neel temperature where
the gap g tends to zero. We assume the transition of
the second order.

The wave number of the infinitesimal SDW that
sets in at T& is not necessarily the same as that for
T=O. It is determined by minimizing the free energy.
But instead of minimizing the free energy, we may 6nd
the wave number by maximizing T&. Another problem
we should be concerned with is whether there is a Qow
of electrons from the reservoir to the bands u and b at
T~. In the process of the formation of an in6nitesimal
SDW, the Qow also should be in6nitesimal, and we may
neglect it. However, if we consider separately the reser-
voir and the system of band u and band b, then we
would 6nd that the Fermi level of the reservoir varies
with temperature in a different way from the Fermi
level of the system of band u and band b, in the para-
magnetic state. The temperature dependence of the
Fermi level is known to be given by the equation

V
{n$(k.'4—k.4) —-', k.(k."—k.')j

4n-3

+PDkb" kb') ',kb(—kb" k—b'-) j) . (—38)

The sum of this energy and e'/4p is the energy required
to transfer n electrons from the reservoir to the bands

dl (p)/I (p)d p=2(k./~' k lp')l(k'I +k—'lp) (40)

according to our assumption, and although this seems
to be positive also, since k, and ky, are not much different
from each other but a larger value of p than n appears
to be appropriate for pure Cr, its value can be different
from the value for the reservoir. Thus, to equalize
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the Fermi levels, a Qow of electrons may occur between
the two systems when they are in the paramagnetic
state and there is a variation in temperature. Since we
do not know exactly what the real situation is, we shall
simply neglect the possible H.ow. A discussion on this
point will be given in Sec. IX.

In the limit of vanishing g, the energy eigenvalues
reduce to the unperturbed values e, (k) and eb(k').
The Fermi distribution function is the function of
these energies. The self-consistency equations (12) and
(33), with the Fermi distribution factor added, reduce
to the following one in the limit of g

—& 0:

2fLe. (k)j 2f[eg(k') j-1=» 2 +2 (41)
&b &a "' &a

where k'—=k+Q (or k'=—k—Q) and the summations
over k and k' extend over band a and band b, respec-
tively. Numerical computations of T~ and discussions
will be given in Sec. VIII.

VIII. NUMERICAL RESULTS

In presenting our numerical results, we choose the
unit of wave vectors as 2~/a and the unit of energy as
2~n/a, where u is the coefficient in Eq. (1). Thus, for
exact antiferromagnetism we have Q=1, instead of
Q=27r/a, and for q which appeared in the discussion
of helical and sinusoidal SDW's we have q= 1—Q. For
pure chromium we assume k,=0.35, kh ——0.40, k~—k,
=0.05. These values were adopted by referring to band
calculations made by Loucks. "From band calculations
made by Asano and Yamashita" we find k. somewhere
around 0.40 and k~ around 0.44, so that our assumed
numerical values might be too small. With our choice
of units, Eqs. (1) and (2) become e (k)=k —k, and
e~(k)= —P(k —k~), respectively, and we choose P=2
for most of our calculations, although we made calcula-
tions also for P = 1.The value of P (with n= 1) estimated
from the slopes of the energy curves given by Asano
and Yamashita is approximately 1.5, and the value of P
estimated from the ratio of the density of states of
band c and that of band b at the paramagnetic Fermi
level is 2.4 Lthe densities of states were derived with
the use of their equations in Sec. 4.2 for eq(k) and e2(k),
our e&(k) and e (k), respectively, which give spherical
Fermi surfaces but are good to give densities of states at
the Fermi level, the Fermi level being at —0.007 Ryj.
Thus, P=2 may not be unreasonable. For P=1 we
found qualitatively the same results.

For our linear energy spectra of bands u and b, the
density of states per atom of both bands for both spins
is 2p~b/N=4(k. '+kq'/P)=0. 81 for k,=0.35, kq=0.40,
and P=2. The energy unit here is 2~+/c, whose value
is 0.35 Ry as estimated from the slopes of the energy
curves given by Asano and Yamashita. Thus, our
2p~&/N is 2.3 Ry ', whereas they give a value of
3.5 Ry '. The discrepancy is partly due to our smaller
values of k, and k@. They also give 2p/N= 8.5 Ry ' for

the reservoir, so that p/p~& ——2.4. This ratio is impor-
tant in discussing electron Qows from the reservoir to
bands a and b and in discussing alloys. Ke will take
several values for p, including 2p/N=2, i.e., p/p, +q
= 2/0. 81=2.47.

The value of g, half the energy gap in the SDK band,
that we obtain for the sinusoidal SDW in pure chro-
mium will be 0.048 eV (0.010 in our energy unit). We
will, therefore, pay attention to values of g in the
neighborhood of 0.01. Our perturbational calculation
for the sinusoidal case should not be good for large
values of g, particularly when k&—k, =bp or k&' —k,'= 5
is small; the smaller the value of bp or 8, the smaller is
the value of g that we have to consider in order to
make our perturbational calculation valid. In the
limit of vanishing bp or 5 no values of g, except zero,
should be acceptable. In this connection, we should
like to refer to erroneous equations that we have
reported in our preliminary publication' in place of
Eqs. (33) and (35) of the present paper. The term
—~g'/(x'+g') in the middle of the right side of Eq.
(33) and the last term in Eq. (35) have been lacking.
These terms arise from an extra term in A~8 j,. due to
the perturbation. However, if we neglect these terms,
the gap equation and E»w for the sinusoidal reduce to
those for the antiferromagnetic SDK in the limit of
vanishing bo or 8. (The helical SDW reduces obviously
to the antiferromagnetic SDW in this limit. ) This
reduction is a desirable property of the equations and
suggests the usefulness of the erroneous equations for
their being semitheoretically correct. Furthermore, the
numerical results that we reported, which were based
on such equations, are only slightly different from those
obtained with correct equations in the most important
range of parameter values, there being no qualitative
difference. For this reason we shall also show here Lin
Fig. 5(a)j a result obtained with the semitheoretical
equations.

Our results are summarized as follows:

(a) The gap g. Solving Eqs. (12) and (33), we obtain
curves shown in Figs. 5(a) and 5(b). Here 1/N= 2/J'y'N
is plotted as a function of g for several values of 5p.

In Fig. 5(a) the curves for the sinusoidal SDW are
based on the semitheoretical. equations mentioned
above, whereas the curves in Fig. 5(b) are based on
Eq. (33). In the neighborhood of g=0.01 and for large
values of 6p, these two sets of curves agree well with
each other, and they are consistently higher than the
curves for the helical and antiferromagnetic SDK's.
This would suggest that the sinusoidal SDW is the most
stable. In fact, we find that the formation energy EsDw,
which is negative, is nearly twice as large for the sinus-
oidal SDK as for the helical SDK, as was mentioned
in Sec. V. The antiferromagnetic SDK is the least
stable. For this SDW the curves tend to Gnite values
for g —+0, which means that no antiferromagnetic
SDW exists unless 1/N has smaller values than these
limiting values.
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(b) The total energy aed the wave rsN g.ve slasher . Corre-
sponding to the relation between 1&I and gnd as shown in

) d 5 (b) we have calculated Eszw by Eq. (14)
everal 1,~N valuesand E . (35) as a function of 50 for severa"f
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for ivenoidal SDW has the lowest value of EgDw g'

d 8 o that w'e shall be concerned onlyvalues of 1y'I an 0, so a
with the sinusoi ad 1 SDW. Even when we consider a
Qow of electrons rom ef the reservoir, we find that the
sinusoidal SDK has the lowest energy.

discussed in Sec. VI.We have calculated &transfer p

ssociated w'ith a trans erThis is the increase in energy associa
electrons from the reservoir to the bands a and b,
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TABLE I. Theoretical results in comparison with experimental
data. Assumed values of parameters: p=2n, 2mo. /a=0. 35 Ry,
2p +&/%=0.81, 2p/X=2 t,'the unit of energy for these density of
states being 0.33 Ry), 1/v= 2/Jp'1V= 4 0, 3..9, 3.8.

Theoretical
1/I =4.0 3.9 3.8

Experi-
mental'b

2"=0:
Q for Cr
Energy gap

for Cr
Mn at.% at

jump of Q
Q before jump
Q after jump

T~ for Cr
Q for Cr
Mn at. %%uo for

Q~1
Q before jump

to Q=1
TN for 2 at.

% of Mn
TN for 2 at.

'%%uo of V

0.952 0.956 0.950

0.095 eV 0.149 eV 0.136 eV

0.965
0.983

278'K
0.953

2 6%%uo

0 4'%%uo

0.961
0.982

398'K
0.955

1.8%

0.4 0.3%
0.955
0.965

600'K 310'K
0.962 0.963

0 6%%uo

~0.97 0.972

455'K

193'K

887'K 1190'K 540'K

267'K 372'K 150'K

a Reference 3 (Koehler et al.), data except for energy gap.
b Reference 23, only for energy gap.

IX. COMPAMSON WITH EXPERIMENT
AND DISCUSSION

Several points of our calculations will be discussed
in comparison with experimental observations and
considered with the approximations that we have made.

(a) Critical value of the exchange parameter f/u. We
have shown that for absolute zero the sinusoidal SDW
has the lowest energy. The energy gap g (2g is the
energy gap), obtained by solving the self-consistency
equations, was shown in Figs. 5(a) and 5(b) as a func-

quantity. When k&T is smaller than e„we have terms
2fLe, (k)1/pcs(k') —e, (k)j, with positive denominator,
from excitations of electrons from band a and also
negative terms 2(fL» (k)g —1)/Les(k') —e, (k)g, with
positive but larger denominator, from holes left in
band u, so that the net result is a positive contribution.
Thus, with increasing temperature the value of 1/u
will increase at 6rst. The same is true with band b.
When kgT exceeds e„we have terms with negative
denominator from excitations of electrons, and since
the density of states is higher for higher energies, we
can expect a decrease in the value of 1/I at suKciently
high temperatures, provided e, is not too close to the
Fermi level, or the difference in size of the electron and
hole octahedra is not too small. We then have a maxi-
mum in the 1/I versus T curve; in other words, T~
as a function of 1/I becomes two-valued. Such does not
occur in the case of a sinusoidal SDW, since e, is zero
or very small.

We summarize our numerical results in Table I in
comparison with the corresponding experimental data.
Concerning some disagreement found in this table, we
will give discussion in Sec. IX.

tion of 1/san=2/Jy'jli' with 8s as a parameter, and we
saw that there is a critical value of 1/I, i.e., the upper
limit of 1/I for nonvanishing SDW amplitude, only
for the antiferromagnetic SDW. In helical and sinus-
oidal cases, 1/I tends to infinity in a logarithmic
way as g tends to zero. This divergence comes from
our assumption of exact octahedra for the Fermi
surfaces of the band a and band b. When one of these
Fermi surfaces is displaced by Q or —Q, they contact
each other exactly at least on one side. The real Fermi
surfaces are only approximately octahedral so that
they cannot be brought into exact contact. In such a
case we do not expect the divergence, i.e., we expect
the existence of a critical value of 1/I even in helical
and sinusoidal cases.

(b) Comcerstratiors depeedersce of Q at T=O. Consider-
ing a flow from the reservoir to bands a and b in the
process of the formation of a sinusoidal SDW, we
found that the value of q or Q= 1—q (in units of 2v./a)
changes as a function of 8O and shows a jump at a
certain value of 80 that corresponds to the addition of a
small amount of Mn to Cr in the rigid-band model,
provided the density of states of the reservoir is
sufficiently high. However, no jump of Q to 1 is pre-
dicted. Neutron diffraction experiment by Koehler et al.'
at 4.2'K on Cr-Mn, Cr-Re, and Cr-V (and other alloys)
shows that the value of Q increases with increasing
number of 3d (in Re 4d) electrons; the value is 0.95 at
pure Cr, increases to about 0.955 at a concentration of
Mn (or Re) of somewhere around 0.35 at. '%%uc, and shows
a jump or a steep rise by 0.01 to a value of 0.965 at 0.5
at.%. Q increases further slowly with increasing con-
centration, but above 1.5 at.% all alloys show com-
mensurable antiferromagnetism with Q= 1, Q changing
around this concentration by about 0.03, perhaps in
a discontinuous way, although this change has not
been measured by changing the concentration con-
tinuously. Our theoretical results given in Fig. 9
show for 2p/X=2 a jump of 0.018 from Q=0.965 to
Q=0.983 at 1.5 at. % of Mn, both this jump and the
at.

%%uobein gsomewha t toohig h, bu t nodiscontinuou s
change to Q=1. (See also Table I.) Q=1 is attained
at a much higher concentration that corresponds to
bo ——0, i.e., for the same size of the electron and hole
octahedra in the paramagnetic state. This is due to
the situation that we found the sinusoidal SDK to be
always more stable than the coxxnnensurable antiferro-
magnetic SDW at a given value of the size diA'erence
of the two octahedra, provided the hole octahedron is
larger. We have not carried out calculations for the
opposite case; in the opposite case, i.e., in the case of
negative bo, an electron flow from the bands u and b to
the reservoir may take place, since the higher band is
populated after the SDW formation if no flow is allowed.
It is possible, therefore, that the state of Q=1 persists
over a certain range of negative bo from 80=0. Further-
more, our perturbational calculation for the sinusoidal
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SDW should fail when Q is close to 1, so that the deep
minima of the curves of Fig. 6 at small values of 8 are
not necessarily reliable; they might occur at 8=0,
giving Q=1, for small values of positive 4 if exact
calculations were made.

Falicov and Penn, ' in discussing a problem at
absolute zero similar to ours, find a jump of Q to 1.
However, their treatment is not based on self-consist-
ent calculations nor on rigorous mathematical formula-
tions. Moreover, they interpolate between the sinus-
oidal SDW and the commensurable antiferromagnetic
SDW without introducing harmonics into the former.
To bridge between the two SDW's in a continuous
way, we must introduce harmonics; the harmonics
grow as Q tends to 1, giving rise to squaring of the
sinusoidal curve, and the SDW pattern becomes similar
to an antiphase domain pattern of antiferromagnetic
domains; the period of such an antiphase pattern
grows large, and finally we get a single-domain anti-
ferromagnetic pattern.

Herring" in his suggestive article discusses the locking
of SDW's to commensurate wave vectors. He mentions
that a linearly polarized sinusoidal SDW (by contrast
with the helical wave) can feel a preference for rational
values of Q by virtue of exchange energy alone. In a
simple sinusoidal SDW there are unit cells where no
spin density exists and also unit cells where the spin
density has its full value, whereas in the commensurate
antiferromagnetic SDW every unit cell has the full
spin density. For this reason Herring suggests that the
latter would have a lower energy, if the Q value of the
sinusoidal wave is sufficiently close to one. Intuitively,
this suggestion is acceptable. On the other hand, when
we consider the situation in wave-vector space, there is
a complete 6tting together of two Fermi surfaces and
the vanishing of the Fermi surfaces in the case of the
sinusoidal SDW, whereas for the conimensurate anti-
ferromagnetism there is only an over-all incomplete
fitting of the two Fermi surfaces. Thus, also intuitively,
one may suspect a higher stability of the sinusoidal
SDW. It is, therefore, not easy to justify the stability
of the commensurate antiferromagnetism on the basis
of exchange energy alone. Locking of Q to 1 by anisot-

ropy energy is improbable in the case of a linearly
polarized SDW, although this would be possible in the
case of a helical wave; this type of locking was discussed
earlier by Voshimori" for the case of a helical spin
arrangement in the rutile-type lattice (by a suggestion
of one of the present authors, T. N. ). External param-
eters, such as pressure, may also lock Q to a commen-
surate value, as Herring also mentions. Spontaneous
locking of this type, by magnetoelastic effect, would
be a possibility for chromium; such a locking was

' L. M. Falicov and D. R. Penn, Phys. Rev. 158, 476 (1967);
J. Appl. Phys. 39, 1103 (1968).

~ C. Herring, in j/Iageetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1966), Vol. IV."A. Yoshimori, J. Phys. Soc. Japan 14, 807 (1959).
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discussed in the case of thulium (where the atoms have
their intrinsic moments) by Nishikubo and Nagarniya. "

An observation4 at 90'K on Cr-V-Mn also shows a
jump of Q at 0.6 at. % of Mn equivalent from 0.96 to
1, the value of Q for the pure Cr being a little higher
than 0.95.

(c) Value of Q at T~. Just below T~, an observation
by Koehler et al.3 shows that the value of Q for the pure
Cr is 0.963 and it increases with Mn concentration to
0.972 at 0.35 at.

%%uo, wher e it show s ajum p toone . As-
suming 50= 0.05 for the pure Cr, we have results shown
in Table I.The dependence of Q on 80 is shown in Fig. 11.
We see that our results agree with those observed in a
reasonable way. However, it must be mentioned that
we assumed the same temperature dependence of the
Fermi level of the system of bands u and b and that of
the reservoir, i.e., we did not consider electron transfer
between the two systems. In actuality, some transfer
must take place, as was discussed in Sec. VII, from
the bands a and b to the reservoir during the heating
from O'K to T~, so that we have to take a larger value
of 8O (i.e., on the vanadium side) for TN than for 0 K,
although this cannot be specified quantitatively at the
present moment.

(d) Value of the gap at O'X. Calculated values of the
gap, 2g, at O'K are listed in Table I (0.095 eV for 1/u
=4.0, 0.149 eV for 1/u=3. 9, both for the pure Cr).
An observation of this gap was made recently by Barker,
Halperin, and Rice" by measuring the infrared re@ec-
tivity of chromium. At 80'K, the absorption maximum
occurred at photon energy 5.1hT~ (=0.136 eV). If
this energy is identified with 2g, then it comes into the

~~ Y. Nishikubo and T. Nagamiya, J. Phys. Soc. Japan 20, 808
(19651.

» A. S. Barker, Jr., B.I. Halperin, and T. M. Rice, Phys. Rev.
Letters 20, 384 (1968).
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range of our calculated values. Barker et cl. discussed
the effect of electron-phonon scattering on the broaden-
ing of the absorption curve and also on the relation
between the gap and T~. As the "unrenormalized"
Noel temperature for a model without phonon scatter-
ing, they calculated TN' HO——'K corresponding to the
observed T~. Our results for T~, which are based on
the complete neglect of the electron-phonon scatter-
ing, are closer to the observed value of T~. However,
this fact should not be taken too seriously, since we
have made a number of simplifying assumptions.

(e) Mctgrsetic moment amPlitude of the SDW. We
discuss the moment amplitude in the rest of this section.
In order to discuss its order of magnitude, we look at
Eq. (10b) for the antiferrornagnetic case. This equation
contains a factor exp(W-', iK; r)u~v~. * in the right side,
which has come from P qPiq*. If the tight-binding
approximation is good, then this factor would be
g 'w, (r)iot,*(r) for R„=O. The integral of this function
within the atomic cell vanishes, since the two Wannier
functions are orthogonal. Hence the atomic moment is
zero. Even if the tight-binding approximation is not
good, the net spin on each atom would be extremely
small, as long as we take interband interactions only,
as we did.

Our interpretation of the magnetic moment amplitude
is as follows: The self-consistent creation of the SDW
in chromium is due to the interaction between the elec-
tron band and hole band (a and b), and the structure
of the present theory need not be altered. However, the
main part of the moment arises as the result of intra-
band interactions and is thus associated with g,qP, ~ *,
g &zg |,z.*, etc. We consider the spin density due to intra-
band interactions as being induced by the spin density
arising from interband interactions and hence propor-
tional to g. Then, what we need is just to reinterpret the
meaning of J. This J was a constant which connected
the interband spin density to the exchange potential,
but now the latter is not only due to the interband

spin density but also includes the eGect of the intraband

spin density whose amplitude is proportional to the
amplitude of the interband spin density. Thus, our
J should be a very large constant compared with the

true J which connects the true spin density to the
exchange potential, their ratio being the ratio of the
true spin density and the interband spin density.

Although we cannot at present verify this idea by
calculations, its correctness is partly supported by the
calculation made by Asano and Yamashita" for the
commensurate antiferromagnetic SDW; namely, they
found that the main contribution to atomic moments
arises from those states k and k' which have energy
difference much greater than g, i.e., from electrons
lying far below the Fermi level.

In this connection, we would like to mention that
Asano and Yamashita have overestimated the energy
gap and the moment amplitude. They assumed a value
of 0.6p~ for the atomic moment in the antiferro-
magnetic SDW, which is close to the observed value
0.58@,z of the maximum moment in the sinusoidal SDW
in chromium. However, according to our theory the
maximum moment of the sinusoidal SDW is propor-
tional to 2g, while the moment in the helical and anti-
ferromagnetic SDW's is proportional to g, so that if
0.58@~ is associated with the sinusoidal SDW, then
0.29@~ should be the moment in the antiferromagnetic
SDW, provided g is the same. Furthermore, since the
antiferromagnetic SDW is less stable for chromium,
the value of g to be associated with the hypothetical
antiferromagnetic SDW should be smaller. In fact,
Asano and Yamashita obtained a value of the energy
gap of about 0.4 eU, three to four times our values.
Conversely, from values 0.1—0.14 eV of the energy gap
we would obtain, using the calculation of Asano and
Yamashita, moment values of at most 0.15—0.2p, ~
for the antiferromagnetic SDW, and 0.3—0.4@~ (as
compared with 0.58ps) for the sinusoidal SDW.
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