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The usual static scaling laws are generalized to nonequilibrium phenomena by making assumptions on the
behavior of time-dependent correlation functions near the critical point of second-order phase transitions.
At any temperature different from T, the correlation functions are assumed to reflect the hydrodynamic
behavior of the system, for sufficiently long wavelengths and low frequencies. As the critical temperature is
approached, however, the range of spatial correlations in the system diverges, and the domain of applica-
bility of hydrodynamics is reduced to a vanishingly small region of wavelengths and frequencies. The
dynamic-scaling assumptions lead to predictions for the behavior of the hydrodynamic parameters near T,
as well as for the form of the correlation functions for macroscopic distances and times, outside the hydro-
dynamic range. In particular, singularities are predicted to occur in the temperature dependence of transport
coefficients, and anomalies are expected in the frequency spectrum of certain operators, which are observable
by inelastic scattering of neutrons or light. A distinction is made between the restricted dynamic-scaling
hypothesis, which refers to the order parameter only, and extended dynamic scaling, which applies to other
operators and involves stronger assumptions. Applications are discussed to antiferromagnets, ferromagnets,
the gas-liquid critical point, and the A transition in superfluid helium. Specific experiments are suggested to
test the scaling assumptions, and existing experimental evidence is briefly reviewed. Finally, a comparison
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is made with other theories of dynamical behavior near critical points.

I. INTRODUCTION

N recent years there has been considerable activity,
both theoretical and experimental, in the field of
critical phenomena.'~® The primary aim of this research
has been to determine the precise form of the singulari-
ties which occur in equilibrium* properties at the critical
point of a “second-order” phase transition. Although
this problem has not been solved theoretically for any
realistic system, the solution of the two-dimensional
Ising model® paved the way to an extensive series of
numerical and phenomenological investigations, as
well as many experiments for various systems.'—* From
this work, it has become clear that the ‘“classical” or
“mean-field” theories®” of second-order phase tran-
sitions are not quantitatively correct.® One attempt to
find a phenomenological description of the Ising model

1L. P. Kadanoff, W. Gétze, D. Hamblen, R. Hecht, E. A. S,
Lewis, V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J.
Kane, Rev. Mod. Phys. 39, 395 (1967).

2 M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967).

3 P. Heller, Rept. Progr. Phys. 30, 731 (1967).

4 The equilibrium properties of interest near the critical point
include the magnetization and susceptibility for a magnetic sys-
tem, the density and compressibility for a gas-liquid transition,
the superfluid density p, for liquid helium, and the specific heat in
all cases. Another “equilibrium” property of interest is the spatial
dependence of the equal-time autocorrelation function for spin
or density fluctuations.

8 L. Onsager, Phys. Rev. 65, 117 (1944); also S. G. Brush, Rev.
Mod. Phys. 39, 883 (1967). The historical importance of Onsager’s
solution cannot be overemphasized, since it provided the most
solid evidence that phase transitions are indeed describable by
equilibrium statistical mechanics. Moreover, the mathematical
singularities in this exact solution are analogous to the “apparent
singularities” which are observed in real finite systems at tempera-
tures approaching the critical point.

6 See, e.g., R. Brout, Phase Transitions (W. A. Benjamin, Inc.,
New York, 1965).

7L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Co., Inc., Reading, Mass., 1958), Sec. 135.

8 In many cases mean-field theory is a reasonable approximation
far from the critical point, but breaks down for e= | T—T .| /T<1.
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which could be generalized to other systems was made
by Kadanoff,? who proposed a “scaling theory,” leading
to relations between the various critical exponents.
This approach turned out to be equivalent to an earlier
theory of Widom,'! who made assumptions about the
form of the equation of state and the correlation func-
tion of a fluid near its critical point. For various systems
a number of other authors!? have proposed similar
relations between the critical exponents, based either
on empirical observations, or heuristic arguments.
These relations, which have come to be known as

It is precisely the behavior in this latter region, generally called
the critical region, which is the concern of the present paper. For
some systems, however, such as superconductors, there is an
intrinsic small parameter 6<<1 such that mean-field behavior
breaks down, and critical behavior sets in only for e<#. [For the
pure superconductor 8= (kg7 ./Er)*.] The critical region in bulk
superconductors is so small as to be out of reach experimentally,
and we shall not discuss these systems in the present paper. A
general discussion of the breakdown of mean-field theory may be
found in P. C. Hohenberg, in Proceedings of the Conference on
Fluctuations in Superconductors, Asilomar, California, 1968
(unpublished; obtainable from Stanford Research Institute,
Palo Alto, Calif.). Other systems with a small parameter may have
two “critical” regions of different behavior: 6<<e1 and <@.
Some examples will be discussed below.

9 L. P. Kadanoff, Physics 2, 263 (1966).

10 The critical exponents are assumed to specify completely
the nature of the thermodynamic singularity. They are defined
and discussed in Refs. 1-3. When a small parameter 9 exists in a
system (Ref. 8), the true critical exponents are only defined for
X0, but “apparent” exponents may often be discussed in the
range <1, since they correspond to true critical exponents
for a model in which §=0.

11 B. Widom, J. Chem. Phys. 43, 3892 (1965); 43, 3898 (1965).

2], W. Essam and M. E. Fisher, J. Chem. Phys. 39, 842
(1963); M. E. Fisher, J. Appl. Phys. 38, 981 (1967); C. Domb and
D. L. Hunter, Proc. Phys. Soc. (London) 86, 1147 (1965); E.
Helfand, paper presented at a meeting of the American Physical
Society, 1965 (unpublished); G. E. Uhlenbeck and P. C. Hemmer,
in Proceedings of the International Symposium on Statistical Me-
chanics and Thermodynamics, Aachen, Germany (North-Holland
Publishing Co., Amsterdam, 1965); A. Z. Patashinskii and V. L.
Pokrovskii, Zh. Eksperim. 1 Teor. Fiz. 50, 439 (1966) [English
transl.: Soviet Phys.—JETP 23, 292 (1966)]. )
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“scaling laws,” have been extensively compared to
experiments and to numerical calculations on model
systems.’=3 The over-all agreement is quite satisfactory
and certainly much better than is obtained from the
“classical exponents” of mean-field theory, although a
number of persistent discrepancies remain primarily
with numerical work on the three-dimensional Ising
model.?

For dynamic!® phenomena, on the other hand, there
is no exactly soluble model which exhibits interesting
properties at the critical point, nor even a well-defined
mean-field theory, which would lead to unambiguous
general predictions. This is largely because dynamical
properties depend much more crucially on such details
of the Hamiltonian as the conservation laws and the
interparticle potential than do static properties. In
consequence, much less is known about dynamic critical
behavior, and previous theories have at best provided
a qualitative guide to experimental observations.

The first general prediction was made by Van Hove!4
in his discussion of “critical slowing down,” of density
or spin fluctuations, which could be detected by neutron-
scattering experiments. In the case of a Heisenberg
ferromagnet in the paramagnetic phase (7> T, H=0)
Van Hove’s argument may be sketched by writing down
the macroscopic equation which governs the slow vari-
ations of the magnetization in space and time,

OM(x,t)/0t=DV:M(x,?). (1.1)

The spin-diffusion coefficient D satisfies the Einstein
relation

D=A/xM 1.2)
in terms of the transport (Onsager) coefficient A, and
the magnetic susceptibility X¥. Van Hove argued that
the transport coefficient A depends primarily on the
short-range behavior of the system, and should there-
fore remain finite at the critical point; (subsequent
approximate calculations, based largely on mean-field
theory, supported this assertion'®). The susceptibility,
on the other hand, was known to diverge at the critical
point, so that D was predicted to vanish at 7. When the
mean-field temperature dependence was used for X, the
diffusion constant was predicted to be linear in 7—T,.
As Van Hove pointed out, this slowing down of the spin
diffusion would show up as a reduction of the inelasticity
of neutron scattering by magnetic systems, as T ap-
proached T'.. Attempts to observe this reduction were
not entirely successful,’® and it is only recently that the

18 The “dynamic” phenomena of interest include the time-
dependent correlation functions and various transport coefficients
and relaxation rates, such as spin-diffusion constants, thermal and
electrical conductivities, acoustic attenuation coefficients, vis-
cosities, etc.

141, Van Hove, Phys. Rev. 93, 1374 (1954).

15 P, G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958); P. G.
de Gennes and J. Villain, sb:d. 13, 10 (1960); H. Mori and K.
Kawasaki, Progr. Theoret. Phys. (Kyoto) 27, 529 (1962).

16 B, Jacrot, J. Konstantinovic, G. Parette, and D. Cribier,
Inelastic Scattering of Neutrons in Solids and Liquids (International
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reasons for this failure have begun to be clarified. In
particular, Marshall'” pointed out that most neutron
experiments are not done at wavelengths large compared
to the correlation range near T, and that therefore the
Van Hove theory does not apply. The alternative theory
that he outlined was not very specific, but it did sug-
gest that “some remnant of spin-wave motion should
exist above 7,.”

A slightly different line of investigation was initiated
by Fixman,'8 who attempted to calculate various trans-
port coefficients at the critical point of simple fluids and
fluid mixtures. The main physical idea contained in
Fixman’s calculations is that the long-range spatial
correlations predicted by the Ornstein-Zernike!® theory
should lead to enhanced fluctuations and anomalous
transport properties. The quantitative predictions which
followed from this interesting idea could not be expected
to be correct, since the temperature dependence of the
Ornstein-Zernike correlation function is known to be
wrong. Furthermore, the attempt by Fixman!® and
others? to apply the same idea to a calculation of the
anomaly in specific heat at T'; overestimates consider-
ably the effect of critical fluctuations. Nevertheless,
the notion that long-range spatial correlations can
affect the transport coefficients is an attractive one, and
has led Kawasaki and co-workers,?! and also Kadanoff
and Swift,?? to develop a more general semiphenomeno-
logical approach which is less tied to the mean-field and
Ornstein-Zernike theories. These authors have made
specific predictions concerning the singularities of
transport coefficients in a number of systems.

From a purely phenomenological point of view, it is
natural to ask whether the scaling laws of Widom,
Kadanoff,? and others!? can give any information about
dynamic properties which could serve to test their
validity or to broaden their range of applicability. Such
an approach was followed by Ferrell and co-workers,?
in their study of the N point of He’ These authors
predicted an anomalous damping of second sound below
T and a singular thermal conductivity above T.

In this paper we present, in somewhat greater detail,
a theory of dynamic scaling which was previously intro-

Atomic Energy Agency, Vienna, 1963), p. 317; L. Passell, K.
}(31in(s)x)}vski, T. Brun, and P. Nielsen, Phys. Rev. 139, A1866
1965).

u V;’ Marshall, Natl. Bur. Std. (U. S.) Misc. Publ. 273, 135
(1966).

18 M. Fixman, J. Chem. Phys. 47, 2808 (1967), and references
therein.

11, S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam
17, 793 (1914).

20 M. Fixman, J. Chem. Phys. 36, 1597 (1962); W. Botch and
M. Fixman, dbid. 42, 196 (1965); I. A. Kvasnikov, Dokl. Akad.
Nauk SSSR 119, 475 (1958) [English transl.: Soviet Phys.—
Doklady 3, 329 (1958)]; see also Ref. 6.

21 K. Kawasaki, Phys. Rev. 150, 291 (1966); K. Kawasaki and
M. Tanaka, Proc. Phys. Soc. (London) 90, 791 (1967).

22T, P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968); Ann
Phys. (N. Y.) (to be published).

28 R, A. Ferrell, N. Menyh4rd, H. Schmidt, F. Schwabl, and
P. Szépfalusy, Phys. Rev. Letters 18, 891 (1967); Ann. Phys.
(N. Y.) 47, 565 (1968).
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duced as a reformulation and generalization of the
theory of Ferrell et al.,* and applied to magnetic
systems.?* We distinguish here between a restricted
(weak) dynamic-scaling hypothesis, and an extended
(strong) hypothesis, which is necessary to reproduce
some of the previously derived results.?®?* In both
cases we attempt to make our assumptions explicit, and
to avoid the use of macroscopic concepts outside their
range of applicability. In certain systems our results
agree with the quasimicroscopic calculations of Kadanoff
and Swift,?? although their theory is more detailed and
therefore allows a calculation of additional transport
coefficients which do not follow from scaling. On the
other hand, our approach is not restricted to the
hydrodynamic limit, and so we make predictions which
fall outside the “long-wavelength” region, where trans-
port coeflicients are defined. In particular, we are inter-
ested in the results of critical scattering of neutrons or
light which do not involve purely macroscopic quantities
near I.. Whenever possible we attempt to suggest
experimental tests of the assumptions of the theory and
to evaluate their practical observability.

In Sec. II, the macroscopic information contained in
the correlation functions is reviewed, and related to the
phenomenon of phase transitions. In Sec. III, a quali-
tative description is presented of the main physical ideas
contained in the scaling theories. Section IV is devoted
to a more precise formulation of the scaling hypotheses,
both static and dynamic, and restricted and extended.
In Sec. V, applications to specific systems are discussed;
these include the antiferromagnet, the ferromagnet, the
gas-liquid critical point of a simple fluid, and finally
the A point of superfluid helium. A number of experi-
ments are suggested and a few existing ones very briefly
discussed. In Sec. VI, a comparison is made with other
theories.

II. CORRELATION FUNCTIONS FOR
“MACROSCOPIC” OPERATORS

In this section, we wish to summarize the important
information contained in the correlation functions of
observable operators in any macroscopic system.
Although the facts stated here are well known,?3:26 it
is probably useful to reiterate them in a unified notation
in order to make the subsequent discussion clearer.??

Let us consider a system which is described by
thermodynamic variables, whose densities satisfy a set
of macroscopic (hydrodynamic) equations, valid at long
wavelengths and low frequencies.?® These variables may

2 B. I. Halperin and P. C. Hohenberg, Phys. Rev. Letters 19,
700 (1967).

% L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-
Wesley Publishing Co., Inc., Reading, Mass.), Chap. XVII.

( 26 L) P. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
1963).

%" Some of the assumptions needed to derive the relation
between macroscopic laws and correlation functions are discussed
in Ref. 37.

% By this we mean wavelengths long compared to all micro-
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be the usual thermodynamic parameters such as the
density #, the entropy S, the pressure p, or the magneti-
zation M. In many cases the macroscopic description
also involves “order parameters” or “quasiconstants”
of the motion, such as the fluxoid in a superconductor,
the superfluid velocity v, in helium, or the staggered
magnetization N in an antiferromagnet. In general,
the hydrodynamic equations may be linearized, for
small departures from equilibrium, and various long-
lived transport modes identified, with frequencies w,(k)
and decay rates I';(k). If w,(k) and T';(k)/w;(k) approach
zero as k — 0, then the frequency w,(k) may be related
to purely thermodynamic quantities, whereas the decay
rate T';(k) is given in terms of thermodynamic parame-
ters and transport coefficients.

An alternative description starts from the micro-
scopically defined?® densities of conserved quantities
and quasiconstants of the motion, and their correlation
functions in the equilibrium ensemble. In the long-
wavelength low-frequency limit,?® these correlation
functions contain all the information inherent in the
macroscopic description, whenever the latter is appli-
cable. The correlation functions are more general,
however, since they may be defined and often measured
outside of the hydrodynamic domain. Specifically,
given a Hermitian operator A(r,f), the dynamic and
static correlation functions are defined, respectively, as®®

CA)=5{(A(r,)—{4(x1))), (4(0,0)—(4(0,0)))})

@k dw
E/ —eier—aCA(kw)  (2.1)
2r)3 ) 2r

and

e®iCA(K),  (2.2)

3

R R d?k
C4(n)=C4(r, t=0)z/ )

(2

where the angular bracket is an equilibrium expectation
value, and the curly bracket is an anticommutator. If
C4(r) decays exponentially at large 7, then we may

scopic lengths such as mean free paths, interparticle spacings,
force ranges, or ‘“correlation ranges,” and frequencies small
compared to microscopic ones, such as collision or internal exci-
tation frequencies of molecules, as well as frequencies small
compared to kT /%.

29 An operator is “microscopically defined” if it is expressible
in terms of the field operators and interaction constants of the
microscopic theory. In a fluid, for example, the energy density is
microscopic, whereas the entropy density is not. As discussed
below, there exists an entropy operator which is a linear combi-
nation of energy density and particle density, and whose fluctu-
ations reduce to those of the entropy in a suitable long-wavelength
limit. Outside of this limit, however, the identification of this
operator with entropy is meaningless.

30 In order to be able to treat a wide variety of systems in a
unified language, we have departed from the notation of Ref. 24
in a number of significant ways. Thus, for example, the static
correlation function is Ci(k) rather than N¢(k); the total and stag-
gered magnetizations are M and N, respectively, rather than S
and M; and the correlation length £ is positive for all temperatures,
rather than having the sign of 7—T; in addition the correlation
function [Eq. (2.1)] is one-half the anticommutator in the
present paper.
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define the range 74 of C4(r) by the relation

lirg CA()=GA(r)er/m4, (2.3)
where G4(r) varies more slowly than the exponential
at large distances. The range is in general a microscopic
length.

If C4(r) does not decay exponentially at large dis-
tances, but according to a power law p, we shall define
74 by®s

CAD~ [(A)[2(ra/r)? s r—oo.

Definition (2.4) will only make sense, of course, if the
expectation value (4) is nonzero.

The macroscopic information is contained in the
correlation functions in the following way:

(1) Static correlations. Classically, the long-wave-
length limit of the correlation function is proportional
to a static susceptibility X4,

lim C4(k)=kaTX*,

(2.4)

(2.5)

where X4 is the derivative of the equilibrium value of
(4) with respect to an appropriately defined conjugate
field. In a fluid, for instance,

on
n:n(_) = (ksT) / & Co(r),
op/r

where 7 is the density and #~2X” is the compressibility.
Equation (2.5) also holds for a quantum system insofar
as C4(k,w) is dominated at long wavelengths by fre-
quencies satisfying the condition %w<ksT. We believe
this to be the case, at least near T, for all the functions
that we shall consider.

(ii) Dynamic correlations. The correlation function
CA(k,w), for fixed (small?8) &, has poles at the complex
frequencies w;(k)=4T';(k) corresponding to the modes of
linearized hydrodynamics. The residue is determined
by the coupling strength of the given mode to the par-
ticular operator 4, and is proportional in general to a
thermodynamic derivative. Since, as mentioned earlier,
the quantities w; and T'; may be related to thermo-
dynamic derivatives and transport coefficients, we
expect certain exact relations to hold between these
quantities and the functions C4(k,w). Such relations
are the sum rules and Kubo formulas®* which have been
studied in great detail for certain systems.2¢

(iii)) Phase transitions. In a second-order phase tran-
sition, there is an operator, which we call ¥, the order
parameter, whose average value is zero for T>T,, is
nonzero for T<T,, and approaches zero continuously
as T— T, The corresponding susceptibility X¥, which

30a This is the definition employed by B. D. Josephson, Phys.
Letters 21, 608 (1966); J. A. Tyson and D. H. Douglass, Jr., Phys.
Rev. Letters 17, 472 (1966); J. W. Kane and L. P. Kadanoff,
Phys. Rev. 155, 80 (1967); and in Ref. 23.

31R. Kubo, Lectures in Theoretical Physics (Interscience
Publishers, Inc., New York, 1959), Vol. I, Chap. 4.
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describes the response to an ‘“external field,”® is
infinite at T="T,. Since

XY= (kpT)~? / C¥(r)dr, (2.6)

and C¥(r) is finite for finite #, the singularity in X¥
suggests that the range ry becomes infinite at T'.. When
C¥(r) decays with a power law as in Eq. (2.4) (with
$<3), the susceptibility X¥ remains infinite for all
T<T.,. The range rg is finite for 7< T'. but also diverges
as T— T';~. For finite external field A, it is assumed that
no phase transition takes place; consequently the range
r¢ remains finite for 7'=7T,, H#0, and diverges as
H — 0. The range ry plays an important role in the
theory of phase transitions. We shall generally call this
length simply the “correlation length” and shall denote
it by the symbol £.

III. SCALING HYPOTHESIS:
QUALITATIVE PICTURE

The scaling hypothesis can be formulated in rather
precise mathematical terms® from which certain
specific predictions follow rigorously, as will in part be
shown in the next section. Since, on the one hand, this
formulation is not altogether transparent and, on the
other hand, it is no more than a conjecture based at
best on heuristic arguments, it seems useful to present
a simple qualitative picture of the main physical ideas
involved. These ideas might in part survive if it turns
out that the more precise formulation is not entirely
correct.

A. Static Scaling

It is assumed that the order-parameter correlation
length r¢=§, which diverges at T'=T,, H=0, contains
the most important effects of critical fluctuations. In the
domain of large r and £ (compared to microscopic
lengths), the correlation function C¥(r) is assumed to
depend critically on the ratio »/&, with quite different
behavior for »<<¢ and 7>>£. The divergence of the sus-
ceptibility X¥ is characterized by its dependence on &,
which becomes infinite at T.. The significance of the
correlation length can best be illustrated by the graph
in Fig. 1, where the wave number % is plotted on the
ordinate and the inverse length £ on the abscissa.
The origin £1=0 is the critical point T=1T, and the
disordered phase is on the right (I'>T.), whereas the
ordered phase is on the left (I’<T). (We restrict our-
selves to H=0.) Three asymptotic regions may be

3 An external field is one which couples directly to the order
parameter, such as a uniform magnetic field for a ferromagnet,
or a “staggered” field for an antiferromagnet. For a fluid near its
critical point the analogous quantity is roughly a pressure different
from its critical value p.. In superfluid helium the corresponding
uniform Bose field is impossible to realize experimentally, but it
plays the same formal role as a magnetic field in a spin system.

33 See, e.g., R. B. Griffiths, Phys. Rev. 158, 176 (1967).
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F1c. 1. The macroscopic domain of wave vector & and coherence
length £, defined by the conditions ka1, £/@>1. In the three
shaded regions the correlation functions have different character-
istic behaviors. These regions are defined by (kt<1, T'<T,),
(ke>1, T=~T,), and (ktK1, T>T,), respectively. The asymptotic
forms for these regions merge when extrapolated to the lines L;
or Ly (k¢=1 for T<T. and T >T,, respectively). An experiment
done at constant % (line L;) will pass through all three regions as
the temperature is varied.

identified in the (%,£7!) plane, in each of which the
correlation function Cr¥(k) has different characteristic
behavior.3

The shaded region marked I, corresponding to 21,
T<T.,,is the macroscopic region in the ordered phase;
it refers to phenomena occurring over distances 7 large
compared to £. Similarly there is a macroscopic region
for T> T, denoted by III on Fig. 1. The region marked
II, in which k£>1 for either T>T, or T<T,, is the
so-called critical region,®® which describes phenomena
occurring over distances small compared to £, but large
compared to all other relevant lengths. Since £ —w as
T— T,, region II is a ‘“‘macroscopic” region, except
insofar as critical fluctuations are concerned.

The function C¥(k) diverges at the origin (£=0,
£1=0) and remains finite for finite & at T=7T,. The
scaling hypothesis rests on the assumption that C¥(k)
varies smoothly throughout the (k,&!) plane, except
for the singularity at the origin. Furthermore, the func-
tion is assumed to be essentially determined by its
limiting behavior in the three shaded asymptotic
regions. Thus, if the forms valid in regions I and IT are
separately extrapolated to the line Li(k¢=1,T<T,),

3 In this section, the subscript 7 will sometimes be used to
indicate the dependence of a quantity on T'—17,.

% The term “critical region” is generally used to denote the
temperature interval in which critical phenomena dominate the
behavior of the correlation functions, and corresponds to all
portions of the (%,£71) plane depicted in Fig. 1, in which both 27!
and £ are macroscopic lengths. We shall often refer to region II
alone as the critical region, however, in order to contrast it with
the hydrodynamic or macroscopic regions (I and III); in region
II the system displays behavior which is characteristic of the
critical temperature and is qualitatively different from the
behavior “away from 7,.” In practice it will be clear from the
context whether we are using the term “critical region” in this
restricted sense, or in its more usual general meaning.
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then the two resulting expressions must coincide, up to
a possible factor of order unity. This means that there
is no other dividing line between macroscopic and
critical behavior than that provided by the length £.
Moreover, a single function describes the correlations
in the whole (k,£1) plane, with a characteristic de-
pendence on the parameter &/r~k£3% The suscepti-
bility Xr¥= (ksT)'Cr¥(0), defined as a function of
temperature along the abscissa of Fig. 1, has a singu-
larity at the point £1=0. For finite %, the correlation
function Cr¥(k) passes smoothly (along Ls, say) from
“below T,” (region I), through a critical region whose
size depends on %, to “above T,”” (region III) with no
divergence.

For finite external field the situation is more compli-
cated, but it is natural to assume that the above picture
remains essentially unchanged, except that the length
£ is a function of both the field and T—T..

B. Dynamic Scaling

As mentioned earlier, the hydrodynamic analysis,
which determines the form of C¥(k,w) for long wave-
lengths and low frequencies, is based on the concept
of local thermodynamic equilibrium, which permits an
analytic expansion of the currents of the conserved
quantities in powers of k.37 At the critical point the
length £ becomes infinite, so that the range of applica-
bility of hydrodynamics vanishes. This is because the
long-range fluctuations of the order parameter destroy
local equilibrium over increasingly large regions as T
approaches T,. On the other hand, from the definition
of the correlation functions, Egs. (2.1) and (2.2), we
have the sum rule

00

Cre(k) = E‘i’cTW(k,w). 3.1)

—w 2T

It is natural to ask how the above-mentioned break-
down of hydrodynamics comes about, and in particular
how the scaling hypothesis in the static function Cr¥ (k)
reflects itself in the dynamic function Cr¥ (k,w), via the
constraint (3.1).

In analogy with static scaling, the dynamic-scaling
hypothesis rests on the assumption that the form of
Cr¥(k,w) is essentially characterized by its behavior in
the three limiting regions of Fig. 1. One consequence
of this assumption is that if a certain long-wavelength
mode dominates the sum rule (3.1) for T far from T,
where hydrodynamics is surely valid (say, for T<T,),
then it will continue to do so for T arbitrarily close to
T., so long as k(K 1. The frequency of the mode may of
course depend on £, but it will still be related to thermo-
dynamics in the way specified by the hydrodynamic
analysis, up to corrections of order k¢; these corrections

36 The precise meaning of these qualitative statements will be

given in Sec. IV in terms of komogeneous functions.
37 B. 1. Halperin and P. C. Hohenberg (to be published).
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may be made arbitrarily small (at fixed T< T,) by going
to long enough wavelengths. At fixed %, as T approaches
T,, the terms of order k¢ become significant and
modify the hydrodynamic behavior. When T reaches
T, (region II), £ is infinite and Cr¥(k,w) depends on &
in a way which is again largely determined by the
scaling hypothesis, as shown in Sec. IV. When T is
raised above T, the parameter k£ decreases and in the
limit k&K1 (region III) the system again follows
hydrodynamics. The form of the hydrodynamic laws
may of course be different in regions I and III.

IV. SCALING HYPOTHESIS:
PRECISE FORMULATION

A. Static Scaling

We are concerned with the asymptotic form of cor-
relation functions Cr4(r) for large 7, and T near T,
which means that both 7 and £ are large compared to
all microscopic lengths.?® In zero external field, the
correlation length £=ry is assumed to diverge at T, as®

E=8'e, T<T.
’ 4.1
$= Eoe—v, T>T. ( )
where
e=|T—T,|/T.. 4.2)

According to the static scaling hypothesis, applied to
the operator 4, the function Cr4(r) is a homogeneous
function of 7 and £, which means it has the form

Crt(W=r=gt(r/t), T>T.
Cot()=r"¢(r/8), T<T..

It is assumed, furthermore, that for 7 finite there is no
discontinuity at T, so that for any r

4.3)

lim CrA(r)= lim CrA®x), (4.9
T->Te+ T>T6~
and thus
£+(0)=¢(0), (4.5)
x=x'. (4.6)
In Fourier transform we have
Cri(k)=Fkvgt(kt), T>T. (4.72)
Cri(k)=kvg(kt), T<T. (4.7b)

3 As mentioned in Ref. 8, for systems possessing an intrinsic
small parameter 6, there may be two different regions of critical
behavior, e&6 and §<<e<1. The first inequality defines the true
critical temperature interval, determined by the conditions
7>>a671, £>3671, where @ will henceforth denote a general micro-
scopic length, and 6 is a small parameter related to 8. The second
inequality corresponds to the conditions ¢<Kr<af !, a<K£<Kag 1

3 Although most existing scaling laws (Refs. 9 and 11) include
the symmetry relations y=+',»=»', and a=a/, we shall distinguish,
at least in our notation, between the primed and unprimed indices.
Stell [Phys. Rev. 173, 314 (1968)] has recently proposed a variant
of Widom’s homogeneity assumptions, in which one may have
vy#=+' and vy,
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gH(«)=g (), (4.7¢)
where y=—(s-}+x), s being the dimensionality of the
system. The functions g* and the exponent y of course
depend on the operator 4. The subscript T on the cor-
relation function denotes its dependence on the parame-
ter T—T'., which may be considered to be a dependence
on both £, and the sign of T—7T,. In many cases we
shall suppress this last dependence and merely write
Ci4(k), where it is understood that in general the
correlation function may be different for 7<7T, and
T>T.. We shall similarly drop the superscript on the
functions g* of Eq. (4.7), and merely state, whenever
the distinction is necessary, whether we are referring
to T>T, or T<T,. In writing Eq. (4.7) we have as-
sumed that for small %, the main contribution to the
Fourier transform comes from the homogeneous (large
7) part of C(r). This will be the case if y<0 (i.e.,
x> —s), and the remaining part gives a finite contri-
bution. If y=0 there will be logarithmic terms in Eq.
(4.7), in which case C(k) cannot, strictly speaking, be
considered a homogeneous function. In most of the
following we shall ignore the possibility of such loga-
rithms, although they explicitly occur in the two-
dimensional Ising model (see Ref. 41 below), and in
superfluid helium (Sec. V D).

We may find an immediate consequence of the static
scaling assumption for C:¥(k). Let us define critical
exponents? v and 7 such that for 7> T,

ng(k=0)= (kBT)X\I'= C06~7=[Co£0_‘7/"]£7/" (4.8)
and for I'="T.,,
C.Y(k)=Cyk2tn, (4.9)

where Co and Cy’ are constants. If C;¥(k=0) is finite
for £7'50, we must have, by Eq. (4.7a),

C¥(k) g [14---], kiK1, regionIII. (4.10)
Similarly, if C,.¥ (k) is finite for k20, we have
Ce¥(k) < ky[1+---], kE>1, region II. (4.11)

The dots in Eqs. (4.10) and (4.11) refer to higher-order
terms in k¢ and (k£)~!, respectively. Comparing Egs.
(4.8)—(4.11), we find the scaling law

y=—2+n=—v/v,

relating the exponents # and v which characterize the
order-parameter correlations in regions II and III,
respectively.

For finite external field H, the correlation length
remains finite even at I'=T,, and the structure of
Cr,u¥ (k) becomes more complicated. By making certain
assumptions about this structure® it is possible to
derive other scaling laws into which we shall not enter
here.

(4.12)
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B. Dynamic Scaling

A dynamic correlation function may in general be
written in the form3°

Ce (kyw) =2n[w? (k) J7'CeA () fi 4 (w/wi? (K)), (4.13)
where Eq. (3.1) implies that

0

frgt(®)da=1, (4.14)

-—0

and where the characieristic frequency wg4(k) is to be
determined by the constraint

/ fegt(x)dx=73. (4.15)

-1

It is easy to show that if the correlation function
C¢4(k,w) consists of a pair of § functions at w= =w;, then
the characteristic frequency will be w4 (k) =w;. Simi-
larly, if C:4(kw) is a Lorentzian of width I';, centered
about zero frequency, then wi4(k)=T;. In many
systems the spectrum of C¢4(k,w) in the hydrodynamic
region consists of various transport modes with differing
frequencies, strengths, and decay rates. In that case
wgA (k) will be some combination of the frequencies of
the various modes; to the extend that the strength of
one mode dominates, however, the characteristic fre-
quency tends to the frequency of that particular mode.
Examples of such behavior will be given below. Outside
of the hydrodynamic domain, where the concept of a
transport mode is not well defined, Eq. (4.15) provides
a precise, if somewhat arbitrary, definition of the charac-
teristic frequency for fluctuations of the operator 4.
This arbitrariness does not affect the critical exponents
of w 5‘4 (k) .

The dynamic-scaling assumption is a generalization
of Egs. (4.7) to the frequency dependence of C¢4(kyw).
In addition to Egs. (4.7), we assume that w4 (k) is a
homogeneous function of & and £72,

wgt (k) =kQ(kf). (4.16)

Furthermore we assume that the dimensionless func-
tion f4, whose total weight and “frequency spread”
are determined by Egs. (4.14) and (4.15), depends only
on the product k¢ and not on k and £ separately,*

Jie, et (%)= fugt(®). (4.17)

Let us note an immediate consequence of the above
scaling assumptions, which may be tested experi-
mentally whenever the function Ci4(k,w) can be
measured, as for instance in a scattering experiment. It

40 Once again, we remind the reader that in all the expressions
of this section the subscript # also implies an additional index
freferring to the sign of T—7,. Indeed, the functions Q(k%) and

x¢ may be different functions (24 and f*) of k¢ for T7>7, and
T <T.; by continuity at 7=T, for w0, k70, we must, however,
have 2, (»)=0_(x), f,*=f,~, which implies the same exponent
zin Eq. (4.16), for 7>7T; and T<T.,.
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follows from Eq. (4.17) that if the frequency dependence
of Cy4(k,w) is measured for different values of £ and
T—T.,, then, apart from a change of scale determined
by Egs. (4.7) and (4.16), the shape of C4 (k,w) will be
the same along any straight line through the origin
in the (%,£7Y) plane (Fig. 1).

There exists another formulation of the scaling hy-
pothesis which is somewhat weaker, but leads to
many of the same results. Let us define the asymptotic
forms of C¢(k) in the different regions. We have C™ (k)
=C'—, (k) while C;!(k) and C;{"1(k) are the asymptotic
forms of C¢(k) as £ — 0 for fixed ¢ with T<T, and
T>T., respectively. The scaling hypothesis is a
matching condition when the asymptotic forms are ex-
trapolated to kt=1:

Cep- (k) =a'C1(k), (4.7a%)
C5=k—-11 (k) =gCU (k) y (47b,)

where ¢ and @’ are numerical constants of order unity.
Similar expressions may be assumed for the character-
istic frequency w¢(k) and for the shape function fj,¢(x).
This weaker formulation, which is the one adopted in
Ref. 23, has the advantage that it is applicable in
cases where the functions contain logarithmic factors.

C. Restricted and Extended Scaling

If the dynamic-scaling assumptions [Eqs. (4.16) and
(4.17)] are ever valid, they ought to hold for the case
where the operator A4 is the order parameter ¥. This
operator is the one whose behavior is most singular
at the phase transition and whose fluctuations are most
intimately connected with the nature of the critical
point. The assumption that the order-parameter corre-
lation function obeys the dynamic-scaling laws at the
critical point will be referred to as the ‘restricted
dynamic-scaling assumption,” and is the minimal
assumption that we make. It also seems likely that the
dynamic-scaling assumptions will hold for various other
operators 4, as, for example, the static scaling law has
been verified to apply to the energy correlation function
in the two-dimensional Ising model.#* When applied
to operators other than the order parameter, Egs. (4.16)
and (4.17) will be considered as extensions of the
dynamic-scaling hypothesis. It is entirely possible that
if restricted scaling holds, certain extensions will be
valid but others will not, or even that no extensions
are possible. Although a general discussion of the
hierarchy of possible extensions is not particularly
instructive, many of them may be tested in specific
cases, and are therefore worth identifying. Roughly
speaking, an extension of dynamic scaling to some oper-
ator A ¥ will become less likely the weaker the singu-
larity in the static susceptibility X;4. On the other hand,
if the characteristic frequency wi4(k) is the same as
we¥(k) in some region, then an extension to the operator

4R, Hecht, Phys. Rev. 158, 557 (1967).
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A might hold even if X4 is only weakly singular.
Alternatively, if dynamic scaling fails for some function
Ci4(k,w) it is likely that the static function Cy4(k) will
also fail to obey static scaling laws.

It must be stressed that we are not attempting to
predict which one of the large number of distinguishable
extensions will in fact hold. We wish merely to point out
that many of them may be tested experimentally in
specific systems. We shall only consider extensions to
“legitimate” microscopic?® operators which retain their
meaning outside of the thermodynamic and hydro-
dynamic domains. In particular, we restrict ourselves
to operators which may be expressed as combinations of
field operators with constant (e.g., temperature-inde-
pendent) coefficients.

V. APPLICATIONS TO SPECIFIC SYSTEMS
A. The Antiferromagnet
1. Hydrodynamics

To explore the consequences of the dynamic-scaling
assumption for any particular system it is important
to analyze the hydrodynamics in order to calculate the
corresponding order-parameter correlation function
C¢¥(k,w). For the “isotropic” antiferromagnet,? such
an analysis has been carried out,*” in analogy with the
derivation of two-fluid hydrodynamics for superfluid
helium. We shall summarize the main results of this
analysis.

The order parameter for the isotropic antiferromagnet
is the staggered magnetization N,30-48 which is a vector
quantity; the correlation function analogous to (2.1)
must be defined by

C™(r,t)
3 2 (Vi) — NV ilr,1))), (V:(0,0)—(N:(0,0)))})

= C¥=(x,1)+Cu(x, 1)+ CV(x,0),

It

(5.1)

where the summation is over the three coordinate di-
rections, so that C™ is the expectation value of the sym-
metrized scalar product of the fluctuations in N.

Static correlation functions. For T> Ty, the system is
isotropic and CN=3C¥=, Moreover, the function (N(r)
decays exponentially at large 7, w1th a range satisfying
the usual relations (4.1).

For T<Tw, let us suppose the order parameter at
equilibrium to be lined up in the z direction uniformly
over the whole system. Then we have

CN ()= CVe(r,t)+20CV=(x 1), (5.2)
which expresses C¥ as the sum of a parallel and a per-

* An isotropic magnetic system is one whose Hamiltonian is
invariant under rotation of the axis of spin quantization.

¢ We measure magnetization in units of spin angular momen-
tum per unit volume. If A and B denote the _magnetizations on
the two sublattices, then the staggered magnetization is N=A—B
while the total magnetlzatlon is M=A+B.
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pendicular correlation function. At large 7 the perpen-
dicular function C¥=(r) dominates,* and falls off as r—*
[as in Eq. (24) with p=1]. In Fourier transform
this means that for small &,

CN(k) =bk2+0 (k™) =2CM=(k), (5.3)

where the constant b may be identified in terms of Eq.
(2.4) as b=4n(N,)%¢.
The quantity
ps=2kpToW(N,)2 c £71 (5.4)

plays the role of a “stiffness constant” for fluctuations
in the direction of N, the notation being intended to
suggest the analogy with helium II, where the super-
fluid density p, is the stiffness constant for phase
fluctuations.

The fotal spin*® M can also be separated into parallel
and perpendicular correlation functions,

CM(kw) = CM=(k,w)+2CH=(k,w) . (5.5)
The susceptibility
XM= (kpT)"'1CM(k=0) (5.6)

remains finite at all temperatures. Below 7', the perpen-
dicular susceptibility XM= is larger than X but the
latter is also believed to be nonzero.

Dynamic correlation functions. The main result of the
hydrodynamic analysis®” is that, for any 7<7'y, spin
waves exist as well-defined excitations and exhaust the
function C¢¥(k,w) in the long-wavelength limit. The
spin-wave frequency is given by

wk)=ck, (5.7
=ps/XM"’, (58)

and the damping by
I'(k)=3D.k?, (5.9)

where D, is some (unknown) function of temperature.
The above result, of course, depends crucially on the
isotropy of the starting Hamiltonian.

It follows from Egs. (5.4), (5.7), and (5.8) that the
characteristic frequency for N is

wN(k)=ck o« £112%.
Furthermore, since the spingwaves exhaust the sum

rule, the function f¥ is, to lowest order in %, a pair of
4 functions

(5.10)

fo(@)=3[8(x—1)+8(x+1)], (5.11)
and to order % it is a two-peaked function
Nk
SN (x )—* (5.12)

b
™ (x*— 1)+
44 The asymptotic behavior of the parallel function C¥:(r) is
not known precisely; the spin-wave approximation predicts
C¥:(r)~r~2 for the ferromagnet and is thought to be the same for
the antiferromagnet. See K. Kawasaki and H. Mori, Progr.
Theoret Phys. (Kyoto) 25, 1043%(1961); 38,1052 (1967) Vaks
et al., Ref. 51, below;ifor the antiferromagnet see K. Tani and H.
Tanaka Phys Letters 264, 68 (1967).
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(a) REGION I
M~ k§<<1

(b) REGION IIT

] 1
=1 +1 X

F16. 2. Schematic representation of the shape of the frequency
spectrum for order-parameter fluctuations at long wavelengths in
an antiferromagnet. The function fN(x) is depicted in (a) the spin-
wave region 7 <Tw, and (b) the paramagnetic region 7'>Ty.
For the ferromagnet, the function fM has similar behavior, except
Eza)tzin region I the width parameter # is roughly proportional to

£)%.

where
me=D:k%/ck<1. (5.13)

For T'>Ty, there is no propagating mode at long
wavelengths. The function C¥(k,w) is peaked about
w=0. Its width TN(k) has a nonzero limit I'N(k=0),
because N is not a constant of the motion. From the
definition of the characteristic frequency it is clear that
for T> Ty and £ — 0 (region III)

N (k) =T™(k). (5.14)

Turning now to the total magnetization M, the
characteristic frequency for transverse fluctuations
wM=(k) is identical to the spin-wave frequency (5.7)
for T< Tw (region I), and the damping is also described
by Eq. (5.9). For 7> Ty, on the other hand, the relax-
ation rate I'”=(k) has the diffusion form

wMa(k) = T'M=(k) ~ DE? (5.15)

because M is a constant of the motion. The frequency
wM#(k), describing longitudinal fluctuations, is not
known precisely for 7<7Ty but we shall assume it to
be also of the diffusion form

wM+(k)=D.k2. (5.16)
Above Ty, of course, w™=(k) is identical to w™=(k).

2. Scaling Predictions

Restricted dynamic scaling. The characteristic fre-
quency w:¥(k) is assumed to have the general form
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given in Eq. (4.16) and to reduce to (5.10) in region I.
This implies that the exponent z of Eq. (4.16) is 3.
Consequently, in region II we have

w™(k)=Bk*?4-- . - =k 12Q(kE), kE>1. (5.17)

Because w:¥(k=0)=T;¥(0) is nonzero in region III,
we find
wN(k)=B'E3 2 - (5.18)

for k£«1 and T>T'.. In the above equations B and B’
are constants and the dots represent corrections which
are higher order in (k£)~! and k¢, in regions IT and III,
respectively.

From assumption (4.17) on the form of fN(x), it
follows that the damping correction n;=(D,k?/ck) of
Eq. (5.13) cannot depend on any other parameter than
k¢, and since it is linear in & it must be of the form

m=B"kE. (5.19)
It follows that

Dy £102, (5.20)

The shape function fi:¥(x) has the spin-wave and relax-
ation forms depicted in Figs. 2(a) and 2(b) in the
hydrodynamic regions I and ITI. In region II, the scaling
hypotheses do not specify the shape function; examples
of possible behavior are shown in Fig. 3.

The above predictions also follow from the “asymp-
totic matching conditions” for the frequency and shape
function, analogous to Egs. (4.7). The frequency
(k) has the asymptotic forms w:l(k) « {12k [Eq.
(5.10)] and wg™ (k) o< 2. It follows that w! (k) « wi -1 (k)
< k32 and wg (k) o £73/2, Similarly, the damping fre-
quency is I'(k)=%D,k?, which extrapolates to k3/? if
D, £2, A similar argument on the scaling of fre-
quencies was first advanced by Ferrell et al.?® for the
\ transition of superfluid helium.

As pointed out by Heller,®® the correlation function
C:¥(k,w) determines the linewidth for NMR at tempera-
tures near Ty. For T'>Ty, the NMR linewidth is
given by

00

A A2 / dt C™(r=0, 2 (5.21)
0

« A2 / &k CN(k, w=0), (5.22)

where 4 is the hyperfine coupling constant.
Inserting the scaling form [(4.7), (4.13), (4.16), and
(4.17)7] into Eq. (5.22), we find

Ce(k)
A d3k k. 0 )
/ O
o prtg(t) fue(0
e [0 gk £2e0)
0 k32Q(kE)

, (5.23)

0

Aceghn [ d(RD)F (kE) o £,
0

4 P. Heller, Natl. Bur. Std. (U, S.) Misc. Publ. 273, 58 (1966),
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where Egs. (4.12) and (5.17) have been used. The inte-
gral in Eq. (5.23) is found to converge, with the major
contribution coming from k¢ of order 1. The NMR
linewidth of the isotropic antiferromagnet is thus pre-
dicted to diverge for T>Tx, as 3= ¢ 153; this
divergence is slightly weaker than the ¢ /2 behavior
predicted by Heller®® on the basis of the Van Hove!t
theory. Similar results are obtained for the NMR line-
width below 7.

Extended dynamic scaling. The above predictions all
refer to the time dependence of the order parameter N,
and therefore follow from the restricted dynamic-
scaling hypothesis. We may also discuss the extension to
the total magnetization M, whose hydrodynamic
behavior is known. This analysis is not of immediate
practical interest, since C¥(k,w) is difficult to measure,
but we present it here as an illustration of extended
dynamic scaling.

As mentioned above, for T<Ty (region I) the fre-
quency w*=(k) and the shape function f¥= coincide with
those of the order parameter, Egs. (5.7)-(5.9) and (5.12),
whereas above Ty (region III) the total spin satisfies
a diffusion equation with a frequency given by Eq.
(5.15). The susceptibility XM= is believed to remain
finite and continuous at Tw, even though its tempera-
ture derivative probably has some singularity. The
damping of the spin waves of CiM=(k,w) in region I
follows from the restricted scaling hypothesis, and is
given by (5.20), since fM= and fN agree to order (k£)2.
The spin-diffusion coefficient in region III, on the other
hand [Eq. (5.15)], is only determined by the extended
hypothesis as

D g2, (5.24)

This divergence in D corresponds to a “critical speeding
up” of (total) spin fluctuations at fixed k, as T'— T'yt.46
In region II, the frequency w™= is given by Eq. (4.16),
with z=$%, this result being again a consequence of ex-
tended rather than restricted scaling. The character-
istic frequency for longitudinal total spin fluctuations
wM+(k) is identical to w¥=(k) in regions I and III, and
should be proportional to £/2k2 in region 1.

3. Experimental Tests

The antiferromagnet is a very favorable system for
testing the dynamic-scaling hypothesis, since the order-
parameter correlation function is directly measurable
by neutron-scattering experiments. Furthermore there
exists at least one material, RbMnF;, which seems to
conform quite closely to the isotropic Heisenberg
model.#” In principle, one test of the applicability of
this model is the verification of the spin-wave dispersion
relation Egs. (5.7) and (5.10), both its & dependence at

46 The kinematic slowing down still exists since wM(k)ock?
for k1.

4 D. T. Teany, M. J. Freiser, and R. W. H, Stevenson, Phys.
Rev. Letters 9, 212 (1962); R. Nathans, F. Menzinger, and S. J.
Pickart, J. Appl. Phys. 39, 1237 (1968).
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(a)
1 L
-1 +1 X
f
(b)
1 1
-1 +1 X
f
(c)
1 1
-1 +1 X

F16. 3. Some possible forms for the shape function fN(x)in
the antiferromagnet or fM(x) in the ferromagnet at T, (region II),
which are all consistent with scaling. Only the shape shown in
(a) can be interpreted in terms of propagating spin waves.

low temperatures and its £ dependence near Ty. If the
model turns out to be applicable far from Ty, then it is
reasonable to test the scaling predictions which apply
near T'n.

Static correlations. The static function can be de-
termined from the quasi-elastic scattering cross section?

do/dQe CN(k)+(20)°[(N)[*8(k),  (5.25)

for scattering at wave vectors q=K-+k near the
magnetic lattice vector K. For > Ty, and £— 0, we
thus expect a cross section of the form

do/dQ=A"/(k*+«?), (5.26)
from which the correlation length
f=x1 (5.27)

can be determined (4’ is a constant if y=0). For T<Ty
the “Bragg” peak proportional to the order parameter
[{N)|? appears at k=q— K=0, and from our definition
of the correlation length, Eq. (2.4), it follows that

do/dQ |(N)|?[(2m)6(k)+4mt/k2+- -], (5.28)

4 We assume that below T, the crystal is made up of a number
of domains of random spin orientation, so that the scattering
cross section represents an average over the %, ¥, and z directions
relative to the alignment of the order parameter.
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where the dots refer to terms of higher order in k. In
principle, the quasi-elastic experiments might also be
used to verify the more specific scaling form (4.7) postu-
lated for C:¥(k).

Dynamic correlations: region II. Having determined
the correlation length £, it is possible to test the dy-
namic-scaling prediction for the k dependence of the
characteristic frequency. In practice, region II is the
easiest to study with neutrons, since it is relatively easy
to fix the temperature at 7y and to make measurements
at different scattering angles. In particular, in RbMnFs,
where Ty=~82°K, we expect £ to be several hundred
angstroms when 7' is within 10 mdeg of I'y. The
interesting range of & values lies between the minimum
practical with neutrons (roughly 0.02 A-') and a maxi-
mum k,, above which the macroscopic theory is invalid.
We estimate that k,=7srd1~0.1 A~1, where d
denotes a microscopic length, such as the lattice spacing
or the force range. The observable part of region II
corresponds roughly to a decade of % values, £ 1<k <Fkp.
The experiments of Nathans, Menzinger, and Pickart®’
are consistent with a k*/2 dependence of the character-
istic frequency in region II.

Dynamic correlations: hydrodynamic regions. In order
to test the assertions referring to regions I and III,
namely, the spin-wave damping, Eq. (5.20), and the
spin relaxation, Eq. (5.18), it is necessary to go to very
small £ where the accuracy of the neutron experiments
decreases, since the resolution corrections which must
be applied to the observed cross sections become large.
In order to be in a “critical” region it is necessary that
£ be larger than a (say, £ 10a/7), which means roughly
€<0.1, or 82°K < T<90°K in RbMnF;, for > T,. Thus
the interesting hydrodynamic regions are restricted to
scattering angles for which k<<£ < k., where experi-
ments are difficult. One method of meeting these
difficulties is to assume a form for w:¥(k) containing a
few adjustable parameters, and satisfying the scaling
hypothesis (4.16). The parameters are then fitted from
the data for k£>1, say, and the function extrapolated to
the region k£<%,%° The resulting expression may be con-
voluted with the resolution function and compared to
the measured cross section. This procedure would pro-
vide a consistency check rather than an absolute meas-
urement, but is probably a more realistic test of Eqs.
(5.18) and (5.20) in the hydrodynamic regions.

9 For example, take
wN(k) = (A1 —BESE14+-CR2E24+DE8 for T>Tx. (1)
This has the asymptotic forms
wN(k) =A38E32—3BASBEI2E 1. .. for REDL, (2)
weN(k)=D¥sg324 3ICD-582812 . .. for REKL.  (3)
The parameter A may be fitted from data at T=Tly, 0.05 A71<k
<0.10 A™! using the first term of Eq. (2). To determine C and D
use data at fixed T'>Tw, with k£<1, say, at T=288°K, for 0%
<0.1 271, using Eq. (3). Then B may be found by adjusting the
minimum in w¢N(k) as a function of T for fixed £>0.05 A™. Once
a consistent set of constants 4, B, C, D is found, the expression
for w;N(k) can be convoluted with the resolution function in order
to predict the experimental temperature dependence of w:¥(0).
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The prediction for the NMR linewidth, Eq. (5.23),
may be verified on RnMnF3, by an experiment similar

to Heller’s®® measurements on the anisotropic material
Man.

4. Effect of Anisotropy

The presence of anisotropy will have a marked effect
on the dynamic properties of the antiferromagnet. Let
us first consider the case of a strongly anisotropic model
which has cubic symmetry above 7'x.°° The correlation
function C¥(k,w) is still equal to 3CV=(kw) for T> T,
and the characteristic relaxation rate w:¥(k) approaches
a finite limit w¥(0) < &2 as k— 0, for fixed T'>Ty.
Below Ty, we must distinguish between fluctuations in
N which are parallel and those which are perpendicular
to the average staggered magnetization (N). As con-
trasted with the isotropic case, the perpendicular
fluctuations do not now diverge at k=0, and do not
necessarily dominate C¥(k) at long wavelengths. Let us
again suppose (N) is in the 2 direction. The correlation
functions CV+(k,w) and C¥v(kw) are dominated by
well-defined spin-wave modes at low temperatures, and
it seems likely that these modes exist at long wave-
lengths for any temperature below T'y. Unlike the iso-
tropic case, however, there is a gap in the spin-wave
spectrum. The value of the spin-wave frequency at long
wavelengths is not exactly relatable to thermodynamic
properties of the system. As T'— T'y, the spin-wave
gap is believed to approach zero; if dynamic scaling
is obeyed, the gap must approach zero with the same
power of £ as the relaxation rate above T, namely,
&= The parallel component N, is believed to have a
finite relaxation rate at k=0 below 7, as well as above
T.. According to the restricted dynamic-scaling hy-
pothesis, we must have wg¥#(k)«<£7* in region I. In
region II, of course, we should have w™(k) o k2.

For the anisotropic case we cannot determine the
exponent z from thermodynamic considerations. None-
theless, an experimental test of the scaling hypotheses
should be feasible. The gap in the spin-wave spectrum
in region I can be determined quite accurately by an
antiferromagnetic resonance experiment. The dispersion
relation in region II can be measured by neutron scat-
tering, and the exponents may be compared for the two
regions. The relaxation rates in regions I and III may
also be accessible to neutrons.

Let us next consider a strongly anisotropic model
which does not have cubic symmetry above T'.. Here,
the order parameter is the scalar quantity N.. The
predictions of the restricted dynamic-scaling hypothesis
for w¥= are the same as for the cubic case: a relaxation
frequency proportional to 72 in regions I and III and a
characteristic frequency Bk? in region II, where z is an
unknown exponent. In the present case, however,

50 The anisotropy might result from a spin-spin interaction such
as a dipole-dipole interaction, which is not invariant under rota-
tion of the spins, or it might result from the combined effect of

spin-orbit coupling and crystal-field splitting on the individual
atomic levels.
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restricted dynamic scaling can say nothing about
fluctuations in N, and N,. Unlike C¥=(k), the static
correlation functions C¥=(k) and C¥#(k) either do not
diverge, or diverge only weakly as — 0 and T — Ty.
Presumably w?= will also have a different behavior than
V= near the critical point.

A weakly anisotropic antiferromagnet will have an
energy gap at low temperatures proportional to
(H AH ox)'*=H 8, where H 4 is the “anisotropy field”
and H is the exchange field (we assume §<1). The
spin-wave spectrum at low temperatures is linear for
§«<kak1, and deviates from linearity for 2¢< 6. The
existence of the small parameter 6 raises the possibility
of two different temperature regions in which critical
behavior occurs.?*® We expect to find a region §<<e1
or A< £« a, in which the system behaves like an
isotropic antiferromagnet, for & values in the “quasi-
macroscopic” range 3-<<k<<a~. The small parameter
6 is proportional to an unknown power of 8, while 6 is
proportional to 6*/3. We may speculate that the true
critical behavior is reached when the conditions
£1ha 1, k<Ba' are satisfied. Here the system behaves
like an anisotropic model, with a gap in the long-wave-
length spin-wave spectrum. This change of behavior
could be interpreted, in terms of the scaling picture, as a
dependence of the characteristic frequency on the
parameter k@@, rather than k£, and thus as a violation
of dynamic scaling. In fact, it merely results from the
existence of an anomalously long “microscopic” (i.e.,
temperature-independent) length 8~1@, which is inherent
in the model. The asymptotic critical behavior is not
reached until the relation £<8a! is satisfied, even
though most thermodynamic functions may be insensi-
tive to the parameter 6£/a.

B. Ferromagnet
1. Hydrodynamics

As is well known, isotropic ferromagnets (Heisenberg
or itinerant electron model) have spin waves at low
temperatures with a dispersion relation proportional to
k%, for small k. Just as for the isotropic antiferromagnet,
it is believed that at any fixed temperature below 7',
the spin-wave damping rate is negligible compared to
the real part of the frequency in the long-wavelength
limit. Indeed, the microscopic theory of the Heisenberg
model predicts a spin-wave decay rate proportional to
k4(Ink)? in an appropriate low-temperature and long-
wavelength limit.5!

The purely macroscopic spin-wave theory,3” which
may not be as well founded for the ferromagnet as it

51V. N. Kashcheev and M. A. Krivoglaz, Fiz. Tverd. Tela 3,
1541 (1961) [English transl.: Soviet Phys.—Solid State 3, 1117
(1961)]; A. B. Harris, Phys. Rev. 175, 674 (1968). Recently, V. G.
Vaks, A.I. Larkin, and S. A. Pikin, Zh. Eksperim. i Teor. Fiz. 53,
1089 (1967) [English transl. : Soviet Phys.—JETP 26, 647 (1968) ]
have derived a decay rate of this form at all 7<7, in the limit of
a long-range spin-spin interaction, and have argued that it is
probably valid for short-range forces as well.
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is for the antiferromagnet, predicts a decay rate pro-
portional to k% in the long-wavelength limit at all
temperatures below T.. In any case, the spin-wave
frequency is given by the usual Landau-Lifshitz
formula®?

w(k)=Nk2,

A=p/|(M)], (5.30)

and the stiffness constant p, is related to the static
correlation function Ci™(k) by equations analogous to
(5.3) and (5.4). Neglecting the possible logarithmic
factor, we find that the function f™ has the form (5.12)
in region I, with a width parameter

= (§&*/NE?) (5.31)

which depends on the “spin-wave damping coefficient” ¢.

For T'>T,, the hydrodynamic form of C:(k,w) is
the same for the ferromagnet as for the antiferromagnet
[Eq. (5.15)], since both are in the paramagnetic phase.
The susceptibility XM diverges at T', for the ferro-
magnet, however, whereas it remains finite for the
antiferromagnet.

(5.29)
where

2. Scaling Predictions

The analysis of the scaling hypotheses is similar to
the case of the antiferromagnet. Let the temperature
dependence of (M) at the critical point be characterized
by the exponent 3. The stiffness constant p, is propor-
tional to &7, just as for the antiferromagnet.

In region I, we find?®

A=ps/(M) o £ leP= 1Bl =12 13 (5.32)
wM(k) =NE? cc k=81 (k)11 = 12(RE)-1I2 | (5.33)
me=(§/NE « (kE)?, (5.34)

Coc BN o EUHBIY o g312 (5.35)

We have inserted the (approximate) exponent values
B=%, v'=v=3%; alternatively, the static scaling laws®!
may be used to express the exponent z of wgM(k) directly
as 3—B/v'=4(5—n)~5. From Eq. (5.34) we see that
the damping is small in region I. The idea that spin
waves will exist arbitrarily close to 7', in ferromagnets
so long as k¢S1 and 7<T, was put forward inde-
pendently by Vaks et al.5

In region 11, the characteristic frequency is given by

wM(k) = BE3-81" = BG—n 12, (5.36)

For finite k4(T#T,) there are corrections which will
be of higher order in (k£)-1.
In region III, the relaxation frequency is

wM(k)=Dk?= 182 | (5.37)
which leads to a spin-diffusion constant going as
Do @=Frlv = 13, (5.38)

2 L. D. Landau and E. M. Lifshit , Physik Z. Sowj i
8, 153 (1933). 1tz yS! owjetunion
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Using the static scaling laws,%!! we may write the
exponent »—@»/v’ in Eq. (5.38) as 3y(1—9)(1—39)L.
For #=0, the diffusion constant is proportional to
(x)~14 which is the behavior first suggested by
Bennett and Martin,>® and later by Kawasaki.’*

The expression in Eq. (5.22) for the NMR linewidth
may be applied to the ferromagnet, with N replaced
by M, yielding®

S
Acx kdk — (0
fo o o™

o EZ—n—ﬂ/r’z e—l .

(5.39)

3. Experimental Tests

The ferromagnet is not as appropriate a system for
testing the scaling predictions as the antiferromagnet,
since there does not seem to exist any material which
approximates the isotropic Heisenberg model. A funda-
mental difference with the antiferromagnet lies in the
importance of the (anisotropic) dipolar part of the
Hamiltonian, which is always important at long wave-
lengths in the ferromagnet, and thus must surely
influence the critical phenomena. The situation might
be analogous to the slightly anisotropic antiferromagnet
discussed above, where there is an “apparent” critical
region in one temperature range, and a change of
behavior very close to 7T'.. In addition many ferro-
magnets are metals, and the presence of conduction
electrons may have an effect on the critical phenomena.
In any case, an understanding of dynamical critical
behavior in real ferromagnets requires much more
analysis than has been given here, and the scaling pre-
dictions presented above can only be used as a quali-
tative guide. At the present time, it is probably more
useful to compare the dynamic-scaling laws to theoretical
work on the Heisenberg ferromagnet, either approxi-
mate microscopic or numerical calculations, or other
phenomenological theories. The experimental evidence
on spin diffusion which exists at present!®is inconclusive,
since the k¢ corrections are probably large near T,
and the predicted temperature dependence of D
[Eq. (5.38)] is very gradual. The fact that the % de-
pendence of the relaxation frequency appears quadratic
does not prove that diffusion is occurring (and that one
is still in region III), since the exponent of % is always
close to 2, and has a maximum value § at T, (region II).

C. Gas-Liquid Transition
1. Hydrodynamics

The hydrodynamic theory of fluctuation in a simple
fluid is, of course, well known, and was first worked out
in connection with light scattering by Landau and

53 H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).

% K. Kawasaki, J. Phys. Chem. Solids 28, 1277 (1967).

% Due to a misprint in Ref. 24 the exponent of Eq. (5.39) was
mistakenly written as €™ rather than %
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Placzek.’® A particularly convenient formulation in
terms of correlation functions was developed by
Kadanoff and Martin.2®

The order parameter is the density # (or more pre-
cisely n—n,, where n, is the critical density) and its
correlation function at long wavelengths is

I

c.,( 2¢2k2D k2 ) 2ka2/1 c,,)
oo \wi— )+ (WD) ck \ o,

X(W_(;;_):lec;kz)z)]’ (340)

where

on
Cn(0)=kBTX"=kBTn(——)
ap/r

crmiser-e(2) T 510

(5.41b)

Dyr=«/mnc,,

§¢+n kK [Cp
D,= + (——— 1) s (5.41¢)
MN MNCH\Cy
1 (ap) 1 c,,(ap)
= —) =— =
m\on/ g m c,\on/rp
T(9p/dT) 2
=___(_L)___ (5.41d)

wm? (1—c,/cyp) '

In Eqgs. (5.40) and (5.41), m is the atomic or molecular
mass, ¢, and ¢, are the heat capacities per unit mass at
constant pressure and constant volume, « is the thermal
conductivity, and # and { are the shear and bulk vis-
cosities, respectively. These equations hold for the gas
and liquid separately below T, as well as in the single
fluid above T,. To illustrate the use of the reduced
variables of Egs. (4.13)-(4.15), we calculate the
characteristic frequency and shape function, using Eq.
(5.40), in thelong-wavelength limit (D,k2%&ck, Drk?<<ck)
and for y=c¢,/c,>2. We find

w(k) = Drk2(1+d)+O0(k%),
(14
x2+(1+d)—2)
+3v L8 (x+b)+8(x—b)], (5.43)
(1+d)=tan[=/4(1—y1)],
b=ck/Drk*(14+d)>1,
% L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-

ous Media (Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1960), Chap. XIV.

(5.42)
1
f”(x)z;(l—v“)(

with
(5.44)
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and where § is a Lorentzian of unit area and with a
width small compared to b. Note that when y~1— 0,
~iry1—0.
At the critical point the quantity (3p/07), remains
finite, so that the specific heat ¢, has the strong singu-
larity of the compressibility X* [see Eq. (5.41a)],

Cr=c¢", T>T, (5.452)
cp=cYe", T<T, (5.45b)

(If scaling laws are to make sense, it is necessary that
all critical exponents below T, be the same for the liquid
as for the gas.) The specific heat ¢, is much more weakly
singular®” than ¢,

(critical isochore)

(coexistence curve).

T>T, (5.46a)
T<T, (5.46b)

and from Eq. (5.41d) it follows that the sound velocity
varies as (¢,)~'/2. Near T, the parameters y=c¢,/c, and
d [Eq. (5.44)] go to zero and Egs. (5.42) and (5.43)
reduce to

Cr=0C%,

o
Cr=0,"€¢%,

w™(E)=Drk?, (5.47a)
o) =7"1/(2*+1). (5.47b)

These formulas show that in the fluid the sound-wave
contribution to the order-parameter correlation func-
tion vanishes relative to the thermal diffusion contribu-
tion as 7" — T, in the kydrodynamic domain.

Finally, let us introduce the (unknown) exponent
describing the singularity of the thermal conductivity

k=Ko, T>T, (5.48a)
k=xeV, T<T,. (5.48b)

2. Scaling Predictions

The characteristic frequency may be found in region
I from Egs. (5.47a) and (5.41b):

(k) = Dykt c W=7 2

=W (BE) W=l (5.49)

This determines the exponent of Eq. (4.16) to be
z=2+G'=0)/v. (5.50)

A similar evaluation is possible in region III. The
restricted dynamic-scaling hypothesis predicts®?

z=2+(y—0/v=2+@G"=1)/V. (5.51)

If wehavey=+" andv=1', as predicted by static scaling,
then we must have /=0'. (The semiphenomenological
calculation by Kadanoff and Swift?? predicts in addition
U'=y', l=y».) In region II we have

wa(k) = BE?, (5.52)

8 There is evidence (Ref. 3) that ¢, is logarithmically infinite
both above and below T'.(a~a’~0). We shall assume that this is
so in what follows, although a finite cusp (e, o/ <0) or a stronger
singularity («, &’ >0) are also possible.
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with z again given by Eq. (5.51). For finite but small
k¢ (in region III, say) the general form (4.16) implies

wg"(k)=Drk*[14+-B'(k§)*+-- - - ], (5.53)

where B’ is a constant. A similar temperature-dependent
correction to the thermal conduction frequency was
first proposed by Fixman'®;in the present case, however,
the parameter £ does not have the mean-field®7 tempera-
ture dependence &é~¢L,

In order to make predictions concerning the sound
mode, an operator must be found which has this mode
as its characteristic frequency in region I or III. Such
an operator is the longitudinal part of the momentum-
density operator

&) =2 pdr—r(1)], (5.54)

where p; and r,(f) are the momentum and position of the
ith particle of the system, respectively. The longitudinal
part C?(k,w) of the correlation function C5(k,w) may be
obtained from C»(kw) by applying the equation of
continuity.?® In the long-wavelength limit it turns out
that Co(k,w) is dominated by the sound mode. An
extension of the dynamic-scaling assumption to the
momentum density would imply, among other things,
that the sound-damping constant would be given by

1D« ckXkE, (5.55)
D,«ck. (5.56)

Kadanoff and Swift?? show that this is not the correct
behavior as £— 0, even though Eq. (5.56) seems to
apply for slightly larger % values.’® The failure of ex-
tended dynamic scaling for the momentum-density
operator suggests that the scaling hypothesis may be
generally inapplicable to operators whose characteristic
frequency wg4(k) is different from that of the order
parameter, in both hydrodynamic regions.

For a classical system, the equal-time momentum-
density correlation function has the form

Cou(k)=mmk5T. (5.57)

Thus the static scaling law is trivially satisfied for the

momentum density, but dynamic scaling does not hold.

% The anomalous damping of sound found by Kadanoff and
Swift (Ref. 22) at long wavelengths does not come from a kt
correction to the dispersion relation, as in Eq. (5.55). It is inter-
esting to note, however, that they find D,%%/ck proportional to
w17, where w; is the sound frequency and 7 is the characteristic
time for fluctuations of the order parameter, v="[wy (k=£1)]1
=~ Dr'g%. Specifically, they predict that the thermal conductivity
« is proportional to £, and that D,=Acmnck=A'tc,cc e,
where 4 and A’ are constant or very weakly divergent. This long-
wavelength damping correction to the sound mode has the form
Dk*/ck=AkE(cE*/DrE?), which means that the function fo
depends not only on k£ but also on the temperature-dependent
small parameter (Drg&2/ct™!) which is a ratio of characteristic
times for momentum and density fluctuations, respectively. It
is worth pointing out that the three frequency regions defined by
Kadanoff and Swift are all contained in our region I, and merely
reflect the fact that for the sound mode, hydrodynamics breaks
down long before the condition k¢£~1 is reached.



966 B. I.

3. Experimental Tests

Since the critical mode (5.42) is nonpropagating both
above and below T, its temperature dependence cannot
be related to the thermodynamic exponents alone, but
involves also the exponent ! [Eq. (5.48)]. A test of
dynamic scaling thus must involve the comparison of
measured dynamical behavior in different regions,
namely, a test of Egs. (5.51) and (5.52).

The symmetry of Dy above and below 7', has been
verified by light-scattering experiments on COs*® but
has been found not to hold in SF.%° Although there is a
possibility that the discrepancy in SFs is caused by an
asymmetry in £ (i.e., »#7"), the mere fact that two seem-
ingly simple fluids should behave differently casts
serious doubt on the whole notion of a unique phase
transition phenomenon in fluids. Until this discrepancy
between the two substances has been explained, there
seems little point in speculating on the possible break-
down or verification of dynamic scaling.

For those substances in which Dy(£) behaves sym-
metrically, a number of tests of dynamic scaling appear
feasible. The (k£)? correction to the dispersion relation
(5.53) has been observed by light-scattering techniques
in Xe,! and is of the right order of magnitude. The
measurement is not precise enough to determine the
temperature dependence of this correction, .but c.ould
hopefully be improved. Another promising idea is to
do both light scattering and neutron diffraction on the
same substance, for instance, argon. By increasing the
range of application of both techniques, it might be
possible to measure overlapping regions of k£, and to
check the consistency of the two sets of measurements of
the density correlation function. Even in the absence of
such an overlap, the light-scattering experiments can
measure Dy accurately in region III, and thus de-
termine the exponent z of Eq. (5.50). This would then
completely fix the £ dependence in region 11, Eq. (5.52?,
which is relatively easily accessible to neutrons. This
experiment would be a detailed test of dynamic scaling,
which might be considerably more rigorous than‘t}{e
experiments in antiferromagnets, since' the kE((} limit
may be measured with the more precise te.chmque of
light scattering. In addition, the hydrodynamic formulas
(5.40) and (5.41) are exact for real fluids, whereas the
corresponding expressions in antiferromagnets apply
only to a simple isotropic model. .

It is worth pointing out that the critical point of
binary-fluid mixtures has properties which are very
similar to those of the simple-fluid critical point.
Critical scattering of light once again can measure the
width of the central diffusive peak,® and it is probably

% H. L. Swinney and H. Z. Cummins, Phys. Rev. 171, 152
(1968); B. Maccabee and J. A. White, Bull. Am. Phys. Soc. 13,
182 (1968).

6 N. C. Ford, Jr., and G. B. Benedek, Phys. Rev. Letters 15,
649 (1965).

1Y, Yeh, Phys. Rev. Letters 18, 1043 (1967). )

6 B. Chu, invited talk delivered at meeting of the American
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also possible to compare these measurements with
neutron-scattering results in region II.

D. A Transition of Superfluid Helium
1. Hydrodynamics

The two-fluid hydrodynamics of Landau and Khalat-
nikov® leads to correlation-function expressions which
were evaluated earlier.®® The order parameter ¥(r,)
is equal to the quantum field operator y/(r,f) for annihi-
lation of a helium atom. Since the field operators are
non-Hermitian, the average order parameter is a
complex number, analogous to a two-dimensional
vector. The gauge invariance of the helium Hamiltonian
corresponds to rotational invariance in a spin system;
for the superfluid it is an exact symmetry of the real
system, however, rather than a property of an approxi-
mate model. By treating the Hermitian and non-
Hermitian parts of ¢ as the components of a two-
dimensional vector, we find that the order-parameter
correlation function analogous to (5.1) is

C¥(x,t)
=zRe({ @ (r,) — @ @HN,@(0,00— @'0,00)}). (5.58)

For T'<T) the angular brackets denote an average in a
“reduced ensemble” in which the phase of the order
parameter has a definite value. In the normal fluid
(I'>T)) the equilibrium ensemble is identical to the
grand-canonical ensemble; the correlation function is
isotropic in the complex plane, and decays exponentially
at large distances. For 7<T), let us suppose the order
parameter to be “lined up” along the real axis,

Im@(r,5))=0.

The correlation function splits into a parallel part and
a perpendicular part, corresponding to fluctuations of
the real and imaginary parts of ¢ (“magnitude” and
“phase” fluctuations), respectively:

C¥(r )= CR(rh)+C1(x,) .

According to two-fluid hydrodynamics the perpen-
dicular component C7(r,f) dominates at large 7,5 just
as for antiferromagnets. The Fourier transform of
C¥(r) at small % is

Ct&)=a/k*+-- - - =kpTnom®/W2pk*+- - -, (5.61)

(5.59)

(5.60)

where 7o= | (¢)|2, and the “superfluid density” p, is a

Physical Society, Boston, 1968 (unpublished); Phys. Rev. Letters
18, 200 (1967).

% 1. M. Khalatnikov, Iniroduction to the Theory of Super-
Jidity (W. A. Benjamin, Inc., New York, 1965), Chaps. 8-10.

% P. C. Hohenberg and P. C. Martin, Ann. Phys. (N. Y.) 34,
291 (1965).

8 It is convenient theoretically to consider the X transition at
constant chemical potential u. We can then add a constant po-
tential to the Hamiltonian, so that u=0, and the time derivative
of the phase is zero in equilibrium. All singularities will
be unchanged, however, if the experiments are done at con-
stant pressure.
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stiffness constant for fluctuations of the phase ¢, i.e.,

9% (m)2 9%
p3= = —
o \#1/ a(ve)?

where € is the energy density.®® Near T, in the super-
fluid state (T'<T)), the correlation length is given by
Egs. (2.4) and (5.61) as

E=m2kpT/4nh2ps. (5.63)

For T>T\,, the correlation length is deduced from
the long-wavelength form of C¥(k),

C¥k)y=A"/(*+£?2), k—0, T>T\ (5.64)

where A’ is temperature-independent if the Ornstein-
Zernike theory is valid (=0), but depends on £ for
77#%0.

Below T, the dynamic correlation function C¥(k,w)
is dominated by second sound, whose frequency is

wz(k) = Cgk 5 (565)

(5.62)

with
(5.66)

where p,=mnm—p,, and s=S/mN is the entropy per
unit mass. The attenuation of second sound is deter-
mined from the decay rate

Ty(k)=3D.k?, (5.67)

where the damping constant D, is expressible in terms
of the transport coefficients [see Eq. (4.22) of Ref. 64].

The above formulas are valid®” to lowest order in
small parameter y~'=c,/c,—1, which varies from
~10* at 1°K to =10~2 at T— T\~ 10" °K. For finite
y—1, the first-sound pole appears in C¥(k,w), and the
relations determining the second-sound velocity and
damping, Egs. (5.66) and (5.67), must be modified.
The complete formulas are given in Ref. 64, Egs.
(4.14)-(4.18).

Above T, the frequency dependence of the order-
parameter correlation function cannot be determined
from hydrodynamics since the operator ¢ is not a con-
stant of the motion, nor is it coupled to constants of
the motion in the macroscopic limit. This situation is
analogous to the antiferromagnet, where N does not

c2?=Tpes*/puCsp,

6 In Ref. 64, the energy density E/V was denoted by e, but
here we use &, to distinguish it from e=|T—T| /7.

67 The essential assumption needed to prove these formulas is
the validity of an expansion of the currents in powers of &% at long
wavelengths [see Eq. (4.3) of Ref. 64, and Refs. 63 and 37]. This
expansion depends on the existence of local equilibrium, character-
ized by local values of the density, the energy density, the mo-
mentum density, and the superfluid velocity. A test of the validity
of the expansion away from T is the verification of the linear and
quadratic powers of % in wz(k) and T(k), respectively, in a real
second-sound wave for sufficiently small k. Although such a
verification has been carried out in the temperature range between
1 and 1.8°K [see W. B. Hanson and J. R. Pellam, Phys. Rev. 95,
321 (1954)], further, more accurate experiments would be de-
sirable, especially near 7\ where any effects associated with the
breakdown of hydrodynamics inside region I might be expected
to be observable.
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commute with the Hamiltonian. The function C¥(k,w)
is presumably peaked about w=0, with a width T'(k)
which in general goes to a nonzero limit as £ — 0.

The order-parameter correlation function is not di-
rectly measurable either above or below 7%, and all
verifications of the predictions of two-fluid hydro-
dynamics must involve other operators, which couple
to ¢ in the long-wavelength limit. The operator

q(r,)) = &(r,0)+[(etp)/ (m) In(x,0) (5.68)

plays the role of a heat operator.® [In (5.68), p is the
pressure and the angular brackets denote an equilibrium
expectation value.] The correlation function Ca(k,w)
may be evaluated in the hydrodynamic domain® in the
superfluid phase, where it is exhausted by the second-
sound mode (5.64), corresponding to the fact that second
sound is a pure temperature wave in the limity—1— 0.
In the normal fluid (7> T), the heat correlation func-
tion is exhausted at long wavelengths by the thermal
conduction mode, whose frequency was given in Eqs.
(5.40) and (5.41b). The shape function f7has the form
given in Eq. (5.47b).

The definition of the heat operator of Eq. (5.68)
depends on temperature through {é+p) and (z), and
¢ is thus not microscopic?® in the sense of Sec. II. Since
the expectation values and their’ derivatives are rela-
tively slowly varying functions of temperature near
T, however, the scaling predictions may be derived for
g itself, as if it were a microscopic operator.®®

The density correlation function C*(k,w) is exhausted
by the first-sound mode at long wavelengths in the
limit y—1=0. Thus, for the usually accessible range of
temperature, C*(k,w) is not expected to obey the dy-
namic-scaling laws. [See the discussion of C9!(k,w)
in Sec. V C.] On the other hand, for 7" very close to T,
the parameter y—1 is expected to become larger than
1, if ¢, diverges logarithmically, because ¢, cannot
actually be infinite at 7°.7° The temperature interval
for which y—12>1 is unattainably small for helium at
its vapor pressure, but may be increased to e< 6~10—*
at 27 atm.2%™ For e<6, C*(k,w) is dominated by a
second-sound pole in region I, and by thermal diffusion
in region IIL. Thus there may be a small region of
temperatures and wave vectors where C»(k,w) obeys
dynamic scaling.

% More precisely, for long-wavelength fluctuations, ¢(r,f) —{g)
is equal to the change in the local equilibrium value of the entropy
per particle, multiplied by the average density and temperature of
the system as a whole. The statements made in Ref. 26, p. 441
and in Ref. 22, p. 90 that the change in ¢ represents T times the
change in entropy density are not strictly correct.

% Indeed, an operator Q=¢(r,t)+/n(r,) may be defined, where
In=(&+p)/(n)| r=ry; this operator is microscopic and has corre-
lation functions which agree with those of ¢ up to terms which

vanish as ¢,(T—7T))? near 7. The scaling predictions are thus
identical for Q and g.

70 M. J. Buckingham and W. M. Fairbank, in Progress in Low
Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Co., Amsterdam, 1961), Vol. III, p. 80.

1V. Korenman, University of Maryland Technical Report,
Department of Physics, 1967 (unpublished); G. Ahlers (private
communication).
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2. Scaling Predictions

The restricted dynamic-scaling hypothesis implies
that

w¥(B)=cok+ -+ oc F12%+- ..
=R32[(kE)~ 4. ],
=k32Q(kE) , (5.69)

where we have used Eqgs. (5.63) and (5.66) and have
neglected the relatively weak divergence of ¢,. As shown
in Ref. 64, the poles of C¥(k,w) [it was called G© (k,w)]
are identical to those of the observable heat correlation
function C4(k,w) in region I, where w:?(k) is the fre-
quency of second sound. (For y— 1«1, the heat corre-
lation function is measured at long wavelengths by
experiments on the propagation of temperature fluctu-
ations.) The width of the peak in the spectrum of ¢ is
identical to the width of the second-sound peak in
C(k,w), to lowest order in k. From Eq. (5.67) and the
restricted scaling hypothesis (4.17) we thus obtain

(5.70)

a result which was first derived by Ferrell ef al.2® Re-
stricted scaling predicts in addition that w¥(k) is pro-
portional to £%/2 in region II, while in region III the
Bose field should have a relaxation rate proportional to
§£32) similar to the staggered magnetization of the
antiferromagnet. Outside of region I, however, the
order-parameter correlation function is not simply
related to observable quantities and the restricted
scaling hypothesis cannot be tested. The remaining
predictions must follow from extended scaling, applied
to the operator ¢. In region II, we have

Dy < copst,

wi(k)=Bk*?, (5.71)
and in region III [see Eq. (5.47)]
wt(k) = Dpk?=E2Q(kE) o 8282, (5.72)

which implies Dy o £/2) and using Eq. (5.41b), ko« £1/2,
In order to obtain a more precise prediction we may
employ the asymptotic matching condition, Eq. (4.7").
The thermal conductivity turns out to be proportional
to £2¢,;t/(c;7)'?, where ¢,t and ¢, are the heat
capacities at the given value of |T—T,|, above and
below T, respectively. This result was also obtained
originally by Ferrell et al.23

Just as for the gas-liquid transition, the first-sound
mode contributes a negligible weight to order-parameter
fluctuations. Also, extended dynamic scaling (applied
to the current or the density operator) does not predict
the correct critical behavior. The more detailed theory
of Kadanoff and Swift® permits a calculation of the
damping of first sound, which agrees with experiment
for T'< T, but disagrees for 7> T',. In order to calculate
the damping of first sound below 7%, Ferrell and co-
workers?® assumed that the second viscosity {2 is the

72 M. Barmatz and I. Rudnick, Phys. Rev. 170, 224 (1968).
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transport coefficient which leads to the large damping of
second sound given in Eq. (5.70). They then inserted the
temperature dependence of {; into the hydrodynamic
expression for the damping of first sound. Their ad-
ditional assumption does not follow from dynamic
scaling, and does not serve to explain the anomalous
damping of first sound above T."

3. Experimental Tests

The predicted damping of second sound, which
follows from the restricted hypothesis, may be tested
by a direct measurement on a macroscopic second-
sound wave below T It is important to note, however,
that very near T\ the nonlinear corrections to the hydro-
dynamic equations may become quite large in practice,
and prevent a macroscopic measurement of the proper-
ties of second sound. In the linear regime for which the
scaling prediction applies, the damping coefficient must
be independent of the amplitude of the wave. The diver-
gence of the thermal conductivity above T may be
tested in a conventional static experiment for T'> T},
and has already been qualitatively verified by Kerrisk
and Keller.”® Unlike the second-sound damping experi-
ment, the measurement of thermal conductivity is a
test of extended rather than restricted scaling. As
mentioned above, for temperatures very close to T,
the density-correlation function becomes coupled to
second sound. Since C*(k,w) can be measured by neutron
or light-scattering techniques, this offers the possibility
of observing the critical fluctuations in a scattering
experiment, and thus of observing nonhydrodynamic
behavior (e.g., region II). In practice, however, the
temperature interval required is so small (e<6) that
the experiment is unfeasible, except possibly at high
pressures.2%73

Note added in proof. A verification of the scaling pre-
diction for the damping of second sound [Eq. (5.70)]
was recently reported by J. A. Tyson.™® The divergence
of the thermal conductivity was measured by G. A.
Ahlers,™ who verified the detailed behavior predicted
by the matching condition (4.7), x « £/2¢,+/(c,7)1/2 A
departure from the dynamic scaling prediction was re-
ported by Archibald ef al.” for very short samples
(<0.2 mm).

4. Mixtures of He® in He*

When small amounts of He? are introduced into He?,
the A temperature decreases and the character of the
hydrodynamic modes is modified. As shown by Pomer-
anchuk™ and by Khalatnikov,” the He? becomes part

" ]. F. Kerrisk and W. E. Keller, Bull. Am. Phys. Soc. 12,
550 (1967); see also Ref. 23.

7 J, A. Tyson, Phys. Rev. Letters 21, 1235 (1968).

70 G. Ahlers, Phys. Rev. Letters 21, 1159 (1968).

% M. Archibald, J. M. Mochel, and L. Weaver, Phys. Rev.
Letters 21, 1156 (1968).

" 1. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 19, 42 (1949).

7 I. M. Khalatnikov, Zh. Eksperim. i Teor. Fiz. 23, 265 (1952);
see also Ref. 63, part IV,
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of the normal fluid, and therefore oscillates with respect
to the superfluid in a second-sound wave. This means
that second sound involves both temperature and con-
centration fluctuations, and will therefore appear in the
spectrum of the concentration correlation function. Its
strength is (p/c)dc/dp, where p is the total mass
density and ¢ is the concentration of He?. As shown by
Gor’kov and Pitaevskii,’® and in somewhat more detail
by Ganguly and Griffin,” the spectrum of light scattered
from this system will include the concentration fluctu-
ations, and will therefore have a peak at the second-
sound frequency. This offers the possibility to test the
prediction of Eq. (5.70), which follows from restricted
dynamic scaling, by a scattering experiment. On the
other hand, a traditional second-sound propagation
experiment is also possible in the mixtures, and a com-
parison of the results of the two techniques may give
information on the relationship between correlation
functions and macroscopic hydrodynamics. In particu-
lar, any differences between the properties of a mode
containing a small number of quanta and one that has
been macroscopically excited might show up near T in
such experiments.”® Of course, the behavior of the con-
centration correlation function outside of region I will
not give information about the order parameter, and
only extended scaling can be tested. Furthermore, it
seems more likely that Ce(k,w) violates the extended-
scaling hypothesis than was the case for C4(kw) in pure
helium. Indeed, in the mixtures, neither C¢(k,w) nor
C(k,w) will be exhausted by the critical mode for the
order parameter, second sound, in region I, since these
functions also contain a diffusive central peak’® 77 whose
strength increases with increasing concentration ¢. It
may be possible, nevertheless, to apply dynamic scaling
to an operator 4 which is an appropriate linear com-
bination of ¢ and ¢, and whose correlation function is
exhausted by second sound in region I. The character-
istic frequency w4 (k) has the form (5.67) in region III,
with a diffusion coefficient D4 whose temperature de-
pendence can be determined by extended dynamic
scaling. The result is

DA xcopst, (5.73)
where the left and right sides of Eq. (5.73) are measured
at the same distance from T',, above and below, respec-
tively. The thermal diffusion constant Dy and the mass
diffusion” D are linearly related to D4 and to another
diffusion constant which we expect to be less singular
than D4, It follows that the constants Dr and D will
have the same divergence as D4. We therefore find

k/Cp,c < Cs/ps, (5.74)

L. P. Gor’kov and L. P. Pitaevskii, Zh. Eksperim. i Teor
?‘iz.5 3)3;], 634 (1957) [English transl.: Soviet Phys.—JETP 6, 486
1958) 7.

77 B. N. Ganguly and A. Griffin, Can. J. Phys. 46, 1895 (1968).

78 This general question is discussed in further detail in Ref. 37.

% Reference 25, p. 224.
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where « is the thermal conductivity, and C,,. is the
specific heat at constant pressure and concentration,
measured above T'.. The specific heat is not expected
to diverge at T, for finite concentrations,8 so that the
matching condition (4.7") predicts a slightly different
divergence of x in mixtures and in pure He*. It would be
extremely interesting to measure «, C, ., ¢, and p, at
a particular concentration and to test the detailed rela-
tion (5.74) predicted by extended dynamic scaling. In
order to observe deviations from the behavior in pure
Het, it will be necessary to study mixtures with He?
concentrations sufficient to depress the transition tem-
perature well below the A point of pure He.

VI. COMPARISON WITH OTHER THEORIES
AND CONCLUSIONS

The phenomenon of critical slowing down of fluctu-
ations, which was predicted by Van Hove!* for the
ferromagnet and fluid, is seen to be a common feature
of second-order phase transitions, and is closely con-
nected to the divergence of the spatial range of corre-
lations. Critical slowing down is limited to the hydro-
dynamic regions I and III, however, since at fixed % the
characteristic fluctuation frequency will not vanish as
T— T, but rather go to its finite limiting value
w(k) = Bk in region II. Consequently, as pointed out by
Marshall,’” in a typical neutron-scattering experiment
where relatively large % values are employed, the Van
Hove (“conventional”) theory will fail to account for
even the qualitative behavior of the relaxation phenom-
ena at 7. In light scattering from a fluid on the other
hand, the &£ corrections to the conventional theory are
small (k£=0.1for e=10"*and k1= 5000 A), and critical
slowing down is in fact observed,5:% in accordance with
Van Hove’s qualitative predictions. The quantitative
result, that D« X1, is not found in the scaling theory,
since the transport coefficient A of Eq. (1.2) in general
diverges.®

In discussing the failure of the conventional theory
in a ferromagnet, Marshall!” states that the observed
behavior'é of the spin-diffusion coefficient suggests that
“‘spin-wave motion exists above 7'.”” Such an inference
does not follow from the scaling theory. It is, of course,
only in region II that spin-wave motion could occur at
long wavelengths for 7> T, since it is known not to be
present in the region where hydrodynamics is valid. Of
the various possible forms for the shape function f in
region II, depicted in Fig. 3, only the one in part (a)
may reasonably be interpreted in terms of “spin-wave

80 T, C. Wheeler and R. B. Griffiths, Phys. Rev. 170, 249 (1968).

81In the antiferromagnet, for instance, we have T'N(0) ccg~3/3
and AN=TN(Q)xN~e»+ni2, In certain cases, such as thermal
diffusion in liquid helium or #otal spin diffusion in the antiferro-
magnet, the divergence of A is predicted to be stronger than that
of X, and the ratio D=A/X diverges at T, corresponding to a
critical speeding up of fluctuations. Note, however, that these
predictions do not refer to the order parameter, and thus follow
from extended rather than restricted dynamic scaling. See also
footnote 46.
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motion,” yet all the forms are consistent with the same
behavior in region II1.82

Recently, Kawasaki®® and Villain® have inde-
pendently presented theories of critical relaxation in
ferromagnets and antiferromagnets for ¢>1,, using a
random-phase approximation, or an RPA for decoupling
correlation functions, and assuming the validity of the
Ornstein-Zernike!® theory (=0). The resulting ex-
pressions for the dynamic correlation functions, when
expressed in terms of the static exponents » and B,
are equivalent to the results of the scaling analysis
for n=0. Subsequently, Villain® was able to modify
his theory to include the possibility of a finite 7,
and found agreement with the results of Ref. 24, by
making scaling assumptions which are similar to ours,
and claimed to be in fact weaker. Similarly, Kawasaki®
reformulated his theory, and derived the dynamic-
scaling laws, using Mori’s theory of Brownian motion®”
and the static-scaling assumptions.?!! The fact that the
same results are obtained from such seemingly dif-
ferent approaches seems to us to lend support to our
assumptions.

A calculation of the dynamic correlation function in
a ferromagnet was performed recently by Resibois and
de Leener® also using a random-phase approximation,
or an RPA. These authors find agreement with the
scaling laws (for T>T. and 7=0), and in addition
predict the existence of propagating spin waves in
region II, in accordance with Marshall’s!” suggestion.
This result must follow from the details of their model,
rather than general scaling arguments. Recently, Mori
and Okamoto® applied the continued-fraction repre-
sentation of Mori® to a calculation of relaxation in
ferromagnets, and derived results similar but not
identical to ours. They find a damping rate for M which
is homogeneous in % and £! with exponent z=3%(541),
rather than z=3(5—7). In addition, if #5£0, this
damping rate does not scale with the real part of the
spin-wave frequency predicted by hydrodynamics. Since
7 1is in practice very small, it is unlikely that this feature
can be tested experimentally.

82 Tt must be remembered that region II is macroscopic, in the
sense that %! and £ are both large compared to microscopic
lengths. For shorter wavelengths (ka~1), there might very well
be approximate spin-wave excitations for 72 T, associated with
short-range order or with other properties of the system which are
not singular at 7. These approximate spin waves, which have
been discussed in the literature, and seem to have been obserqu
experimentally, need not have any relation to the spectrum in
region II. See, e.g., the theoretical discussions of R. Brout, Phys.
Letters 24A, 117 (1967); J. L. Beeby and J. Hubbard, sbid. 26A,
376 (1968); see also the experiments of T. Riste, J. Phys. Soc.
Japan Suppl. 17, 60 (1962); and of Nathans ef al. (Ref. 47).

83 K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 285 (1968).

# J, Villain, J. Phys. (Paris) 29, 321 (1968); 29, 687 (1968).

8 J, Villain (to be published).

86 K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 1133 (1968);
40, 11 (1968).

v 87 H, Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).

*88 P, Resibois and M. de Leener, Phys. Letters 254, 65 (1967).
B 89 H, Mori and H. Okamoto, Phys. Letters 26A, 249 (1968);
and (to be published).

9 H. Mori, Progr. Theoret. Phys. (Kyoto) 34, 399 (1965).
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As mentioned earlier, the semiphenomenological
theory of Kadanoff and Swift?? for the critical point of
a fluid is more detailed than the scaling theory, since it
allows a direct calculation of the anomaly in transport
coefficients. On the other hand, it also contains a certain
number of unverified scaling assumptions, and moreover
makes use of heuristic concepts and qualitative argu-
ments in order to estimate the divergences in various
quantities. It is hoped that the present more deductive
approach may illuminate the significance of the semi-
phenomenological calculation by distinguishing between
those properties which may be predicted by general
scaling arguments, and those for which a detailed
analysis is necessary. In particular, Kadanoff and Swift
find a divergence of the sound-attenuation coefficient
at long wavelengths that disagrees with the prediction
that one would obtain from extending dynamic scaling
to the current operator. This example suggests that the
scaling theory does not apply to all “microscopically
defined” operators.

At the X point of superfluid helium, we have rederived
the prior results of Ferrell and co-workers,?® but have
made a distinction between predictions referring to the
superfluid phase, which follow from restricted scaling,
and those referring to the normal phase, which depend
on an extension.

Finally, we wish to comment on the anology which is
sometimes drawn between spin waves and the Brillouin
doublet in a fluid.?* As the critical point is approached
from below, the spin-wave peaks broaden and their
position moves in toward w=0. It is possible that a
central peak will also emerge, and become predominant
at T, [see Fig. 3(b)]. The analogy to the thermal con-
duction peak in the density-correlation function of a
fluid seems to us misleading, however, since in the fluid
the phenomenon is entirely describable by hydrody-
namics. Indeed, at long wavelengths the weight of the
thermal conduction peak is a fraction (1—c¢,/c,) of the
total weight of density fluctuations, independent of
the behavior of the damping constants®? [see Eq.
(5.40) 7). Near T, the total weight diverges as ¢, and the
Rayleigh peak dominates the frequency spectrum in the
hydrodynamic regions (k£&1) [see Egs. (5.43) and
(5.48)7]. In the magnetic systems, on the other hand,
if our hydrodynamic analysis is correct, the spin waves
alone exhaust the frequency spectrum of wM(k,w) at
long wavelengths for all 7<7T,. Any additional modes
must come from corrections to hydrodynamics, which
are of higher order in k£, and may also contribute to
spin-wave damping. The spin waves are not analogous
to sound waves in a fluid, since the sound waves are

91 See, e.g., the discussion in Ref. 17.

92 The statement made in Ref. 17, p. 141, that the diffuse
(Rayleigh) mode appears on the imaginary axis as soon as the
sound waves are damped, is incorrect. The relative strengths of
the Rayleigh and Brillouin modes are determined by thermody-
namics alone; only the positions of the poles in the complex plane
depend on damping coefficients.
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not the characteristic mode of the order parameter in
region I. In contrast to the magnetic system, the gas-
liquid transition does not have a propagating critical
mode w¥(k), either above or below the transition. The
fluid system which is most closely analogous to magnetic
systems (in particular, antiferromagnets) is superfluid
helium, where the critical mode is second sound (analo-
gous to spin waves) below T, and a nonhydrodynamic
relaxation mode [w?(0)50] above T',.

The scaling viewpoint gives a unified description of
a wide variety of critical phenomena, both static and
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dynamic. Although it is too early to tell whether any of
the new predictions of the dynamic theory are exactly
correct, it is hoped that the qualitative picture can
already be a useful guide to further experimental investi-
gation. As more accurate experimental results become
available, and more detailed microscopic and phenomen-
ological theories are developed, their results can be
compared to those of the scaling theory. The specific
mathematical assumptions of dynamic scaling can then
be put to a test, and the reasons for their success or
failure investigated.
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Ultrasonic Velocity and Attenuation in KH,PO,j
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The velocity and attenuation of ultrasonic shear waves have been investigated at temperatures above
T¢=121.8,°K in single-crystal KDP. An elastic Curie-Weiss law, (s¢6% —ses”) =D/ (T —T'¢), is obtained with
an elastic Curie constant D equal to 6.31 X107 dyn™ cm? deg. The attenuation data are consistent with a
cooperative relaxation time at constant stress 7 which varies as r=24X10712/(T'—T¢) sec.

INTRODUCTION

T a Curie temperature of ~122°K, potassium

dihydrogen phosphate (KDP) undergoes a co-
operative transition from a paraelectric to a ferro-
electric phase.l'? There has been a great deal of current
interest, both theoretical*~? and experimental > in
this transition and the analogous transition at ~223°K
in KD,POs The present ultrasonic investigation in-
volves the measurement of the anomalous shear velocity
and attenuation at temperatures above T¢.
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In its paraelectric phase, KDP is tetragonal (m)42
and the x, mechanical strain is coupled to the polari-
zation along the ferroelectric z axis. Therefore, a trans-
verse ultrasonic wave propagating in the [100] direction
with its polarization in the [0107] direction is the shear
wave of interest. The elastic constant related to this
shear is called cgs, but there are two limiting values of
this constant depending on the electrical boundary
conditions. One can specify the elastic properties at
constant dielectric displacement (c?) or at constant
electric field (c¥). Mason’s low-frequency resonance
measurements? on bare and on plated crystals show
that ce? exhibits a normal linear temperature de-
pendence above T'¢, whereas cge® drops toward zero at
the Curie point. Elastic shear constants of KDP
measured at ultrasonic frequencies have been shown by
Jona®® to correspond to ¢¥; thus, we have determined
ces®=pU?, where p is the density and U is the ultrasonic
velocity.

In addition to the rapid decrease in velocity, there is
an anomalous increase in the attenuation of this shear
wave as the temperature approaches the Curie point.
Since KDP is still piezoelectric in its paraelectric phase,
there is a strong coupling between the elastic wave and
the polarization even above T'¢. Thus, attenuation
measurements provide a convenient way to determine
the polarization relaxation time. As in other cases

12 W, P. Mason, Phys. Rev. 69, 173 (1946).
18 F. Jona, Helv. Phys. Acta 23, 795 (1950).



