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A detailed series-extrapolation investigation of some critical properties (T~ T,+) of the Heisenberg
model is presented. Systematic use is made of ratio and Pads-approximant techniques, some of the latter
being new. Attention is con6ned to those nearest-neighbor and order-two equivalent-neighbor models which
are based on the simple cubic, body-centered cubic, and face-centered cubic lattices. For the face-centered
cubic nearest-neighbor classical Heisenberg model, the following estimates are obtained for familiar critical
exponents: ca=0, —

~ &~a, ~& ——,'6, y=1.375+0.002, 0.6875~&v &~0.7125, 0~&g &&0.07. Estimates for y are also
obtained for the other nearest-neighbor and equivalent-neighbor classical Heisenberg models, and it is
conjectured that y=1-, may be the exact result in all the cases considered. For the face-centered cubic
order-two equivalent-neighbor spin--, Heisenberg ferromagnet, it is estimated that &=1.3744&0.0008. A
similar but less precise result is found for the corresponding simple cubic model, and the spin--, nearest-
neighbor susceptibility series are briefly examined. It is suggested that consideration should be given to the
possibility that for ferromagnetic Heisenberg interactions y has the same value 1-, irrespective of spin and
the particular three-dimensional nearest-neighbor or Rnite-order equivalent-neighbor model considered.
Other quantities estimated include various Curie points and singularity amplitudes and the critical values of
certain thermodynamic functions. Some attention is given to the simple classical Heisenberg antiferromagnet.

1. INTRODUCTION

UCH of the theoretical study of critical phe-
- ~ nomena' is based on the statistical mechanics of

the Ising and Heisenberg models which correspond to
special cases of the Hamiltonian

K= —Q 2(J;;~S;eS,~
(~i)

+l,,vSpS, "+J;,*,S* S) m8 —p S;*. (1.1)

This equation relates to a lattice of E sites in a mag-
netic Geld II directed parallel to the s axis. The com-
ponents S, S,", and S,* are those of a spin operator S;
associated with the ith site, nz is the magnetic moment
per spin, and the first summation is taken over all pairs
of sites (ij) in the lattice. However, in the present paper
attention is conhned. to problems in which the inter-
actions are of Gnite range. %hen only one of the three
quantities J;;*,J,;&, J;,' is nonzero we have pure Ising
coupling, while if all three of these quantities are equal
(and nonzero) we have spatially isotropic Heisenberg
coupling.

Apart from one-dimensional systems (for which
critical behavior is not found for TWO), exact solutions
exist only for certain zero-Geld properties of various
two-dimensional spin--, nearest-neighbor Ising lat-
tices. ' ' The exact critical exponents" thus obtained

*This research has been supported (in part) by the U. S. De-
partment of the Army through its European Research OKce.

f Present address: Department of Applied Mathematics, The
University of Liverpool, Liverpool 3, England.' For recent reviews see Refs. 2-4.' M. K. Fisher, Rept. Progr. Phys. BO, 615 (1967).' C. Domb, Phil. Mag. Suppl. 9, 149 (1960).' L. P. KadanoG e$ al. , Rev. Mod. Phys. 39, 395 (196'I).

'We refer here and elsewhere to results obtained in the thermo-
dynamic limit N —+ , which is necessary to obtain mathematical
singularities. When this limit is taken, we mean by a d-dimensional
lattice a lattice which extends to in6nity in all its d dimensions.

&e conform to the notation and dehnitions of Ref. 2.

are in contradiction with all current approximate
theories, ' 4 but are in excellent agreement with nu-
merical estimates based upon extrapolation of the
leading terms of the appropriate exact series expan-
sions. ' ' It is expected therefore that series extrapolation
is also the most reliable method when no exact solution
is known. Accordingly we adopt this approach in the
present paper.

For the Ising model many details of critical behavior
are well established. ' ' ~ The results which have most
bearing on the present investigations may be sum-
marized as follows: Excluding long-range interactions,
the critical exponents appear to depend only on the
dimensionality d of the lattice and not on its detailed
structure. Furthermore, there is evidence to suggest
that they are independent of spin magnitude, and that
they have identical values for nearest-neighbor and
higher- (6nite-) order equivalent-neighbor models. It
seems also that in general the critical exponents are
simple fractions. Finally, their accepted values are
consistent with the majority of the scaling laws, which
imply in particular that the exponents are symmetrical
about the transition.

For the Heisenberg model, the situation is not so
clear. Series-extrapolation investigations have been
restricted to high-temperature critical behavior. For
general spin, the first six coeKcients of the high-

temperature expansions of the zero-field susceptibility
and specific heat have been known for some time.
Conclusions based on these terms are somewhat tenta-
tive, and the desirability of longer series was acknowl-
edged. ' '0 In fact, the general spin expansions have very

r D. S. Gaunt, Proc. Phys. Soc. (London) 92, 150 (1967).
G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).

9 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).
'0 J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Sop,

(London) A275, 257 (1963).
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recently been extended, "and in addition in the extreme
quantum limit of spin st (Refs. 12, 13) and the classical
or correspondence limit of infinite spin" ' still more
terms have been calculated.

In this paper, we consider some properties of the
Heisenberg model in the light of this new information.
Since the Heisenberg model cannot be ferro- or anti-
ferromagnetic in one and two dimensions, 20 we confine
attention to the three-dimensional model and in
particular to the simple cubic (sc), body-centered cubic
(bcc), and face-centered cubic (fcc) lattices. Thus we
leave aside discussion of the interesting possibility of
some novel kind of phase transition in two dimensions. "
We investigate not only nearest-neighbor models but
also equivalent-neighbor models of order two, " and
more particularly with an obvious notation the sc (1,2),
bcc (1,2), and fcc (1,2) models.

It is convenient to redefine some of the quantities
appearing in (1.1) in such a way that the general spin
Heisenberg Hamiltonian may be written

5C= —Q (2J;,/S')S; S;—(mH/S) Q S;*. (1.2)

0
1
2
3
4
5
6
7
8
9

n
2
3

5
6
7
8
9

10

u (sc)
1.000 000
2.000 000
3.333 333
5.422 222
8.518 519

13.267 019
20.335 991
30.998 964
46.867 340
70.606 787

6 (sc)
1.000 000
0
1.133 333
0
1.858 907
0
2.663 67i
0
4.298 002

Susceptibility
a„(bcc)
1.000 000
2.666 667
6.222 222

14.340 741
31.861 728
70.311581

152.811 632
330.743 405
709.993 599

1519.806 958

Specific heat
b„(bcc)
1.333 333
0
5.066 667
0

14.758 377
0

46.082 502
0

153.025 422

a„(fcc)
1.000 000
4.000 000

14.666 667
51.733 333

178.459 259
606.745 397

2042.100 411
6821.952 840

22 659.360 929

b„(fcc)
2.000 000
5.333 333

14.266 667
37.925 926

100.912 875
273.272 099
754.586 974

2116.136 406

TABLE I. CoeScients in the high-temperature expansions of the
zero-6eld susceptibilities and specific heats of some nearest-
neighbor classical Heisenberg models.

In the limit of infinite spin this becomes TABLE II. CoeKcients c„in the high-temperature expansions of
the zero-held susceptibilities of some equivalent-neighbor classical
Heisenberg models.

X=—Q 2J,,s; s;—m8$ s,'
(si) i=1

(1 3)

where si is a classical unit vector. When all the inter-
action parameters J,, are equal we omit the subscripts.

For convenience, most of the series analyzed in this
paper are collected in Tables I, II, and III. For the
classical Heisenberg model, the zero-held susceptibility
Xo and specific heat Co have the expansions

Xs ——(1Vm'/3kT) Q a„E",

a„Lbcc(1,2)7

1.000 000
4.666 667

20.222 222
84.651 852

346.987 654
1403.179 588
5620.467 741

22 353.980 873

o tsc (1,2)j
1.000 000
6.000 000

34.000 000
187.822 222

1021.466 667
5496.788 713

29 354.159389
155 851.472 856

a„t fcc (1,2)j
1.000 000
6.000 000

34.000 000
187.822 222

1021.466 667
5497.025 750

29 357.865 068
155 890.603 607

&o=Ã& Q b.&",
TABLE III. CoeKcients e„'in the high-temperature expansions

(1.4) of the zero-6eld susceptibilities of some equivalent-neighbor spin-s
Heisenberg models.

where E=2PJ and the coeKcients are presented in

"R.L. Stephenson, K. Pirnie, P. J. Wood, and J. Eve, Phys.
Letters 27a, 2 (1968)."C.Domb and D. W. Wood, Proc. Phys. Soc. (London) 86, 1
(1965).

'3 G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rushbrooke,
Phys. Rev. 164, 800 (1967).

~4 G. S. Joyce, Phys. Rev. 155, 478 (1967)."G. S. Joyce and R. G. Bowers, Proc. Phys. Soc. (London) 88,
&OSS (1966)."G.S. Joyce and R. G. Bowers, Proc. Phys. Soc. (London) 89,
776 (1966).

'7 P. J. Rood and G. S. Rushbrooke, Phys. Rev. Letters 17, 307
(1966).

'8 H. E. Stanley, Phys. Rev. 158, 537 (1967).
1~ H. E. Stanley, Phys. Rev. 158, 546 (1967).
'0 N. D. Mermin and H. %agner, Phys. Rev. Letters 17, 1133

(1966).
"H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 17, 913

(1966).
2~ C. Bomb and N. W. Dalton, Proc. Phys. Soc. (London) 89,

859 (1966).

a„'Lbcc (1,2)j
1.000
7.000

42.000
234.667

1262.958
6663.225

34 736.110
179 510.349

o 'Lsc (1,2)j
1.000
9.000

72.000
548.000

4059.375
29 565.5&5

212 869.123
1 519 860.768

u„'Pfcc (1,2)j
1.000
9.000

72.000
548.000

4059.375
29 570.075

212 951.740
1 520 865.135

Tables I and II. The results of Table I, which are for
the nearest-neighbor model, ~are taken from the work
of Joyce and Bowers. " "(The coefficients a„have been
calculated independently by Wood and Rushbrooke, '~

and by Stanley. "")The coefffcients a„ofTable II are
for the equivalent-neighbor model of order two and
are obtained using the configurational data of Bomb
and Dalton22 and the coefficients in. terms of general
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lattice parameters. The coefBcients u„'of Table III also
relate to the equivalent-neighbor Heisenberg model of
order two, but are for the case of spin ~. They are
defined by the equation

xp ——(1V2222/k T) p a'„E" (1.5)

where E=2PJ, and are obtained from the results of
Bomb and Dalton" and Dornb and Wood. "

The plan of the rest of the paper is as follows:
Section 2 is devoted to a discussion of our extrapolation
techniques. In Secs. 3—6, a detailed numerical investiga-
tion of some critical properties of the nearest-neighbor
classical Heisenberg ferromagnet is undertaken. In
particular, the susceptibility, specific heat, entropy
and energy, and second moment of the correlations, all
in zero field, are considered in Secs. 3—6, respectively.
In Sec. 7, some results for the simple classical Heisen-
berg antiferromagnet are presented. Sections 8 and 9
are concerned with the zero-field susceptibility of the
equivalent-neighbor Heisenberg ferromagnet, for the
cases of spin infinity and spin -„respectively. A summary
and discussion will be found in Sec. 10.

2. EKTRAPOLATION PROCEDURES

We are concerned with series of the general form

f(z) =2 ~.z"
r=o

(2.1)

where only the first n coeKcients are known. '@le

expect f(z) to have singularities at various points z, of
the complex s plane. Certain of these will have physical
significance. Thus, the singularity s, closest to the origin
on the positive real axis corresponds to the Curie point
of the ferromagnetic problem (J)0). Similarly, the
singularity sN closest to the origin on the negative real
axis corresponds to the Neel point of the antiferro-
magnetic problem (J(0).

In general, we assume

f(z) A;(1 z/z;) "*+8, a—s z~-z,—, (2.2)

and aim to determine z, , X,, A;, and 73, (Ref. 23) for the
physically significant singularities. In analyzing for
singularities of the form (2.2), we use Pade-approximant
(PA) ~ and ratio"" methods. Rather than discussing
our various extrapolation procedures as they arise, we
prefer to undertake a detailed discussion of them here
so as to make Secs. 3—9 more or less independent of each
other. We are particularly concerned to emphasize a
systematic approach. Several new PA methods are
introduced.

The [D,Nj PA to g(z) is the ratio P~(z)/Q22(z) of
two polynomials of degrees D and g, whose coefBcients
are chosen so that the coefIicients of the expansion of
[D,cVj in powers of z coincide with those of g(z) through
order D+E.22 Thus when using PA's it is natural to
attempt first to convert any singularity of interest to a
simple pole. If (2.2) holds and provided that f(z) either
diverges or vanishes as z —+ s,—,'

D lnf(z) X(z,—z) ' as z-+ z;—, (2 3)

[D2f(z) jl/2~()1)1/2(z. z)
—1

&& [1+terms of higher order than first). (2.7)

We see that (2.5) provides an example where the PA's
should converge better for p=2 than for p=1. Thus,
(2.7) should be more satisfactorily represented than
(2.6) by low-order PA's, and furthermore errors in X

resulting from those in z; are of higher order for (2.7)
than for (2.6).

Ke next introduce the function

LD" '(f(z))""1""-[A""(p—1) t«3""(z.—z) '
as z —& z,—(p= 1,2, ), (2.8)

which, assuming ) to be known, provides another way of

where D= d/dz. Thus, the logarithmic derivative of f(z)
has a simple pole at s= s; with residue —X. The roots
and residues of PA's to D lnf(z) may therefore be used
as estimates for s; and —) .

In this paper, we use the more general function

[D'»f(z)3""-[(p—1) )t1""(z'—z) '

as z-+ z;—(p= 1,2, ). (2.4)

The roots of PA's to (2.4) provide estimates for z, , while
estimates for) may be determined from the correspond-
ing residues. Three points should be mentioned here:
(a) With short series we are restricted to small p since
each differentiation "loses" a term. (b) We are satisfied
only if results for different values of p are consistent.
However, we do not expect convergence to be equally
fast in all cases. Indeed, we hope that it will be especially
rapid for some particular p. Even if this is not so,
comparison of results for various p should allow more
accurate estimation of any trends. (c) There will in
general be correction terms to (2.2) whose presence will
slow convergence. A simple assumption is

f(z) Az;1(z,—z)
—"[1+a(z,—z)+ ], (2.5)

whence

D lnf(z)-X(z —z)
—'[1—(a/X)(z,—z)+ . j, (2.6)

whereas"

23 Where no ambiguity arises we sometimes omit the subscripts
i, c, and E."G. A. Baker, Phys. Rev. 124, 768 (1961).

2' C, pomp atid M. I". Sykes, J. Math, Phys, 2, 63 (196$),

~6 For further details see Refs. 2 and 24."lf f(z) approaches a nonzero constant as z~z; —,it is
generally interesting to up& the; fit.st derivative which diverges —st;e
gef. 2,
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converting the dominant part of (2.2) to a simple pole.
PA's to (2.8) yield estimates for z; and A.

Finally, we introduce the function

(z,—z)LD in/(z)g'~ L(p —1)!X]~

as z —+z —(p=1 2 ) (2 9)

which may be constructed if z; is known. PA's to (2.9)
evaluated at z=z, give estimates for ) .

Methods" (2.8) and (2.9) use as data X and z;, respec-
tively; it is therefore reasonable to expect that they
will yield more rapid convergence than method (2.4).
Now, exact values of X or z, are seldom known; however,
methods (2.8) and (2.9) can still be employed with
advantage when good estimates for these quantities
are available. With the obvious modifications (a)—(c)
foHowing (2.4) apply equally well to (2.8) and (2.9). As
far as we are aware the general methods (2.4), (2.8),
and (2.9) have not been used elsewhere. Previously
attention has been restricted to p=1, although in one
study' PA's to PD' inf(z) j'~' have been employed.

Our general procedure in PA analyses is as follows:
Given the first n+1 terms of a series, we form all
possible PA's with D+N=1, , n (except perhaps
those with D or N zero). The results are displayed in a
triangular array with D labeling the rows and X the
columns. If the results of the last few orders are sub-
stantially the same, we suspect that this Pade table
has converged. Calculations are usually undertaken
for p=1, 2 (and perhaps 3). We regard the roots and
residues of PA's to $D" inf(z)$'" as of primary im
portance Inspectio. n of these usually suggests ranges of
values for z; and ) for any singularity of interest.
Methods (2.8) and (2.9) are then applied at points
throughout these ranges. The results are examined for
consistency, a procedure which may lead to improved
estimates.

Method (2.8) is of particular importance when a
certain value of X is strongly indicated. Using this value
in (2.8) should yield good estimates for z, and A. Using
this estimate for z; in (2.9), a value for X close to that
adopted should then be obtained. In a similar way,
when a good estimate for z; is available we use erst
method (2.9) and subsequently method (2.8).

We now turn to the ratio method, which rests on the
observation that if (2.2) holds for the dominant
singularity z, (say) of (2.1), then with g=X—1

—(1+g))n„A
~

(z,) " asn-+ ~, (2.10)

procedure based upon the following results" ":
1 =nr —(n—1)r„i

g„=n(z.'r„—1)

P„=nr. /(n+g')

—&z ' as n~ ~; (2.12)

~g as s~ 00)

if z,'=z„(2.13)

—+z, ~as' —+,
for all g' (2.14)

A =n.(z,')" ~
—(1+g')&

i

—+A as n-+ ~,
n

if z,'=z, and g'=g. (2.15)

Although z, and g are rarely known exactly, we may
still use (2.13) and (2.15) with advantage provided good
estimates for these quantities are available. The P„,
however, converge to z, for all g', but it is generally true
that convergence will be most rapid for g' near g.

We normally follow a procedure similar to that de-
scribed above in relation to PA studies. Thus we search
for consistency between the various methods (2.12)-
(2.15), where necessary taking values of g' and z, '

throughout the ranges of previous estimates. In esti-
mating a limit as n —+ ~, it is generally useful to
construct a Neville table, which is a triangular array in
which n labels the rows and r =0, 1, 2, ~ ~, the columns.
Entries e„"are generated by the formula

e„"=Lne„~'—(n—r)e i~']/r
(r=1, 2, ~ ~, n&r), (2.16)

where e„is the sequence to be extrapolated, and e„'is
merely the linear extrapolants. LExceptionally, for
method (2.14) we start with r= 1, i.e. , we take e„'to be
the data P„.This generally yields improved conver-
gence. ]While the entries in the later columns of a Neville
table tend to magnify any small irregularities in the
data, they are of considerable value when the corre-
sponding 1/n plot shows a marked steady curvature.
Another procedure useful in these circumstances is to
replace n in (2.11)—(2.15) by n+e, where varying the
small constant c gives a range of sequences and in-
Quences curvature. In general results for different
values of the "n shift" e must be carefully compared.

For loose-packed lattices the ratios r„exhibit marked
odd/even oscillations, whose effects may be minimized

by using alternate pairs of points when, for example,
Eqs. (2.12) and (2.16) are replaced by

and therefore
E„=i~Lnr„—(n —2)r„2j-+z. ' as n-+ ~, (2.17)

r„=n„/n„i (z,
—') (1+g/n) as n —& ~ . (2.11)

To obtain estimates for z, ', g, and A given the 6rst
few coeKcients n, it is convenient to employ a suitable

'8 YVe shall often refer to an extrapolation procedure by means
gf the associated equation,

e '= Lne„'—(n —2r) e 2~')/(2r)
(r=1, 2, ~ ~, n&&2r). (2.18)

Sometimes, given the erst few terms of a series ex-
pansion of some property, estimates are required of its
value throughout some physical region of the inde-
pendent variable, Such estimates may be obtained by
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either constructing and evaluating a "mimic func-
tion'"' or evaluating PA's to the series, or forming
partial sums of the series and estimating their limit, "

TABLE IV. Curie roots and corresponding critical exponents
from PA's to D lnx for some nearest-neighbor classical Heisenberg
models.

D/N

2
3
4
5

1

31 341
31 512
31 447
31 441
31 441

10')& (Curie root)
2 3

31 467 31 442
31 446 31 442
31 442 31 445
31 446

4
31 442
31 442

5
31 468

TABLE V. Curie roots and corresponding critical exponents from
PA's to (D' lnx)'+ for the fcc classical Heisenberg model.

fcc lattice

D/7t/ 1

1 3086
2 3137
3 3144
4 3140
5 3142
6 ~ ~ ~

10'X (Curie root)

2 3 4 5
3118 3132 3137 3139
3144 3140 3142 3159
3141 3141 3136
3141 3141
3136

D/X

2
3

5

1
13 505
14 008
13 768
13 743
13 743

10'X (Critical exponent)

2 3
13 833 13 746 13 744
13 763 13 744 13 746
13 747 13 761
13 765

5
13 884

D/N
1270

2 1346
3 1364
4 1351
5 1359
6 ~ ~ ~

bcc lattice

D/Ã 1

1 4369
2 4713
3 4834
4 4847
5 4851
6 4857
7 4859

D/Ã 1

1018
2 1225
3 1325
4 1342
5 1347
6 1357
7 1361

sc lattice

D/E
6250

2 6811
3 6839
4 6883
5 6933
6 6929

6919

D/7t/ 1

1042
2 1296
3 1312
4 1348
5 1400
6 1395
7 1380

104X (Curie root)

2 3 4 5
5202 4550 5115 4637
4824 4844 4850 4855
4850 4852 4859
4852 4849 4862
4842 4864
4859

10'X (Critical exponent)

2 3 4 5
1718 1006 1805 1003
1314 1336 1345 1354
1345 1349 ~ ~ ~ 1363
1349 1344 1369
1337 1376
1362

2
7347
6838
6774

~ ~ ~

6929
6935

104)& (Curie root)

3 4 5
6451 7337 6610
6882 6927 6927

~ ~ ~ 6927 6927
6841 6919
6920

10'X (Critical exponent)

2 3 4 5
1692 1006 1914 1023
1312 1347 1392 1391
1291 1391 1392

~ . 1303 1380
1395 1382
1402

10'X (Critical exponent)

2 3 4 5
1310 1334 1344 1350
1364 1351 1358 1481
1355 1354 1345
1354 1355
1346

6
5055 4693
4858

6 7
1835 1013
1359

6 7
7194 6692
6919

6 7
1851 1037
1380

Numerical estimates obtained in this paper are given
either in the form l~&~g~&l2, where l~ and l2 are non-

rigorous bounds apparently supported by the extrapola-
tion procedures, or in the form g& e, where e is an indica-
tion of the apparent accuracy of these procedures.

3. ZERO-FIELD SUSCEPTIBILITY OF THE
NEAREST-NEIGHBOR CLASSICAL

HEISENBERG FERROMAGNET

We are now in a position to consider the critical be-
havior of the initial susceptibility of the nearest-neighbor
classical Heisenberg ferromagnet. The relevant series
expansions have already been given in Table I.

We first determine the "Curie roots"" and the corre-

sponding residues of PA's to D lnx for the three cubic
lattices. Unfortunately, in no case do these results
(Table IV) lead to very precise estimates of either the
Curie point E, or the critical exponent y. (It is, how-

ever, perhaps worth mentioning that if we were pre-
pared to assume y to be lattice-independent, then we

should conclude its value to be approximately 1.37.)
Following the general procedure described in Sec. 2,

we next perform similar calculations with (D' in')'I'.
The results of Table V, which are for the fcc lattice,
show very rapid convergence. AQ PA's of the last three
orders bar one yield (after rounding") values in the
ranges

Q, = p.31444~0.pp003 y= 1.375W0.002 (fcc). (3.1)

Since there are no discernible trends in these later
approximants, we. feel confident in adopting (3.1) as
initial Pade estimates.

Now experience with the Ising model indicates that
the critical exponents may well be simple fractions;
therefore the estimate (3.1) strongly suggests that here

y = 1~ may be the exact result. We therefore form PA's

' M. F. Sykes, J.L. Martin, and D. L.Hunter, Proc. Phys. Soc.
(London) 91, 671 (1967);also D. S. Gaunt and C. Domb, J. Phys.
C1, 1038 (1968).

'0 One method of estimating this limit is given in C. Domb and
M. F. Sykes, Proc. Roy. Soc. (London) A235, 247 (1956).

g' The Curie root is in general the smallest positive real root of
the Pade denominator. Any nonphysical real roots between the
origin and the Curie root usually have very small residues and
may therefore be easily identified."In the following, we omit this quali6cation, which is, however,
usually necessary.
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TABLE VI. Curie roots (in units of 10 ') of PA's to (Dx"")'"
for the fcc classical Heisenberg model.

TABr.E VIII. Curie roots (in units of 10 ) of PA's to X8/12

and (Dxs/1')'/2 for the bcc classical Heisenberg model.

D/N 1

1 31 472
2 31 435
3 31 445
4 31 445
5 31 442
O 31 445

3 4 5 6

31 437 31 447 31 445 31 444 31 447
31 445 31 445 31 443 31 445
31 445 31 445 31 445
31 445 31 445
31 445

D/N 1

1 5077
2 5187
3 4898
4 4880
5 4872
6 4868
7 4866
8 4865

~8/11

2 3 4 5 6 7 8
4813 4922 4840 4889 4850 4877 4855
4890 4875 4870 4867 4866 4865
4870 4869 4850 4865 4860
4869 4871 4864 4864
4862 4865 4864
4865 4864
4862

E,= 0.31445+0.00002 (fcc), (3 2)

to (Dx'/")'/' Lmethod (2.8), p= 2] for the fcc lattice.
The Curie roots of the Pade denominators (Table VI)
show very rapid convergence, which supports the con-
jecture y= 1ss. All PA's of the last four orders (bar the
L5,11) have roots in the range

D/N 1
1 4691
2 4867
3 4865
4 4862
5 4861
6 4862
7 4862

(Dx8 /11) 1/2

2 3 4 5 6 7
5023 4730 4974 4767 4944 4793
4865 4862 4861 4862 4862
4868 4861 4861 4862
4861 4862 4862
4861 4862
4862

which is our Anal Pade estimate for the Curie point of
the fcc lattice and is in excellent agreement with the
initial estimate (3.1). From the residues of these PA s,
the following estimate for the amplitude of the ferro-
magnetic singularity of the fcc lattice may be obtained:

2 = 0.8385+0.0009 (fcc). (3.3)

As a check on consistency, we evaluate PA's to
(E E)(D' in+)'—"at E=E„=0.31445 [method (2.9),
p= 2j. The results (Table VII) show, as expected, very
rapid convergence, nearly the entire Pade table yielding

p between 1.374 and 1.376, which is very satisfactory.
When we apply methods (2.4), (2.8), and (2.9) with

p=1 and p=3 to the fcc lattice, we obtain results en-
tirely consistent with those found for p=2. However,
since these investigations do not permit estimates as
precise as those presented above, we do not propose to
discuss them in any detail. The marked improvement
in convergence obtained in PA calculations by going
from p= 1 to p= 2 suggests that, for the fcc lattice, the
ferromagnetic singularity in the susceptibility may be
of the form discussed at (c) above.

Unfortunately for the loose-packed lattices, con-
vergence is not much improved by taking p) 1. How-
ever, a comparison of the results of PA calculations
with D lnx (Table IV) and (D' lnx)'/' yields the initial
estimates

E,=0.4864&0.0012, y= 1.37 (bcc),
E,=0.6919&0.0015, y =1.38 (sc).

(3.4)

D/N
1
2
3
4
5

1
13 796
13 761
13 759
13 847
13 760

2
13 760
13 759
13 760
13 759

3
13 759
13 760
13 759

13 738
13 759

TAsLz VII. Estimates {in units of 10 4) for the critical exponent
y of the fcc classical Heisenberg model from PA's to (K, IC)—
X{D'lng) "~ evaluated at E= EC, =0.31445.

TABLE IX. Curie roots (in units of 10 4) of PA to x'"'
and (Dxs"')2/2 for the sc classical Heisenberg model.

D/&V 1

1 7174
2 7018
3 6943
4 6919
5 6912
6 6913
7 6915
8 6916

D/N 1

1 6706
2 6911
3 6896
4 6900
5 6921
6 6921
7 6917

~8/11

2 3 4 5 6 7 8
6855 6971 6868 6941 6897 6930 6906
6940 6916 6911 6913 6916 6916
6884 6910 6912 6935 6916
6910 6915 6917 6915
6913 6917 6916
6907 6915
6916

(Dxs/11) 1/2

2 3 4 5 6 7
7079 6728 7075 6801 7016 6835
6896 6900 6920 6921 6917
6899 6894 6921 6920
6895 6908 6917
6921 6918
6921

For the Ising model, p is almost certainly lattice-
independent in any given dimension; therefore, in the
light of the estimates (3.4), it seems logical to use PA
methods (2.8) and (2.9) to investigate how consistent
the susceptibility series of the loose-packed lattices are
with y= 1-,'.

In Tables VIII and IX will be found the Curie roots
of PA's to (D" Qs/")'» for p=1 and p=2. These Pade
tables, whose mutual consistency is noteworthy, lead
(with the assumption y= ls) to the final Pade estimates

E;=0.4863&0.0003 (bcc),
E,=0.6918&0.0005 (sc).

These estimates are centrally within the ranges of (3.4),
which is encouraging and may perhaps be regarded as
indirect evidence for y= 18. From the residues of these
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TABLE X. Estimates (in units of 10 ~) for the critical exponent
y of the bcc classical Heisenberg model from PA's to (E,—E)D lng
and (K, E)—(D in')'~ evaluated at K=K,=0.4863

TABLE XI. Estimates (in units of 10 ) for the critical exponent
y of the sc classical Heisenberg model from PA's to (K, E—)D inx
and (K,—E')(D' Inx)'l2 evaluated at K=E,=0.6918.

D/N 1 2
1 1290 1348
2 1353 1363
3 1360 1370
4 1365 1379
5 1368 1372
6 1370 1375
7 1371

(K, K)D—lnx
3 4 5

1358 1364 1367
1368 1376 1372
1386 1373 1373
13/3 1373
1373

6 7
1369 1371
1374

D/F 1
1 1377
2 1366
3 1383
4 1379
5 1381
6 1379

(K,—K) (D' 1nx)'I'
2 3 4 5 6

1366 1384 1378 1381 1379
1373 1380 1380 1380
1380 1380 1380
1380 1380
1380

D/F 1 2
1 1336 1361
2 1363 1426
3 1376 1388
4 1384 1382
5 1380 1372
6 1378 1378
7 1378

D/N 1 2
1 1390 1391
2 1391 1389
3 1408 1397
4 1373 1369
5 1369 1372
6 1378

(K, K)D—lnx
3 4 5

1375 1382 1380
1388 1381 1324
1366 1379 1379
1379 1379
1379

(K,—K) (D' lnx) '"
3 4 5

1408 1371 1371
1397 1371 1371
1393 1376
13/7

6 7
13/9 1378
1378

6
1377

same PA's we estimate

A =0.868+0.012 (bcc),
A =0.970&0.010 (sc).

(3.6)

Naturally, we now use the estimates (3.5) in conjunc-
tion with the PA method (2.9). The results for the
extreme values of (3.5) differ from those for the central
values by only about &1%. Furthermore, we are
reasonably confident that the central values are, in fact,
correct to four figures. Consequently, we present in
Tables X and XI only the results for these values. These
are very satisfactory, the last two orders of PA's
yielding, with few exceptions,

p= 1: y= 1.370-1.375 (bcc), 1.379—1.378 (sc),

p =2: y = 1.381—1.379 (bcc), 1.369—1.378 (sc),

which are all within &s% of 1ss.

We feel that the above PA calculations for the loose-
packed lattices certainly demonstrate that the suscepti-
bility series of these lattices are consistent with the
conjecture p= 18. They therefore provide evidence for
the lattice independence of this critical exponent.

As regards ratio analyses, the method given by
(2.12) and (2.17) leads to rather inexact estimates for
the Curie points which, however, do include those given

previously. To provide better estimates we turn to
method (2.14).

Since P„~E,' as ts~ ~ irrespective of the value
of g', we may take g'=8 and subsequently use the
results to estimate g from method (2.13).The sequences
P„(Table XII) show rather rapid convergence and
yield the estimates 3.180+0.001 (fcc), 2.0563+0.0008
(bcc), and 1.4455+0.0005 (sc) for K, '. These give

E,= 0.31447+0.00010 (fcc),

Z„,=0.4863+0.0002 (bcc),

E,=0.6918&0.0003 (sc),

(3.7)

which are in excellent agreement with the PA estimates
(3.2) and (3.5). In fact, for the loose-packed lattices the
ratio estimates (3.7) are firmer than the PA estimates
(3.5) and therefore supersede them.

Next, we investigate g=y —1 using the ratio method
(2.13) with the estimate (3.7) for the Curie points. The
results of Table XIII correspond to our adopted values
of Z„namely, 0.31445 (fcc), 0.4863 (bcc), and 0.6918
(sc). For the fcc lattice, the last five linear intercepts
lie between 0.3'72 and 0.373 and are thus within 0.8%
of 8'. For the loose-packed lattices, it is useful to smooth
the oscillations by forming averages of successive pairs
of linear intercepts. In the case of the bcc lattice, the

TABLE XII. 10'XP„and extrapolants for the susceptibilities of some nearest-neighbor classical Heisenberg models (g'= 8).

n/r

1
2
3

5
6
7
8
9

29 091
30 877
31 354
31 539
31 627
31 677
31 708
31 /28

fcc
2

31 725
31 759
31 776
31 786
31 789

31 782
31 794
31 798
31 794

19394
19 649
20 487
20 313
20 528
20 455
20 543
20 505
20 550

bcc
2

20 538
20 526
20 555
20 556
20 558

20 557
20 566
20 559

14 545
14 035
14 459
14 364
14 488
14 427
14 468
14 442
14 463

sc
2

14 495
14 458
14 454
14 457
14 456

14 447
14 457
14 456
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TABLE XIII. 10 )&g„and extrapolants for the susceptibilities
of some nearest-neighbor classical Heisenberg models.

fCC,
E,'=0.31 445

0 1

2578
3060 3541
3274 3704
3389 3733
3455 3719
3500 3724
3533 3730
3556 3722

bcc,
E,' =0.4863

0 1

2968
2694
3625 3953
3219 3743
3659 3710
3415 3809
3679 3731
3515 3816
3689 3724

SC)

E,' =0.6918
0 1

3836
3060
3760 3722
3474 3888
3872 4039
3625 3926
3818 3683
3675 3826
3800 3735

last four such averages are between 0.3760 and 0.3775,
that is, within 0.7% of s. Convergence is slower for the
sc lattice, but g close to 0.375 is certainly indicated.

Tak.ing g=-,' and our adopted values of E„wefinally
use method (2.15) to estimate the amplitudes of the
ferromagnetic singularities. From Table XIV, we
estimate

A =0.839+0.003 (fcc),

A = 0.866+0.003 (bcc),

A =0.971+0.003 (sc),

(3.8)

in good agreement with the results (3.3) and (3.6) of
PA calculations.

In Table XXIX are collected our final estimates
for E., y, and A. In general, each entry in this table is
either the appropriate Pade or ratio estimate, depending
on which is the more accurate. (The estimates 1.375
&0.010 for the critical exponents y of the bcc and sc
lattices are obtained using the estimates (3.7) for E, in
conjunction with both the ratio method (2.13) and the
PA method (2.9).$

TABLE XIV. 104&&A„and extrapolants for the susceptibilities of
some nearest-neighbor classical Heisenberg models I,

'g' = 8),

4. ZERO-FIELD SPECIFIC HEAT OF THE
NEAREST-NEIGHBOR CLASSICAL

HEISENBERG FERROMAGNET

In this section, the critical behavior of the zero-field

specific heat of the classical Heisenberg ferromagnet is
investigated. Attention is confined to the fcc lattice,
since the series (Table I) for the loose-packed lattices

e/r

3
4
5
6
7
8
9

5156
3646
1796
0201—0393—0537—0635

—3957—1544—1423

specific heat is zero, i.e.,
o,=0. (4.1)

When the critical exponent X of some property is zero,
it is frequently useful to consider the exponent A. , of the
singular part of that property. ' In the present circum-
stances n, = 1+g, and we feel able to conclude on the
basis of Table XV and other such sequences that

16M +8M 8 (4.2)

Although the results (4.1) and (4.2) have been obtained
specifically for the fcc lattice, it seems very probable on
general grounds that they will hold for all three-
dimensional nearest-neighbor classical Heisenberg
models.

have bs~r ——0 (Ref. 33) and are therefore too short for
accurate extrapolation.

It is important to determine whether or not the
specific-heat series indicates a singularity at the Curie
point as previously determined from the susceptibility.
On the basis of PA and ratio calculations (the details of
which we omit to save space) we feel justified in con-
cluding that, as expected, the specific heat does have
its dominant singularity at the same value of K as the
susceptibility. We therefore use the precise estimate
E,=0.31445&0.0002 obtained from the susceptibility
in analyzing the critical behavior of the specific heat.

Following standard procedure, we assume that
Cp~C(K E) "+"—+D as E +E, —and u—se the ratio
method (2.13) to obtain an estimate for the index 1+g.
The results (Table XV) suggest that 1+g is negative,
which means that the specific heat does not diverge as
T —& T,+, but approaches some (nonzero) constant D.
Therefore, according to our definition, the critical
exponent for the high-temperature behavior of the

TABLE XV. 10'X (1+g„)and extrapolants for the specific heat
of the fcc classical Heisenberg model (E,'=0.31445).

fCC,
E,' =0.31 445

m/r 0 1 2

0 10000
1 9148 9148
2 8882 8616
3 8757 8506

8684 8468
5 8637 8446 8414
6 8603 8433 8408
7 8577 8425 8405
8 8558 8419 8399
9 ~ ~ ~ ~ ~ ~ ~ ~ ~

bcc,
E,' =0.4863

0 1 2

10000
9431
9012 9012
8979 8753
8870 8727
8855 8669
8808 8685
8800 8663 8658
8775 8676 8667
87/0 8663 8664

sc,
E,' =0.6918

0 1

10000
10063

9770 9/70
9773 9628
9711 9653
9733 9674
9714 9720
9/23 9698
9715 9715
9720 9707

5. ZERO-FIELD ENTROPY AND ENERGY OF
THE NEAREST-NEIGHBOR CLASSICAL

HEISENBERG FERROMAGNET

Recalling that we write the zero-field specific heat in
the form

Cp Nk Q b„E" (K=2J/kT——), (5.1)

"The coe%cient b~ of E' in the speci6c-heat series involves all
graphs of l lines and vertices all of even degree, which can be
formed from the nearest-neighbor links of the lattice when multiple
bonding is allowed. For the loose-packed lattices, there are no such
graphs for l odd and therefore in this case b2„+1,=0.
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(5.2)

&(~)—~(T)
&odT= P b,E"/(r —1), (5.3)

it is easy to show that

S(")—S(T)
dT—= Q b,E"/r

Ãk ru, T

and

where S and E are the entropy and energy, respectively,
and where the expansions apply for II=0 and T&~ T,.

By evaluation of the available terms of the expansions
and approximation of the remainders (see Sec. 2), the
quantities (5.2) and (5.3) may be estimated over the
entire high-temperature region. These quantities are
independent of the interaction energy J. Because of
this their critical values, for which we obtain the
estimates

fCC bcc sc

$S(~)—S(T.)j/Ek
PE(~ ) &(T,)—j//NkT.

0.314&0.002

0.468&0.004

0.338&0.006 0.415+0.014

0.533&0.004 0.69 &0.02,
(5 4)

(6.7)6. ZERO-FIELD SPIN PAIR CORRELATION
FUNCTION OF THE NEAREST-

NEIGHBOR CLASSICAL
HEISENBERG MODEL

V=Vs= (2-n)v.

The numerical investigations of this section are as
follows: First, using the series expansions of Fisher and
Burford' "' as verified by Jasnow and Wortis, "we
estimate y2 for the nearest-neighbor classical Heisenberg
model. Second, we interpret this result in terms of
exponents v and rl by accepting (6.6) for t=0 and 1= 2

and using

In this section, we are concerned with the reduced
longitudinal spin pair correlation function I"(r,T,H).
For general spin, a suitable definition is

F(r,T,H) = ((So*—(S'))(S,*—(S*)))/~S(S+ 1). (6.1) (6.8)

(6.9)

v= s(Vs —Vs),

g= 2 happ
For a detailed discussion of the relevant general theory
we refer to the work of Fisher, ' ""Burford, ' and
Fisher and Burford. "Assuming there is only a single
correlation length ~ ' which diverges at the critical
point, it is usual to write the scaling relation

with y=pp ——1-,'. We undertake this analysis since the
current estimates of Fisher and Burford' " '~ are, of
necessity, based on values for E, and p obtained from
shorter susceptibility expansions.

For the three cubic lattices, the results of evaluating
PA's to (E, E)Dlnps at E—=E, are presented in
Table XVI. (Throughout this section we use the
accurate estimates for the Curie points obtained from
the susceptibility series. ) The series for the fcc lattice is
much the smoothest, and consequently we conGne
attention to it. (The other series provide no evidence
that ys is lattice-dependent. )

While the PA results give us confidence in~+the

assertion

P~G(lrr)/r~ '+& (r —& ~, T -+ T„H=0), (6.2)

for the long-range behavior of the correlations. The
high-temperature behavior of ~ is given by

a F(1 T,/T)" as T -+—T.+. (6.3)

It is now convenient to introduce the correlation
moments

(6.4)p, =P r'F(r),

are particularly useful for comparison with experiment. which, in the case of the reduced susceptibility (f=0),
yields

and to write for their zero-Geld high-temperature critical
behavior

ps~& 2.75 (fcc), (6.10)

fj, , A g(1 T,/T) &~ as T——+ T,+-.

Using (6.2)—(6.5)& it can be shown'" "that

(6 5) TAnLE XVI. Estimates (in units of 10 ') for the critical ex-
ponent y2 of some nearest-neighbor classical Heisenberg models
from PA's to (K,—K)D lnp2 evaluated at K=K,.

y, = (t+2—rl)v, (6.6)

'4 M. E. Fisher, Natl. Bur. Std. (U. S.) Misc. Publ. 273, 21
(1966).

"M. E. Fisher, Natl. Bur. Std. (U. S.) Misc. Publ. 273, 108
(1966).

36 M. E. Fisher, J. Appl. Phys. 38, 981 (1967)."R. J. Burford, thesis, University of London, 1966 (un-
published).

"|Vf, E. Fisher and R. J. Burford, Phys. Rev. 156, 383 (1967}.

fcc,
K,=0.31 445

D/E 1 2 3

bcc,
K,=0.4863

1 2 3

sc~
Kc=0 6918

1 2 3

1 2748 2752 2754
2 2752 2756
3 2754

2586 2715 2737 2694 2749 2776
2724 2754 2752 2918
2744 2778

"D. Jasnow and M. Wortis (to be published). We have not
used the two new terms given here,
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2
3
4
5
6

3031
2351
2135
2031
1971

0990
1487
1617
1671

1984
1812
1778

1697
1745 1769

TABLE XVII. 103&&g„andextrapolants for the second correlation
moment of the fcc classical Heisenberg model.

For comparison with experiment, it is important to
obtain results for antiferromagnets in uniform fields.
To investigate the initial physical susceptibility of the
simple classical Heisenberg antiferromagnet we use the
series of Table I, taking E=2PJ to be negative, and
restricting attention to the loose-packed bcc and sc
lattices.

Starting with the reduced susceptibility $ defined by

g= (3kT/Eni') y, (7.1)
it is dificult to obtain from them an estimated upper
bound. We therefore employ the ratio method (2.13).
Since the 1/n plot has a considerable curvature, later
columns of the Neville table (Table XVII) are useful,
and we estimate

2.74&y, & 2.80 (fcc). (6.11)

Further evidence may be obtained by assuming (see
Sec. 2) r„to be of the form E, '[1+g/(n+ e)j [compare
(2.11)j. In general, results for different e must be criti-
cally compared. However, when an accurate estimate for
E, is available from some other source, it is important
to ensure that the convergence of the sequence
l„(e)= (n+ e)r„—(n 1+e)r„ i—[compare (2.12)] to this
limit is smooth. Here e= ——, is satisfactory in this
respect; therefore we use this value in forming the
sequence g„(e)= (n+ e) (E,r„—1) [compare (2.13)j.The
following successive estimates for y2 —1 result: 2.273,
1.959, 1.868, 1.828, 1.807. This sequence certainly
supports the (nonrigorous) upper bound of (6.11).

Combining (6.10) and (6.11), we obtain our final
estimate

2.75 &y, &&2.80 (fcc),

which, using (6.8) and (6.9), gives

0.6875 &~v&~0.7125 (fcc),

0 & r) & 0.07 (fcc) .

7. SIMPLE CLASSICAL HEISENBERG
ANTIFERROMAGNET

(6.12)

(6.13)

Simple antiferromagnetic ordering is possible on loose-
packed lattices. It is well known' "that for the classical
Heisenberg model, the mathematical problem of a
simple antiferromagnet in a finite or zero staggered
field' is precisely equivalent to that of the corresponding
ferromagnet in the appropriate uniform field. Thus,
Secs. 3—6 may be simply reinterpreted in terms of anti-
ferromagnetism. Some particularly important con-
sequences of this symmetry are the following: The
Curie and Neel points are related by the equality
(2J/kT, ) = (2~ J~/kT~). The critical values of the
entropy, energy, etc. , at the Curie and Neel points are
the same. All the critical exponents for the ferromagnet
and antiferromagnet are identical. (N.B. For the anti-
ferromagnet these exponents are defined, where
necessary, with reference to a staggered field, )

TAsLE XVIII. The $5,4) PA to p(K) for the bcc
and sc classical Heisenberg models.

[D,Ãj=Px(K)/QD(K)=Q p.K"j Q q.K'

Numerator
bcc sc

Denominator
bcc sc

PO

pl
P2
P3
p4

+1.000 000
+0.385 757—2.684 874—0.444 539
+1.129 456

+1.000 000—5.292 029—0.493 719
+4.145 953—2.231 199

q0 +1.000 000 +1.000 000
ql +0.546 563 —5.304 461
q2

—2.369 449 —0.324 665
q3

—0.822 940 +3.566 443
q4 +0.658 898 —2.071 660
qs +0.128 422 +0.116098

«M. F. Sykes and M. E. Fisher, Physica 28, 919 (1962).
4' M. E. Fisher and M. F. Sykes, Physica 28, 939 (1962}.

we follow a procedure similar to that of Fisher and
Svkes"" for the spin--', Ising model and attempt to
remove the dominant ferromagnetic singularity by
computing

y= (1 E/E, )—~(, (7.2)

where here p=18. Using our estimates E,=0.4863
(bcc) and E,=0.6918 (sc), we find

p(E) = 1—0.160806E—0.227534E'

+0.121741E'—0.267445E'+ 0.224921E'
—0.485872E'+0.527412E'—1.093833E'

+1.333827E'— (bcc) (7.3)
and

@(E)= 1+0.0124320E—0.103108E'

+0.0366111E'—0.0431506E4+0.0603836E'
—0.0393274E +0.0527043E —0.0421989E

+0.0636318E'— (sc).

Apart from initial effects, the coeKcients of both the
series (7.3) alternate regularly in sign as must be the
case asymptotically if the antiferromagnetic singularity
dominates. Unfortunately, however, the magnitudes of
the coefFicients are not sufficiently regular to allow
accurate assessment of the behavior of the physical
susceptibility in the region of the Neel point. If we
dismiss the possibility that our value for p is incorrect,
there remain two likely causes of this: (a) the use in

(7.2) of an insufficiently accurate estimate of E„(b)
the effect of singularities other than that at the Neel
point.
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TanLs XIX.Estimated values of the quantity (6
~
J ) /1l m')x at various points of the high-temperature ranges

of the bcc and sc simple classical Heisenberg antiferromagnets.

3.500
3.250
3.000
2.750
2.500
2.350
2.300
2.250
2.200
2.150

(6i Ji/Xm')g

0.15465
0.16005
0.16559
0.17114
0.17636
0.17902
0.17976
0.18040
0.18090
0.18124

bcc

2.100
2.095
2.090
2.085
2.080
2.075
2.070
2.065
2.060
2.05634

(6~J ~/vms)&

0.18135
0.18135
0.18135
0.18134
0.18132
0.18131
0.18129
0.18127
0.18124
0.18122

3.500
3.250
3.000
2.750
2.500
2.250
2.000
1.750
1.650
1.600

(6[& [/cVm~) &

0.17526
0.18269
0.19064
0.19912
0.20808
0.21737
0.22661
0.23483
0.23731
0.23822

1.550
1.500
1.490
1.480
1.470
1.465
1.460
1.455
1.450
1.4455

(6iJ i/Em')y

0.23883
0.23902
0.23900
0.23896
0.23889
0.23884
0.23879
0.23873
0.23867
0.23860

P(E~) =B~'=0.960 (bcc),

p(K~) =B~'=0.889 (sc).
(7.5)

To investigate (a) we repeat our analysis at various
points throughout the ranges (3.7), but unfortunately
the magnitudes of the coefficients of p(E) remain
irregular. Regarding (b), analyses of the series (7.3)
show that, apart from the antiferromagnetic singularity,
they have a well-defined singularity for small positive E.
It may well be therefore that our difFiculty is principally
caused by the "interference" of residual singularities
at E=+E,. [No attempt to account for such correction
terms is made in (7.2).g

If we write

A~'(1 K/Id~) ' '+—B~' as K—+ K~+, (7.4)

then PA calculations certainly give E~= E, (the-
equality holds rigorously) and e small. (The bcc lattice
provides some evidence, admittedly rather inconclusive,
that e&~ 0. This suggests that the susceptibility gradient
may be infinite at the Weel point as is the case for the
spin--', Ising model. ' ")

To estimate p and therefore x in the high-temperature
region we may either extrapolate partial sums of the
series (7.3) or evaluate PA's to them (see Sec. 2). Using
the method of partial sums, we estimate BN' in (7.4) to
be 0.954 (bcc) and 0.884 (sc). PA's (see Table XVIII
for details of the [5,4$ PA's which should be among
the most reliable) lead to the estimates 0.967 (bcc) and
0.895 (sc) for BN'. We conclude that

at various points of the range EN&&X~&0. These are
obtained using the [5,4] PA's of Table XVIII. The
general behavior seems similar to that found for the
spin--', Ising model"" In particular, a Rat maximum
just above the Neel point is suggested. However, it
shouM be emphasized that the results are rather un-
reliable in the critical region, where numerical uncer-
tainties are relatively large.

8. ZERO-FIELD SUSCEPTIBILITY OF THE
EQUIVALENT-NEIGHBOR CLASSICAL

HEISENBERG FERROMAGNET

The first seven coefFicients of the high-temperature
series expansions of the zero-field susceptibilities of the
bcc (1,2), sc (1,2), and fcc (1,2) classical Heisenberg
models have already been presented in Table II. In this
section, we estimate Curie temperatures E, and critical
exponents p using these series. Our primary concern is
to establish whether, starting with the nearest-neighbor
model, the inclusion of equal-strength second-neighbor
interactions leaves the value of y unchanged, as seems
to be the case for the spin-~ Ising model. ' "

From the roots of PA's to (D& lny)'I& with p= 1, 2,
and 3 and from Neville tables for the ratios, we obtain
the preliminary estimates

E,=0.2640 [bcc (1,2)), 0.1965 [sc (1,2)j,
0.1963 [fcc (1,2)j. (8.1)

To find more accurate estimates for these Curie
points we 6rst verify that g is near 0.375 and then

employ the ratio method (2.14) taking g'=s. From
these results (Table XX) and from other similar se-

quences we feel able to conclude that K, '=3.7911
&0.0012 [bcc (1,2)), 5.087&0.004 [sc (1,2)), 5.090
&0.005 [fcc (1,2)). On. inversion these give the 6nal
estimates

The assignment of uncertainties is dificult but the
results (7.5) should be accurate to within a few percent.

Corresponding to (7.4), we can write

(~A~(1 K/K~)' '+B~ as —E~E~+. (7.6)

Then using (7.2), we find that our estimates (7.5) are
equivalent to

](K~)=B~=0.370 (bcc),

&(E~)=B~=0.343 (sc).
(7.7) E,=0.26378&0.00009 [bcc (1,2)],

E =0.19658&0.00015 sc 1 2 (8.2)L ( )j
In Table XIX are listed estimated values of the

quantity

(6~ J~//m')x= —E(1—E/E, ) "~'P(E), (7.8) which are close to the initial estimates (8.1).
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TABLE XX.P„'sand extrapolants for the susceptibilities of some
equivalent-neighbor classical Heisenberg models (g'= —',).

n/r

2
3
4
5
6
7

I/r
1
2
3

5
6
7

n/r
1
2
3

5
6
7

1
33 939
36 491
37 210
37 477
37 618
37 699
37 750

4364
4772
4910
4972
5006
5026
5039

1
4364
4772
4910
4972
5006
5027
5040

bcc (1,2) 10'p„
2 3

37 743
37 829
37 862
37 878

37 886
37 895
37 899

sc (1,2) 10'P„
2 3

5034
5056 5071
5067 5077
5073 5081

fcc (1,2) 10'p„
2 3

5034
5057
5o68
5074

5072
5078
5082

37 899
37 902

5081
5083

5082
5O85

37 903

5084

5086

Taking values for E, throughout the ranges (8.2), we
investigate the value of 7 using PA method (2.9) with
p=1 and p=2 and ratio method (2.13). Results for
typical values of X, are presented in Tables XXI—
XXIII, which are for the bcc (1,2), sc (1,2), and fcc
(1,2) models, respectively. For the bcc (1,2), the Pade
table for p= 1 is largely increasing, while that for p= 2
is largely decreasing. Comparison suggests the estimate
1.372&0.005 for their common limit. This result is

TABLz XXII. Estimates (in units of 10 ') for the critical
exponent y of the sc (1,2) classical Heisenberg model, using
E,=0.19666.

From evaluating PA's

D/N 1 2

1 1334 1329
2 1329 1332
3 1341 1350
4 1347 1372
5 1353

From evaluating PA's to

D/N 1 2

1 1359 1371
2 1371 1372
3 1372 1370

1377

to (K, K—)D lnx at K=K,
3

1341 1346
1350 1373
1361

5
1352

(E,—K)(D' inx)"' at K=K,

1372 1377
1369

e/r
3

5
6

0
1259
1278
1291
1301
1309

From g„'sand extrapolants

1 2 3

1335
1345
1351
1355

1359
1363
1366

1367
1371 1375

y = 1.375+0.005. (8.3)

[If, as seems unlikely, there are any differences between
the values of this critical exponent for the bcc (1,2),

supported by the Neville table, which is again sub-

stantially increasing, and appears to have a limiting
value in the range 1.375&0.004. For the sc (1,2) and
fcc (1,2) convergence is not quite so rapid, but it appears
reasonable to conclude that in both cases the limit lies
in the range 1.37 to 1.38. It is not easy to give final

estimates for y, since the uncertainties must reAect
those in E,. However, a detailed study makes us
con6dent that

D/N
1
2
3

From evaluating PA's to (E, E)D 1nx at E=E—,
2 3

1358 1350 1367 1365
1350 1354 1365 1366
1372 1366 1366
1365 1366
1366

5
1366

From evaluating

D/N 1

1 1367
2 1363
3 1377
4 1377

PA's to (E,—K)(D'lnx)"s at E=E,
2 3 4

1359 1377 1377
1378 1377
1377

TABLB XXI. Estimates (in units of 10 ') for the critical
exponent y of the bcc (1,2) classical Heisenberg model, using
E,=0.26380.

From evaluating PA's to (E, K)D 1nx at K=—E,
1 2 3 4

1331 1325 1339 1344
1325 1329 1346 1307
1339 1346 1363
1344 1309
1352

From evaluating PA's to (E,—E) (D' lnx)"" at K=K,
D/N 1 2 3 4

I 1354 1370 1369 1380
2 1370 1369 1370
3 1369 1370
4 1382

5
1351

D/N

TABLE XXIII. Estimates (in units of 10 ') for the critical
exponent y of the fcc (1,2) classical Heisenberg model, using
Ec=0.19658.

~/r
3
4
5
6
7

0
1313
1325
1334
1340
1344

1363
1368
1370
1371

1377
1374
1373

1370
1372

From g„'sand extrapolants

2 3

1374

I/r
3

5
6
7

0
1258
1276
1290
1299
1307

1332
1342
1348
1353

1357
1360
1365

1364
1372

From g„'sand extrapolants

1 2 3

1378
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sc (1,2), and fcc (1,2) models, they are not detected by
our methods. )

In the light of our estimate (8.3) and our general
approach of looking for simple fractions which do
justice to our conclusions, it appears probable that
y= 18 is the exact result in the three cases considered.
This suggests that y has the same value for the nearest-
neighbor model and the equivalent-neighbor model of
order two.

D/N 1

1 137 615
2 137 496
3 137 500
4 137 500
5 137 503

137 490
137 500
137 501
137 500

137 498
137 500
137 500

5

137 500 137 503
137 498

TABLE XXVI. Estimates (in units of 10 5) for the critical
exponent y of the fcc (1,2) spin-$ Heisenberg model from PA's to
(K, E)—D Inx evaluated at E=E,=0.147451.

9. ZERO-FIELD SUSCEPTIBILITY OF THE
EQUIVALENT-NEIGHBOR SPIN—xs

HEISENBERG MODEL

We analyze here the susceptibility series of Table III,
which are for the bcc (1,2), sc (1,2), and fcc (1,2) spin-s
Heisenberg models. We might well expect the critical
exponent y of the Heisenberg model to be independent
of spin, as seems to be the case for the Ising model. ' '
If so, then bearing in mind the results of Domb and
Dalton" and Sec. 8 of this paper, we should perhaps
expect to find y=1+8 for all three-dimensional nearest-
neighbor and higher 6nite-order equivalent-neighbor
Heisenberg models, irrespective of spin. Unfortunately,
however, according to Baker et al. (Ref. 13), y=1.43
&0.0j. for the three cubic lattices with nearest-neighbor
spin--, Heisenberg interactions. Faced with this contra-
diction, the best approach here is obviously to let the
series of Table III stand on their own, and to undertake
a direct analysis similar to that of Sec. 3.

We start with a discussion of the Curie roots and
corresponding residues of PA's to D lnx for the fcc (1,2)

TAsr.z XXIV. Curie roots and corresponding critical exponents
from PA's to D lnx for the fcc (1,2) spin-$ Heisenberg model.

TABLE XXVII. Curie roots and corresponding critical exponents
from PA's to D lnx for the sc (1,2) spin-$ Heisenberg model.

D/N

2
3

1
14 685
14 762
14 762
14 758
14 759

10'X (Curie root)
2 3

14 750 14 760
14 762 14 757
14 762 14 759
14 759

4
14 756
14 758

5
14 761

D/N
1
2
3
4

1

13 586
13 816
13 815
13 797
13 799

10'X (Critical exponent)

2 3
13 766 13 805 13 787
13 815 13 793 13 798
13 816 13 799
13 799

5
13 811

E,=0.14744+0.00002 $fcc (1,2)j,
which is an initial estimate, and

(9.1)

model. The convergence of these results (Table XXIV)
is remarkably rapid, there being only one approximant
of the last three orders which does not yield values in
the ranges

D/N

2
3
4
5

1
14 685
14 762
14 745
14 745
14 742

10'X (Curie root)
2 3

14 750 14 743
14 744 14 745
14 745 14 744
14 745

4
14 745
14 743

5
14 754

y= 1.3744&0.0008 $fcc (1,2)), (9.2)

which is a final estimate. If we insist on a simple fraction
for y, the estimate (9.2) strongly suggests y= 1ss.

Consequently, we obtain our final estimate for the
Curie point

D/N
1
2

5

I
13 586
13 816
13 748
13 750
13 737

10'X (Critical exponent)

2 3 4
13 766 13 742 13 752
13 745 13 749 13 740
13 750 13 744
13 748

5
13 801

D/2V' 1

1 147 651
2 147 420
3 147 455
4 147 453
5 147 451
6 147 451

2 3 4 5 6

147 430 147 455 147 450 147 451 147 464
147 453 147 451 147 451 147 450
147 451 147 451 147 451
147 451 147 451
147 452

TABLE XXV. Curie roots (in units of 10 ') of PA's to x "'
for the fcc (1,2) spin-q Heisenberg model.

E,=0.14750+0.00012 $sc (1,2)j (9.4)

Z~= 0 147451~0.000003 Dcc (1,2)j (9.3)

from PA's to 7t
I" (Table XXV). Using the central value

of (9.3) in PA method. (2.9) with p= 1, the results of
Table XXVI are obtained. All approximants of the last
four orders yield p= 1.3750+0.0001 and all of the last
three y=1.37500%0.00003, which is extremely satis-
factory. The exceptionally rapid convergence of
Tables XXV and XXVI and their mutual consistency
give us additional confidence in the conjecture p=18.

Table XXVII contains results of PA calculations
with D lnx for the sc (1,2) model. Fluctuations, both
among PA's of a given order and from one order to
another, are more marked than for fcc (1,2); further-
more, there is some indication that the Pade tables are
decreasing. With these points in mind, we obtain
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TABLE XXVIII. Curie roots (in units of 10 5) of PA's to y8 "1
for the sc (1,2) spin=21 Heisenberg model.

~r

D/N 1 2 3 4

14 765 14 743 14 746 14 749
2 14 742 14 745 14 732 14 751
3 14 745 14 761 14 750 14 754
4 14 745 14 750 14 753
5 14 751 14 759
6 14 736

14 750 14 751
14 743

as an initial estimate and

y= 1.377&0.005 Lsc (1,2)j (9.5)

as a final estimate. The estimate (9.5) suggests that the
exact result for sc (1,2) is also p = 1s. Consequently, we
determine the Curie roots of PA's to x'I" for sc (1,2).
These are displayed in Table XXVIII, which leads to
our final estimate

K,=0.14753+0.00008 Lsc (1&2)). (9.6)

Naturally we evaluate PA's to (K, K)D ln—z at K= K,
using various values throughout the range (9.6). These
calculations, of which we omit the details, are entirely
consistent with our previous conclusions.

We do not give here any analysis of the susceptibility
series of fcc (1,2) and sc (1,2) using either PA methods
with p) 1 or ratio techniques. These are omitted since,
while they serve to confirm the above conclusions, they
do not provide more accurate estimates of either y
or E,.

Unfortunately, we do not obtain very rapid con-
vergence when we apply any of our methods to the
susceptibility series of bcc (1,2). This is not altogether

surprising since the effective coordination number is
only 14. We are therefore not dealing with much
"closer packing" than is the circumstance for fcc (1),
where fast convergence is certainly not in evidence. "
Although the bcc (1,2) series does not permit precise
estimates for critical parameters, it is not inconsistent
with p= 18.

10. SUMMARY AND DISCUSSION

Against the background sketched in Sec. 1, and using
the extrapolation techniques of Sec. 2, we have esti-
mated various critical parameters of the Heisenberg
model. I'or convenience, many of our results are
collected in Table XXIX. Of particular importance in
the theory of critical phenomena are the values of the
various critical exponents; consequently much of this
section is devoted to a consideration of our results for
such quantities.

In Secs. 3—6, the three-dimensional nearest-neighbor
classical (i.e., infinite-spin) Heisenberg ferromagnet was
studied. In Sec. 3, the critical behavior of the high-
temperature initial susceptibility was investigated with
particular regard to the value of the appropriate critical
exponent y. Evidence was presented which supports the
conjecture that p= 1~ exactly for each of the three cubic
lattices. (The evidence was especially convincing for the
fcc lattice. ) Estimates for the Curie points K, and the
amplitudes 3, of the ferrornagnet singularity were also
obtained for these three lattices. In Sec. 4, the zero-field
high-temperature specific heat of the fcc lattice was
investigated. For the critical exponents, the estimates
n= 0 and —~ &&n, & —~'~ were found. The critical values
of the entropy and energy of the three cubic lattices

TABLE XXIX. Some high-temperature critical parameters of the Heisenberg model.

a) Nearest-neighbor models

Property

Initial ferromagnetic
susceptibility xp

Zero-Geld specific
heat, Cp

Critical entropy
and energy

Zero-Geld spin pair
correlation
function, I'

+C
'y

AC

(S„—S,)/Nk(E„E,)/Nk T, —
V2

v

0.415 +0.014
0.69 &0.02

0.338 +0.006
0.533 ~0.004

0.314 ~0.002
0.468 &0.004
2.75 ~& y2 ~&2.80
0.6875 ~& v ~& 0.7125

0 &~ g &~0.07

Estimated value
bcc (1)

0.6918 &0.0003 0.4863 &0.0002 0.31445 &0.00002
1.375 &0.010 1.375 +0.010 1.375 &0.002
0.971 +0.003 0.866 +0.003 0.8385 &0.0009

8% sN 16

Remarks

u=0 for fcc (1)

v and q are obtained
from y and y2
using v=-', (p2 —y)
and g=2 —yv '.

Spin Property
Initial ferromagnetic

susceptibility, gp
Initial ferromagnetic

susceptibility, xp

Parameter
IC
v
+C
'y

Initial antiferromag-
netic
susceptibility gp

b) Equivalent-neighbor models of order-2

~0
=0.343

=0
=0.370

Estimated value
bcc (1,2) sc (1,2) fcc (1,2)

0.26378+0.00009 0.19658~0.00015 0.19646 &0.00020
1.375 +0.005
0.14753~0.00008 0.147451&0.000003
1.377 &0.005 1.3744 &0.0008

Remarks
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were estimated, in Sec. 5. In Sec. 6, we obtained the
estimate 2.75 ~& ps~& 2.80 for the high-temperature
critical exponent of the second moment of the zero-field
longitudinal spin pair correlation function of the fcc
lattice. Assuming there to be only a single correlation
length which diverges at the critical point, we used our
results for y and y2 to obtain the estimates 0.6875
~& v &~0.7125 and 0 &&i1 &~0.07 for the correlation critical
exponents introduced in (6.2) and (6.3).

In Sec. 7 the simple classical Heisenberg antiferro-
magnet was examined. A mathematical equivalence
with the problem of the ferromagnet was noted and
exploited. Assuming the physical susceptibility of the
simple antiferromagnet to be of the form (Xm'/3AT)
X(&N(1 E/E~)—' '+&iv] just above the Neel point,
numerical investigations for the bcc and sc lattices
showed e to be small. Estimates for B~ were made.

In Sec. 8, an investigation of the initial susceptibility
of the bcc (1,2), sc (1,2), and fcc (1,2) equivalent-
neighbor classical Heisenberg models was undertaken.
Evidence was obtained which indicated that, in each of
these cases, p=1-,'is probably the exact result. The
Curie points were estimated.

In Sec. 9, the Curie points and critical exponents y
of the sc (1,2) and fcc (1,2) spin--,' Heisenberg models
were estimated. The evidence, which was particularly
convincing for fcc (1,2), suggested that for both these
models the exact value of p is again very probably 183.

In discussing our results, we turn first to the nearest-
neighbor classical Heisenberg ferromagnet and to vari-
ous of the existing equalities' '" and inequalities""
which connect the critical exponents. Using these it is
possible with our present information to indulge in
considerable speculation, but we are content to present
some of the apparently more important points. (Al-
though strictly the following remarks are for spin
infinity and the fcc lattice with only nearest-neighbor
interactions, arguments advanced later suggest that
they may be of wider relevance. )

Actually we have already used relations of the type
mentioned, for in deriving our values for u and q in
Sec. 6 we employed the formula pi= (t+2—rl) v for t= 0
and 1=2. Our estimates satisfy the Josephson inequality
dv &~ 2—o.,

4' and also include values satisfying the
stronger inequality de~& 2—n, and the scaling law
de=2 —o, ' Now, the scaling laws imply that the
critical exponents are symmetrical about the transition,
and such synimetry is apparently not a general property
of the Heisenberg model. In this connection, Fisher' has
discussed some dBBculties arising when y' is undefined.
Although difhculties of the above type occur for the
nearest-neighbor spherical model, 44 the scaling relations
n,+2P+y=2, y=P(8 —1), and 2h=y+2 —n, involving
the high-temperature critical exponents o.„y,and 6 are

'2 C. Domb, Ann. Acad. Sci. Fennicae A VI, 210, 167 (1966).
4'S. D. Josephson, Proc. Phys. Soc. t,'London) 92, 276 {1967).
44 p, H, Berlin and M. Kac, Phys. Rev. S6, 821 (1952l.

still satisled with n, = —1. It seems, therefore, that, the
results

82xpx sr

4-', & &&5,

3~~' ~&26~&3-,')

(10.1)

(10.2)

(10.3)

obtained by using our values in these equations, may
have some relevance. The result (10.1) suggests that p
is greater than» which is a value sometimes con-
sidered. " For a numerical investigation of the gap
exponent 2A in the case of the spin-~~ Heisenberg model
see Baker et al."

Turning to the simple classical Heisenberg anti-
ferromagnet, it seems logical in the spirit of the work
of Fisher, ' to investigate the possibility of an algebraic
connection between e and n or n, . It is therefore interest-
ing that the numerical work of Secs. 4 and 7 allows,
among others, the possibilities e=o.=0 and
=rr, &~

—r's. (There is, however, some rather inconclu-
sive evidence that for the bcc lattice e&~ 0.)

We have found it to be probable that, for classical
Heisenberg interactions, the equivalent-neighbor bcc
(1,2), sc (1,2), and fcc (1,2) models have the same
common value of p, namely, 18, as do the nearest-
neighbor sc, bcc, and fcc models. This result is not un-
expected since similar behavior appears to be the case
for the spin--', Ising model. ' "We are naturally led to
expect that p=1-', may well be the exact result for all
equivalent-neighbor classical Heisenberg models of
finite order (including nearest-neighbor ones).

The evidence for y=1~ in the case of certain spin-~
equivalent-neighbor Heisenberg models of order two is
rather good. This requires further consideration since
Baker et al." give y=1.43+0.01 for the three cubic
lattices with nearest-neighbor spin--, Heisenberg inter-
actions. In the light of the previous paragraph, we feel
reluctant to accept that for the spin--', Heisenberg
model the value of y is not the same for nearest-neighbor
models and equivalent-neighbor models of order two.

Now, for the spin-& Heisenberg model the nearest-
neighbor susceptibility series" do not yield convergence
comparable to that found in Sec. 9 of this paper for the
equivalent-neighbor series. Consequently, as regards p,
we feel that the value 1.43 given in the former case is,
despite the relatively long series available there, less
firmly established than the value 1.375 in the latter
case. In fact, a study of the results of Baker et al."and
a detailed ratio analysis shows that, while the estimate
y= 1.43 is perhaps the most reasonable, the possibility
that y=18 cannot be ignored for nearest-neighbor
models.

We therefore suggest that y=1~ for all equivalent-
neighbor spin--, Heisenberg models of finite order (in-
cluding nearest-neighbor ones) must be seriously con-
sidered. Furthermore, if p= 18 for the extreme quantum
limit of spin ~, as well as the classical limit of infinite
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spin, it seems rather unlikely that a diferent value will

apply for intermediate spin. The early work of Gammel
et aL' for general spin provides some evidence (see
particularly their Table 5) to support this idea. This
leads to the possibility that for ferromagnetic Heisen-
berg interactions, the critical exponent y has the same
value irrespective of spin and the particular three-
dimensional nearest-neighbor or fj.nite-order equivalent-
neighbor model considered. " Additional terms of the
spin--, equivalent-neighbor series would provide a useful

4'This naturally suggests the similar behavior of other critical
exponents. In the absence of detailed numerical evidence the
assumption of such behavior might prove useful.

means of testing this suggestion more thoroughly. The
calculation of the required lattice constants' can be
handled by electronic computer and it is hoped to
extend the equivalent-neighbor series as far as the
nearest-neighbor ones.
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The irreducible corepresentations of the Shubnikov (magnetic) space group of ordered CoO (C,2/c) have
been deduced, and the magnon symmetries at various points in the Brillouin zone have been investigated.
The antiferromagnetic resonance frequencies in CoO have been determined experimentally to be at, 216.0,
221.0, and 248.0 cm ' (each +0.2+~). These results are compared with the neutron-scattering results and

postulated magnon dispersion relations of Samurai, Buyers, Cowley, and Dolling. It is suggested that the
exchange constants J& and J~ are about one order of magnitude smaller than previously assumed.

1. INTRODUCTION

A T high temperatures CoO assumes the NaCI struc-

ture. Below its Neel temperature antiferromag-

netic CoO suffers a small tetragonal distortion and both

a single-spin-axis structure and a multi-spin-axis struc-

ture have been proposed for the orientations of the spins.

Antiferromagnetic resonance frequencies for CoO were

calculated by Tachiki' and some experimental work has

been done by Milward. ' Neutron-scattering measure-

ments have recently been performed both above and

below the Neel temperature by Sakurai et al.'

distortion. According to Shull et a/. 4 and Roth' the spins
are aligned in ferromagnetic sheets parallel to (111)
planes with alternate signs in successive sheets. The
actual spin. direction was claimed to be in the t 11/1
direction and therefore at an angle of 11'30' to the
s axis. ' lt is clear that such an orientation of the spins is
not compatible with the retention of tetragonal sym-
metry, and an alternative multi-spin-axis structure for

g. COREPRESENTATIONS OF ANTIFERRO-
MAGNETIC CoO STRUCTURE

In its paramagnetic state CoO assumes the' NaCl

structure so that the Co'+ ions form a fcc lattice. (See

Fig. 1.) There have been two alternative suggestions

concerning the arrangement of the spins in CoO at low

temperatures. Below the Neel temperatures CoO is no

longer exactly cubic but acquires a small tetragonal

*Present address: Westinghouse Electric Corp. , Research
Laboratories, Churchill Borough, Pittsburgh, Pa. 15235.
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FIG 1 The structure of paramagnetic Coo (Nacl structure)
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