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Numerical calculations of quantum-mechanical time correlation functions are reported for finite Heisen-
berg linear chains containing up to 10 spin-} particles. The results, obtained by manipulation of eigenvalues
and eigenfunctions, give Fourier transforms in histogram form. Two-spin correlation functions show a
sharp rise near zero frequency and highly non-Gaussian behavior at infinite temperature. The short-time
behavior is estimated and compared with classical calculations and other theories. Four-spin functions are
calculated and compared with results of a simple decoupling approximation. Spatial Fourier transforms of
two-spin functions as needed for neutron scattering cross sections are computed. These are limited to
fairly short wavelengths by the finiteness of the system. The temperature dependence of two-spin functions
shows a decrease in the near-zero frequency component with decreasing temperature. Computed correlation
functions are used to predict the frequency dependence of the ESR linewidth in the linear-chain
salt Cu(NHj3)4SO4- H,0, and comparison is made with experiment. Very good agreement is found using the
same exchange constant J as inferred from specific-heat and magnetic-susceptibility data. The Gaussian
approximation, on the other hand, is in extremely poor agreement.

I. INTRODUCTION

ROPERTIES of the Heisenberg linear chain have
received considerable attention in recent years.
The linear chain Hamiltonian for N particles given by

N
Hex=2J > Si-Siya, 1)

1=l

where J is the isotropic exchange interaction coupling
nearest-neighbor spins S; and S;;; on lattice sites 7 and
1+1, respectively, has been solved exactly in the limit
N — o for the antiferromagnetic (J>0) ground-state
energy.l~* With high-speed computers it has been
possible® to obtain eigenvalues for closed (Sy;1=S:)
chains containing up to N =11 spin-} particles. Bonner
and Fisher® have made a particularly thorough investi-
gation of thermodynamic properties in finite chains
and showed that the ground-state energy versus N
extrapolates to within 0.19) of the correct value for
N=o0,

The Heisenberg linear chain has more than mathe-
matical interest since there exist paramagnetic salts
which exhibit magnetic properties which can nearly
be described by (1). This occurs as a result of magnetic
ions being arranged in linear chains parallel to a fixed
crystal direction and with intrachain exchange inter-
actions very much greater than interchain coupling,
as illustrated in Fig. 1. One of the best documented
linear chain materials is Cu(NH;),SO,-H,O (referred
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to hereafter as CTS). Griffiths” has applied Bonner and
Fisher’s results to CTS and showed that its specific
heat and magnetic susceptibility conform to a linear
chain with J/k=3.15°K (k is Boltzmann’s constant).

Although static (thermodynamic) properties have
been computed for finite linear chains, no such com-
putation of time-dependent properties had been
performed prior to this work in which we have treated
closed chains with N=10 and fewer and open chains
with N=9 and fewer. The time-dependent quantities
of interest here are two-spin and four-spin correlation
functions (S;*(£)S;#(0)) and (S;*(£)S;#(£)S:* (0)S:# (0)),
where .S;%(¢) is the ath component of the spin at lattice
site 7 at time ¢ and the triangular brackets stand for
thermal average. These quantities are directly related
to neutron scattering cross sections and exchange-
narrowed magnetic resonance so that in principle there
could be as much experimental interest in time cor-
relation functions as in static correlations. Neutron
scattering provides the most direct measurement of
two-spin time-correlation functions since the differential
scattering cross section is given by?:*?

do/dQde o< Y i di(Sis () -S;1(0))eeteirwii, (2)

s/ J—wo

where do/dQdw is the cross section for scattering with
a change of neutron momentum 7%q and energy #w,
and S, is the component of S; perpendicular to q. To
our knowledge, though, no experiments have as yet
been performed on linear chain systems which would
serve as a detailed test for the correlation functions
calculated here.

Exchange-narrowed magnetic-resonance linewidth is

7 R. B. Griffiths, Phys. Rev. 135, A659 (1964).

8 L. Van Hove, Phys. Rev. 95, 1374 (1954).

®P. G. de Gennes, in Magnetism, edited by G. T. Rado and
H. Suhl (Academic Press Inc. New York, 1963), Vol. III, p. 115.
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Fic. 1. Cu(NH;)4S04-H,0 (CTS) lattice. One half the ortho-
rhombic unit cell is shown together with position of Cu*t ions
(). Superexchange through intermediate ions (not shown) is be-
lieved to give rise to J>>J', where J is exchange interaction be-
tween nearest neighbor Cu'* ions on a given chain parallel to ¢
axis and J’ is the interchain coupling. Lattice of Cu™* ions is
orthgrhorpbic C with constants a, b, ¢c. a=7.07 &, b=12.12 4,
¢=10.16 A.

related! to combinations of four-spin time-correlation
functions for the most common case of broadening due
to dipolar interactions. Precise formulas are given in
Sec. IV. Although the relationship between linewidth
and correlation functions is not as simple as in the
neutron case (2), it is possible to predict frequency
dependence of linewidth in linear chain materials from
our results; and experimental data do exist'l'?? with
which comparison can be made. As shown in Sec. IV
and discussed in a previous publication,? agreement
between theory and experiment on this point is entirely
satisfactory.

An original motivation for undertaking this work
was the lack of agreement for CTS between experiment!
and the Gaussian approximation for time-correlation
functions. By Gaussian approximation we mean the
following: The general time correlation function
(A4 (f)B(0)) may be expanded in powers of ¢ according to

(A()B0))=(A4B)+32(3e[5e,ATIB)+---, (3)

in which time dependence of 4 is given in the Heisen-
berg picture by

A (t) = @iICtIh 4 g—iOCtI% , (4)

and we have assumed the linear term in ¢ to vanish
(as it does at infinite temperature for the spin operators
of interest here). In practice it is exceedingly difficult to
carry the expansion in (3) beyond terms in #; so some
analytic form for (4 (£)B(0)) must be assumed in order
to perform Fourier frequency transforms. Gaussian
decay has received the most attention!®!® whereby (3)
is written as

(A()B(0))={AB)e-we*2 (5a)
with

wer=—([3¢,[5¢,A11B)/{AB). (5b)

Equations (5), of course, in no way prove the decay to
be Gaussian; they merely say that if the form is Gaus-
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1953).
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sian then the single parameter w, is uniquely deter-
mined. It may be argued that if the short-time expan-
sion (3) has any meaning, then the correlation can be
expected to decay with a characteristic time close to
ws! even though the function may not be precisely
Gaussian.

Application of the above reasoning to CTS gives a
frequency dependence of electron-spin-resonance line-
width characterized by w.. That is, when the resonance
angular frequency w equals w,, the linewidth should be
roughly halfway between its values for w— 0 and
w—> . Analysis of data in this manner together with
an appropriate relation between w, and J which may
be derived from (1) and (3) lead Rogers ef all' to
conclude J/k=0.5°K for CTS, whereas specific heat
and susceptibility data’ suggest J/k=3.15°K; so a
serious discrepancy was apparent for the linear chain
system, and it was clearly of interest to see whether
exact calculations could resolve the difficulty. An
affirmative answer definitely seems to have been ob-
tained, as we show here and elsewhere.’? For three-
dimensional systems, the Gaussian approximation
seems to be at least roughly correct since measurements
on frequency dependence of linewidth!® in such
substances give values of J in reasonable agreement
with specific heat and susceptibility studies.

Recent attempts have been made by various authors
to improve upon the crude -Gaussian approximation
(5). However, it seems that although general integro-
differential equations may be derived, a Gaussian or
similar assumption must be invoked at some stage of
the calculation in order to obtain even approximate
solutions.!'” The approach here is basically different
in that an exact ab imitio calculation is made of
(A(®)B(0)) starting from the quantum-mechanical
definition (4)

<A (OB (0>>= > Auvaueiw’"th (6)
uy
where
ho,=E,—LE,, @)
and
Pu=e EulkT /Y o= BubT (8)

in which £, is the energy of the eigenstate ®, of the
Hamiltonian and 4,, is the matrix element (®,] 4| ®,).
It is possible to get a meaningful description of, for
example, (S;%(£)S:#(0)) from (6) for finite closed chains
containing six or more spins because we expect at high
temperatures a cluster of spins containing up to third
nearest neighbors of the spin of interest to give a
reasonable approximation. A cluster containing up to

( “A). J. Henderson and R. N. Rogers, Phys. Rev. 152, 218
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Phys. Rev. 146, 244 (1966).
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17 M. De Leener and P. Resibois, Phys. Rev. 152, 318 (1966).
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third nearest neighbors would contain a prohibitive
number of spins for two- and three-dimensional lattices;
so our methods seem to be restricted to linear chains,
at least with present day computers.

An exact numerical calculation is also useful from a
general theoretical standpoint since it can be an aid
in evaluating various approximations. Wherever pos-
sible, we therefore compare our results with published
theories of time dependence in Heisenberg paramagnets,
as well as with experiment.

A major computational difference between this work
and previous studies of finite linear chains is that here
eigenfunctions are necessary as well as eigenvalues.
Thermodynamic properties, of course, require only
eigenvalues.

An outline of this paper is as follows. Calculation
procedures are discussed in Sec. II. Results are pre-
sented and discussed in Sec. III under the subheadings
(A) Density of States, (B) Two-Spin Correlation
Functions, (C) Wave-Vector Representation of Two-
Spin Correlations [i.e., formulation appropriate to
neutron-scattering cross sections (2)7], (D) Four-Spin-
Correlation Functions and Decoupling, and (E) Tem-
perature Dependence. The results of Sec. IIT are
applied in Sec. IV to a detailed calculation of frequency
dependence of electron-spin-resonance linewidth in
CTS. Section V contains a summary and conclusions.
In the Appendix a derivation is given of a numerical
notation for the basis functions whereby it is possible
to have the computer generate the states and matrix
elements. This method eliminates all tedious hand
calculations preliminary to matrix diagonalization by
the computer.

II. CALCULATION

Computation of eigenvalues and eigenfunctions
associated with the Hamiltonian (1) for closed chains
is performed in a manner similar to that discussed in
Refs. 5 and 6. As in these references, the original
2VX2¥ matrix is reduced to considerably smaller
diagonal blocks by using eigenfunctions of the total
z component of spin S, and combinations of the trans-
lation operator 7 (see the Appendix). A further re-
duction is possible for states with S,=0 since then a
rotation operator R which reverses direction of each
spin may be used. (Obviously, R commutes with S,
only for S.=0, so it is useful only in this case.) Since
eigenvalues of 7 are complex, we have found it necessary
to work too with eigenfunctions!® of 7+7* in order to
obtain real, symmetric matrices for which subroutines
exist for eigenfunctions and eigenvalues. The largest
matrix which need be diagonalized for N=10 is then
44X44.

Open chains of up to nine spins have also been
considered. Here translational invariance is lost, so

18 Details of use of the translation operator and other features
of the calculation may be found in F. Carboni, Ph.D. thesis,
University of Kansas, 1967 (unpublished).
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the matrices are much larger. Reflection symmetry
about the midpoint can be used, however, to reduce
the order of a given S, matrix by about a factor of 2.
In this way the largest matrix to be diagonalized for
N=91is 66X 66.

The limiting factor on the number of spins treated is
the manipulation required by (6) rather than matrix
diagonalization. This is because an individual spin
component S;* does not commute with the translation
operator, so that (®,|.5;%|®,) is in general nonzero even
if ®, and &, are eigenfunctions with different eigen-
values of 7. Thus the full matrix for a given S,, which
is as large as 252X 252 for N=10, must be considered
in computing-time correlations.

A novel feature of the calculation is use of a numerical
notation for the basis functions. This method, described
in the Appendix, allows the computer to generate the
basis functions for a given S, from eigenfunctions of 7,
and take matrix elements of JCe or any other set of
spin operators. Tedious hand calculation of matrix
elements is completely eliminated in this way, and with
our program essentially the only input datum is the
number of spins on the chain.

Eigenvalues and eigenfunctions were checked and
found to agree with results of previous workers®®
wherever comparison was possible. Time correlations
were checked as described in Sec. III.

Most calculations were performed on an IBM 7040.
Results for 10 spins and open chains were obtained with
a GE 625 which became available after the bulk of this
work was completed. An idea of the relative difficulties
of diagonalization and computation of correlation
functions may be obtained from the fact that eigen-
functions and eigenvalues were computed for up to
N=11 on the IBM 7040; but only with the much faster
and larger core GE 625 was it feasible to calculate time-
correlation functions for V=10 (running time 6 h, not
including time for diagonalization) and N =11 was felt
to be out of the question even with this machine.

III. RESULTS AND DISCUSSION

Results are in the form of histograms for the Fourier
transform of a given time-correlation function defined
as follows: In the basic expression (6) we collect all
terms w,, which lie in the interval

wp—3Aw<Lw,<w,+3iAw,

so that we define

B 1
J@)=—3 AuByuPut (@pw—wn), )
Aw By
where
g‘(wuv_wn)=1 if wn—%Awaw<w"+%Aw

(10)

Values of interval centers w, are chosen so that the

=0 otherwise.
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Fi16. 2. Density of states p(w) for closed chain of 9 spins. Solid
curve is (J/h)p(w) 5.6X103 exp(—w?/Q?) with Q=57/%. e,
Aw=0.37/%; *, Aw=0.6] /%.

nth interval is centered at #Aw with n=0, &1, &2 - -,
The quantity f(w,) is then related to the continuous
function (assuming a continuous distribution of fre-
quencies) f(w) by

1 wntAw/2

f(‘*’n)z_

WJ wp—Aw/2

fw)de. (11)

We shall henceforth not make a sharp distinction
between f(w,) and f(w) but often refer simply to f(w)
with the understanding that f(w,), the average of f(w)
within a given interval, is the quantity actually
calculated.

A check on validity of the f(w,) is that if

00

A@OBO)= | dof(w)e™,

—

(12)
then

(4B)= dwf (@)= Z Fn)Aw.

—o0

(13)

Since (4B) is readily obtained, at least at infinite
temperature, Eq. (13) provides a convenient test to
which all calculated f(w,) were subjected. Agreement
was obtained to within four significant figures.

Choice of the interval Aw is governed by considering
that if Aw is too small irregular oscillations appear due
to the discrete nature of the calculations, while if Aw
is too large, information as to frequency dependence is
lost. It was found that at infinite temperature
Aw=0.87/% gave histograms through which reasonably
smooth curves could be drawn for chains with N >6.
In some cases we also present results for narrower
intervals. At lower temperatures several oscillations
occur even with Aw=0.87/%, and we have much less
confidence that the low-temperature results are repre-
sentative of the infinite chain [see (E) of this section].
For this reason most of the discussion will be limited to
infinite temperature. Unless stated otherwise, all results
presented below are for infinite temperature and closed
chains.
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A. Density of States
The density of states p(w) is defined by
p(w)——~ 2 S (ow—w), (14)

Aw

so that it represents the average number of states
within the interval Aw. It is shown in Fig. 2 both for
Aw=0.37/#% and Aw=0.6J/% with N=9. The smoothing
effect of interval widening is apparent. A Gaussian

p(w)=p(0)e"/%" (15)

with Q=57J/# gives a good fit. This is particularly
interesting in view of the steep rise near zero frequency
exhibited by the correlation functions [Sec. (B)]. It
means that any divergence of a correlation function
near zero frequency must be associated with the matrix
elements themselves being heavily weighted in favor
of zero-frequency transitions rather than an anomaly
in the density of states.

B. Two-Spin Correlation Functions

Two-spin correlations are given by the function
fi(w) defined by

SENSiw# )= |  dofi(w)et.
Plots of fij(w) for j=0-4 are shown in Figs. 3 and 4
for N=10. A histogram is presented in Fig. 3 while,
for simplicity, the other figures show points taken at
interval centers. The function f;(w) passes through
zero j times. This feature is readily understood from
the short-time behavior. At infinite temperature we
have

0

(16)

+7(0)) =0 forn<yj,

t=0

so that the moments

/ w? fi(w)dw=0 forn<j,

and, hence, as j increases the number of zeros of f;(w)
must increase so as to accommodate more zero moments.

102 (J/Wfofe)

he/d

Fic. 3. Histogram of two-spin self-correlation function
fo(w) for closed chain, N =10.
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The most noteworthy feature is that all f;(w) show
a sharp rise near zero frequency. Fernandez and Gersch®®
have suggested that all f;(w) should diverge at least
logarithmically as w — O for a one-dimensional Heisen-
berg linear chain, and Griffiths® has demonstrated
logarithmic divergence for a linear chain in which
interaction is between transverse components of spin
(X-Y model) only. If (S:#(#)S:#) is spatially Fourier-
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F16. 4. Two-spin correlation functions f;(w) for j=1 (nearest
neighbors) to j=4 (fourth nearest neighbors). Closed chain,
N=10. Points are taken at centers of histogram intervals for
same frequency intervals as shown in Fig. 3. Points for interval
centered at 0.1J/% are not displayed. Their values on vertical
scale are as given below: (a) fi(w); point at 0.1J/%2=17.8, (b)
f2(w); point at 0.17/%=6.2, (c) fs(w); point at 0.17/%2=35.1,
(d) fa(w); point at 0.17/%=4.5.

1 J. F. Fernandez and H. A. Gersch Phys, Rev. 172, 341 (1968).
W R. B. Griffiths (private communication).
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Fic. §. Self-correlation function fo(w) extrapolated to N= .
Horizontal lines represent width of frequency interval. e, extrap-
olation for closed chains; *, extrapolation for open chains. Where
only e is shown, difference between open and closed chain extrap-
olations is too small to show on graph. Solid line is (J/%) fo(w)
=0.04[1—7%w/5.28J]. Dashed curve is meant only as aid to the
eye.

analyzed according to

(S#()S#)=N"1Z (S ()5 (a7

with

SP=N-12Y ¢iewiS, (18)

and it is assumed that long-wavelength modes obey a
diffusion equation, then an w2 divergence results.
Any divergence less severe than «™! satisfies the sum
rule

/ " o) =1 (19)

—00

so diffusive modes in the linear chain are allowable.
No divergence is expected in three dimensions on the
basis of this argument. Our computed f;(w) strongly
suggest a divergence as w— 0, but the intervals Aw
are far too ‘“‘coarse grained” for us to say anything
about the nature of the divergence or even, in fact,
whether or not a true divergence exists.

The self-correlation function (S;*(£)S;#(0)), whose
transform is fo(w), is of particular interest. It is likely
to be the function for which finite-chain calculations
give the most reasonable extrapolation to N= = since
it involves shorter-range correlations. Also, among the
two-spin correlation functions, it is the only one which
is nonzero at ¢=0 (for infinite temperature) and thus
the only one for which a Gaussian approximation might
make any sense. We have therefore paid special atten-
tion to fo(w) and made an extrapolation to N= o in
the following manner. For each frequency interval we
plot f(w) versus some power of 1/N for N=6-10.
with closed chains and N=6-9 with open chains [for
open chains ¢ in S;# is taken to be 3V for NV even and
$(N+1) for N odd]. This is similar to the method used
by Bonner and Fisher for showing that the known
antiferromagnetic ground-state energy can be extrap-
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F16. 6. Self-correlation function fo(w) in interval 0.67/%<w
<1.4J/% for varying N, as shown by numbers in vicinity of
points. @, closed chains; ¥, open chains. This is a particularly
good example of where a reliable extrapolation can seem to be
made because—apart from N =7—there is a general upward
trend for closed chains and downward trend for open chains; and
these trends can be extrapolated to a common point at 1/N¥ =0,
as given by intersecting lines.

olated too from finite-chain calculations. They found
a plot versus 1/N? to give a straight line. In our case,
a plot versus 1/N* yields the closest to a straight line
in most cases. Extrapolation is, of course, based on the
premise that nothing catastrophic occurs beyond N =10
to change completely the trend with increasing N.
Since the temperature is infinite and this is a one-
dimensional system, we are doubly insured against
long-range order effects and therefore expect extrap-
olations to be reasonable. For the worst cases con-
sidered, there is no more than a 109, deviation between
the extrapolated value and the point for the maximum
N calculated.

Separate extrapolations were made for open and
closed chains. In general the open chains showed
smaller variation with V than closed chains. Figure 5
gives the resulting fo(w) extrapolated to N= . Only
for the lowest-frequency interval, centered at 0.1J/%,
is the difference between open- and closed-chain
extrapolations significant. Two extrapolation curves
are given in Figs. 6 and 7. These represent, respectively,
the best and worst examples in terms of a regular
variation with V.

For w>J/# a triangular distribution 0.04(J/%)1
X (1—%hw/5.287) is a satisfactory fit as shown by the
straight line in Fig. 5. The complete curve fo(w) is
then described by this distribution plus a function
which diverges as w — 0 at a rate faster than or equal
to In(1/w) but slower than 1/w and which goes to zero

for wSJ/h. Calling this divergent function 5(w), we
have

Folw)=0.04(J/ )11 — hw/5.287)4n(w), «@<5.287/%.
=0, w>5.287/h. (20)

The cut off in the vicinity of 5J/#% is particularly
striking. We are fairly confident that it is not due to the
finiteness of the system since the cutoff interval is
independent of N for N>6. This feature rules out a
Gaussian behavior even for high frequencies. The
Fourier transform of (20) gives [ fo(—w)= fo(w) at
infinite temperature ]
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(S#(0)S:#(0))=0.16 (o1 /J)[sin? (3wit) /w:?]
+0.0388%(8), (21)
where w;=25.287/# and k(f) is unity at ¢=0 and goes
to zero as t— « at a rate ! or slower. The constant
0.0388 is chosen to make (S:#(¥)S;*(0))=% at {=0.
The second derivative of the first term in (21) is 0.98.72
at ¢=0 which is very close to the exact value J2. Thus
for short times, it is reasonable to use (21) with z(H)=1
since most of the variation comes from the first term.
This, of course, is consistent with the idea that 7(w)
in (20) should be negligible except for wZJ/%. A plot
of (21) with 4(¢#)=1 is shown as curve (e) in Fig. 8.
Windsor?® has calculated correlation functions for
linear chains of 4000 classical spins and times up to
t=6#7/2JS. He has pointed out?® that in order to
compare his classical results with our quantum-
mechanical ones for S=1, it is proper to take S=4V3
in his figures. This choice makes S?=4%, the quantum-
mechanical value for S-S. His curve for {(5;%(#)S:2(0)),
taking S=2V3, is shown as (b) in Fig. 8 and is seen to
agree very well with our short-time behavior. He
has also estimated the Fourier transform*® of
(S:2()S:%(0)) and finds it to be triangular for w>2JS/%
with, apart from a small tail, a cutoff at 5.37J/% (for
S=1%V3) in close agreement with our figure 5.287/%.
De Leener and Resibois?” have also estimated short-
time behavior of (S:#(¢)S:%(0)) by making approxima-
tions to their general theory. Their result is curve (c)
of Fig. 8 and is seen to be in good agreement only for
Ji/£20.8. In particular, they find it to pass through
zero where no such behavior is indicated in our results
or in Windsor’s. It should be mentioned that they
claim accuracy only for systems in which the number
of exchange-coupled neighbors is large; so the linear
chain is by no means a fair test of their methods.

15
B 7
~ 13k :
{ .
2. - L3
2 . . 6
€ nk .
> . 8
S Lo
1 1 1 1 1 1 1 1
o 1 5
ao/Ny*

Fi1c. 7. Self-correlation function fo(w) in interval 0<w<0.2J/%
for varying N, as shown by numbers in vicinity of points. e,
closed chains; *, open chains. Points at 1/N =0 are extrapolated
values. This figure represents probably the worst case studied in
terms of irregular behavior with IV and difference between open
and closed chain extrapolations.

21 (a) C. G. Windsor (private communication). (b) Windsor
obtains Fourier transform by assuming (S:#*()S:*(0)) to be pro-
portional to sin(x¢/t)/(xt/t) for >t with ¢ =6%/2JS. Behavior
of (S:#(¢)S#(0)) for long times is not expected to alter critically
the high-frequency part of the Fourier transform, upon which we
base our comparison.
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C. Wave-Vector Representation of
Two-Spin Correlations

The spatial Fourier transform of two-spin time-

correlation functions is pertinent to neutron scattering
(2). We define F,(w) by

filw)=N712 Fo(w)e i, (22)

where @ is the lattice constant. Periodic boundary
conditions and translational invariance restrict us to

ga=2mn/N (r=0,1,2,---,N—1) (23)
and lead to the relation
N
Fyw)=% fi(w)eir. (24)

=0

There are $(V-+1) different f;j(w) for N odd and 3N
different f;(w) for NV even since finx(w)= fi{w)= f—i(w)
for the closed chain. We see from (23) that it is not
possible to get anything approaching long wavelengths
(gak1) for the finite chains considered here. This is
unfortunate since a good deal of theoretical work has
focused on the long-wavelength limit and calculation
of diffusion coefficients in this limit. The usual argu-
ment!622.2 ig that the diffusive character of F,(w)
becomes important when

(we)/ (w3,
where

(wg?)y= i F o (0)w dw / /~ Z Fq(w)dw

—00

is the 2nth moment and 3 is the Gaussian ratio. For
a linear chain of spin-} particles the general expres-
sion2* reduces to

(0g")/(wg)*=4[(1—cosga)™'+3]. (25)

Fic. 8. Short-time behavior of (S,(#).S:#(0)). Curve (a)
Eq. (21) with A@¢)=1; curve (b) Windsor’s results
(Ref. 21) for linear chain of classical spins and .S=4V3 as explained
i& text ';l)curve (c) — — — theory of De Leener and Resibois

ef. 17).

2 P. G. De Gennes, J. Phys. Chem. Solids 4, 223 (1958).

2 H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
27, 529 (1962).

2 M. F. Collins and W. Marshall, Proc. Phys. Soc. (London)
92, 390 (1967).
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9

F16. 9. Spatial Fourier transform
F,(w) of two-spin correlation func-
tions. Closed chain, N=9. Values of
ga are 2n7/9, n=1, 2, 3, 4, as indi-
cated on figure. Solid curve for 27/9 3 [
is 8.5 exp[ — (fiw/1.34J)%].

80(d/h) Flw)
<

f\w/\j

The smallest allowable ga for our finite chains is 1527
which gives {w.%)/{w2)?=4.1; so at best we can get a
ratio only about 309, higher than Gaussian. In fact,
for all but the lowest nonzero ¢a, our ratios are less
than the Gaussian limit.

Figure 9 shows F,(w) for N=9. At qa=§2m, F (w)
is closely fitted by a Gaussian. This may not be too
surprising since (w,%)/{(w2)?=3.64 in this case which
is not too far from the Gaussian value. Other F,(w)
show a moderate peak at some nonzero w followed by
a rapid falloff. An essential postulate in the proof of
Fernandez and Gersch® on divergence of fj(w— 0) is
that F,(w) be a monotonically decreasing function of
w. This is certainly not the case for ga>$4r. However,
in their theory, divergence of f;(w— 0) is associated
with the long-wavelength behavior of F,(w), and there
is nothing in our results to suggest (or deny) non-
monotonic peculiarities as ¢ — 0.

A striking difference between F,(w) and fi(w) is
that the former appears to be perfectly well behaved
near w=0 for the ¢’s studied here. Because of this, it
is possible to make reasonable estimates of F,(0) from
the moments (wg2"), whereas such a procedure is not
possible for f;(0).

D. Four-Spin Correlation Functions and Decoupling

Four-spin correlation functions are necessary for
consideration of magnetic-resonance linewidth due to
dipolar broadening. The Fourier transform of
(S#(0)Si117(#)S:2(0)S:112(0)) is shown in Fig. 10 for
N=9. We note the following features. First, there is
an apparent divergence at w=0 just as in the two-spin
case. The two-spin divergence, however, is transparent
from examination of the ¢— 0 wave-vector com-
ponents®® while the four-spin divergence is not, as we
now demonstrate. Let K, be given by

K,=N-12Y 578,17, (26)
j

Then we may write
(Si#(DSi42*()S:#(0)S:41*(0))
=N (K (DK-(0)), (27)
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Fi16. 10. Four-spin correlation function and decoupling approxi-
mation. Closed chain, N=9. Solid curve (a) is Fourier transform
of (S:2(8)Si11?(#)S:#(0)S:412(0)). Dashed curve (b) is decoupling
approximation to this function, as explained in text.

where we have noted from translational invariance that

Si#Sip*=N"12 Y K e t0i (28)
q

and (K ,()K (0))=0 unless ¢'= —g¢, since
G ONRUON (O

is a function only of 7— j. If K, is a constant of the
motion, then we might expect a divergence at w=0
in the Fourier transform of /dg(K,({)K_,), at least
in one dimension where the long-wavelength modes
contribute strongly to the integral. Such is the case
for the two-spin correlations since the total spin is a con-
stant of the motion. But K does not commute with the
exchange Hamiltonian (1) as is readily verified. Since
the proof of Ferandez and Gersch® makes use of the
¢=0 mode having an infinite lifetime, it is not appli-
cable here. Thus, although Fig. 10 is as suggestive of
a divergence at w=0 as are Figs. 3 and 4, there is no
obvious long-wavelength reason why a divergence
should occur, and perhaps some caution should be
exercised in claiming an infinity at w-— 0. Other
features of Fig. 10 are that the Fourier transform
extends to higher frequencies than for two-spin cor-
relations, and there is much less scatter in the points
corresponding to interval centers.

With exact four-spin-correlation functions it is
possible to examine the decoupling approximation

S#()Si1*(1)S#(0)S:11%(0)) = (S:2(£)S#(0))?
+(S:2()S:412(0))?

obtained from the general decoupling

(29)

(4BCD)=~(AB)(CD)+(AC)BD)+(4AD)(BC) (30)

of spin operators 4, B, C, and D which may be functions
of time. Such decouplings are the basis of many theo-
retical treatments. Bennett and Martin,® in particular,
employ forms similar to (29) in their calculation of the
diffusion coefficient at infinite temperature. If fix(w)
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is the Fourier transform of
(§:#(OSu#0))(S#()S:422(0))
then we have .
fa@)= | do'fi(") frl0—a"), ¢31)

—00

where f;(w’) and fi(w—w’) are defined by (16). Equa-
tion (29) and (31) are used together with the calculated
two-spin functions to produce curve (b) in Fig. 10,
which is the decoupling approximation to

(S()Si42*(1)S#(0)S:412(0)).

A zero-frequency divergence is not expected in fjx(w)
unless the individual f;(w) and fi(w) go to infinity at
a rate faster than or equal to w2 as w — 0. Although
the decoupling approximation is far from exact, it is
fairly reasonable for w2 J/%.

E. Temperature Dependence

Correlation functions have been computed as a
function of temperature for antiferromagnetic (J>0)
coupling since this is the case of experimental interest.
Figures 11 and 12 show temperature dependence of
fow), fi(@), and fo(w) for the interval —0.2J/A<w
<0.2J/% with N=9 and 10. Note that the curves for
N=9 and 10 have very different behavior for J/kT
$0.2. This is attributed to differences between even
and odd numbers of spins on the chain in the limit
T — 0. Referring to Eq. (9) we see first that at zero
frequency only degenerate states ®, and ®, contribute,
and secondly &, is restricted to the ground state at
T=0. For N even the antiferromagnetic ground state
®, is nondegenerate and (®,|S;?|Po)=0. Hence
fi{lw— 0) must go to zero as T goes to zero in even
chains. But in odd chains the antiferromagnetic ground
state is fourfold degenerate. Two of the degeneracies
are associated with S,=-1 while the other two come
from the fact that the translation operator = has a
complex eigenvalue so that eigenfunctions both of 7
and 7* can be formed. It is therefore possible to have

P
<
“°
S
L]
g o :
| | 1 1 1 L
0] ! 3 5 7

J/KT

Fic. 11. Temperature dependence of near zero-frequency com-
ponent fo(0,7) of self-correlation function normalized to its value
at infinite temperature, fo(0, ). Points are for interval —0.2J/
#<w<0.2J/#%. Closed chains e, N=9; *, N=10. Dashed curve
shows temperature dependence predicted by methods of moments
and is explained in text. Coupling is antiferromagnetic,
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nonzero (®,|S;?|®,) with &, and ®, ground-state wave
functions for NV odd, and f;(w — 0) need not vanish at
zero temperature. Calculations for J>£T (not shown
here) confirm this difference between odd and even
chains.

It is not, however, apparent to us why this zero-
temperature difference should begin to manifest itself
at temperatures as high as 5J/k. A similar difference
between odd and even chains occurs in the magnetic
susceptibility which, for obvious reasons, goes to
infinity in odd chains at 7’=0; but Bonner and Fisher®
find no significant difference between NV even and odd
for T2 J/k (see Fig. 14 of Ref. 6).

We thus are not able to draw any conclusions about
time correlations for temperatures below 5J/k and so
cannot discuss the region in which the linear chain
shows maxima in the specific heat and magnetic
susceptibility. It does seem safe to conclude that
filo— 0) initially decreases as the temperature is
lowered. For the self-correlation fo(w,7") this is in
agreement with Richards’ prediction?® based on the
Gaussian approximation and temperature dependence
of w, (5). According to this we should have

fO(O’T) _ <<[C‘C7['C‘C:Siz]:|siz>w>1/2=we(°°)
fo0,0)  \([oe,[50,S#T1S#) 2/ wu(T)’

where T and o stand for values of quantities calculated
at some finite temperature 7" and infinite temperature,
respectively. In (32) we have noted that (S:25:%) is
independent of temperature so that, in the Gaussian
approximation, all temperature dependence must be
due to the effective frequency w.. The quantity w.()/
wo(T), as taken from Ref. 25, is shown as the dashed
curve in Fig. 11. The variation is seen to be in the
same direction as our calculated results but is much
less pronounced. On a 1/T plot as given the initial slope
of fo(0,7)/f0(0,0) 1is about 4.5 times that of
we(®)/we(T).

Nearest- and next-nearest-neighbor correlation func-
tions fi(w) and f»(w) have similar temperature depen-
dence near zero frequency (Fig. 12). This is noteworthy
because the areas under fi(w) and fa(w), (S:%Ss+1%) and
(S#Ss427), respectively, each dncrease in magnitude
from zero as temperature is lowered and have different
signs. Furthermore, the rate of change of f,(0) with
temperature is almost identical to that of f,(0) and
only about 509, less than that of f1(0). All this is in
spite of the very different dependences of (S:%S:%),
(S:#S:i1%), and (S¢%S:12%) on temperature. (The latter
two static correlations are given in Fig. 12 while (5;25)
is constant.)

We conclude that for the linear chain there is no
evident relation between temperature dependences of
the near-zero-frequency part of f;(w) and the corre-
sponding integral over all frequencies (S:%S:;%).

(32)

% P, M. Richards, Phys. Rev. 142, 196 (1966).
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Fi1c. 12. Temperature dependence of nearest, fi, and next
nearest, fi, neighbor correlation functions normahzed to their
values af infinite temperature. Points are for interval —0.2J/
#<w<0.2J/%h. Closed chains @, N=9; =10. Curve (a):
f100,1)/ f1(0,%), curve (b): 720,7)/12(0, °°) For N=9 £1(0,T)
changes sign at low temperatures; hence the different behavior
with N for f1(0,7) and f4(0,7) (F1g 11). Static correlations are
also shown, normalized to their values at zero temperature (Ref.
6). Curve (c) (Si2Si41%)/(—0.15), curve (d): (S:*Siz2?)/(0.0625).
There is negligible difference between N=9 and N =10 for static
correlations in temperature range shown.

Recently Silbernagel et a1.26 have assumed temperature
dependence of f;(0) to be directly related to (S:%S:%)
in describing temperature variation of NMR relaxation.
Certainly our results negate their argument for the
linear chain. It may be, though, that for three-dimen-
sional systems, as they considered, such simple relations
exist; and the effects we calculate here are all due to the
divergence at w=0, which seems to become less severe
at lower temperature.

IV. MAGNETIC-RESONANCE LINEWIDTH

We now apply the infinite temperature results of
Sec. IIT to a calculation of frequency dependence of
electron-spin-resonance linewidth in the linear chain
salt CTS at infinite temperature. Exchange narrowing
is assumed throughout so that the line is taken to be
Lorentzian with a halfwidth at half maximum AH
given by

YAH = ($12(M.2)) / AL ()+E®eh], (33)

where v is the magnitude of the gyromagnetic ratio.
(For simplicity, we assume an isotropic gyromagnetic
ratio for CTS. The effects of anisotropy on frequency
dependence of AH are negligible.) M, is the total #
component of magnetization, and

g(@)=[3¢1(9), Mo+iM,]. (34)

In Eq. (34) 3¢, is the dipolar Hamiltonian and time
dependence is given by (4), but the Hamiltonian 3C
now includes a Zeeman part

5C=5Cax—’th,Ho (35)

26 B. G. Silbernagel, V. Jaccarino, P. Pincus, and J. H. Wernick,
Phys. Rev. Letters 20, 1091 (1968).

27 The notation used here most closely follows that of P. M.
Richards, Phys. Rev. 142, 189 (1966).
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for a field Hy in the negative z direction. It is convenient
to write 3C; as

2
JCy= Z G,

(36)
M=—2
where .
Gu(t)=eM'Gy (1) (37)
with .
GM (t) _ eiﬂCezl/hGMe—’iJCezt/h (38)
and wo="vH,. Similarly, we have
gN)=2 gar (et (39
M
in which )
gu(O)=[Gu(0), Mo+iM,]. (40)

At infinite temperature (gaf(#)gar)=0 unless M'=M
so that we can write

YAH =7 (202(M 2))? ZZ J (M),

M=—2

(41)

where

0

1
Ju(w)= P dte (gu’ (), (42)

) —eo

and we have assumed infinite temperature so that
Ju(w)=Ju(—w) and (@' ()a)={(Eu()gn'). Exami-
nation of the dipolar Hamiltonian gives the results!®

Jo(@)=2 FiOFu® fi(w), (43a)
ikl
J1(@)+T1(@)=10 3 FiOFu fim(w), (43b)
ikl
Ja(w) T 2(w)=4 2 Fii®PFu fipu(w),  (43c)
ik
where
F;ij®=—2~4202(3 cos?0;;— 1)r;;3, (44a)
Fi G = —3 22 sinf,; cosf;; eTieiir, 78 (44b)
Fij@& = — 34212 sin%0;; eT2ieiip; i3 (44¢)
F; &M =) (444d)

are the normal dipole factors with 6;; and ¢;; the polar
and azimuthal angles, respectively, the vector r;;
between lattice sites 7 and j makes with respect to the
z axis, and

0

1
fijkl (w) = 2— dt(S{*’ (t)Sj+ (If)Sk— (0)51— (0)>e—i°’t (45)

)

with S, &=5,7415;%. In (45) time dependence is given
solely by 3Cex, so the correlation function fijri(w) is
directly related to the quantities we have calculated.
For a rotationally invariant system—as is the case for
expectation values at infinite temperature—it may be
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shown that
(LS2(OSED+SEDS () ILS#*(0)S:7(0)
+S:T(0)S#(0)])
=6([S(O)S#()—3S:(1)-S;(1)]
X[S#*(0)S:2(0)—38:(0)-S:(0) 1)
= (SEMS#(1)S%T(0)S:7(0)). (46)

Thus all the four-spin dipolar correlation functions
may be reduced to fijxi(w), a fact which has been used
in Eqgs. (43).

It is important to realize that although the exchange
interaction is confined to spins within the same linear
chain, the dipolar interaction is fully three dimensional.
Hence the spins 7, 7, &, and I in

<Si+ (t)Sj+ (t)Sk_ (O)S I (O) >

do not necessarily belong to the same chain. There are
only two different nonzero possibilities: (1) ¢, 7, k, and
[ belong to the same chain. In this case four-spin cor-
relation functions similar to the one discussed in D of
Sec. IIT are used. We have restricted the computations
to cases where 7 is a neighbor of 7, and % is a neighbor
of /. Since the dipolar interaction falls off as ¢=* and
the correlations themselves decrease with distance,
this should be an adequate approximation. (Note that
we are concerned here with a one-dimensional dipolar
sum since ¢, 7, k, and [ are confined to the same chain,
and therefore rapid convergence is expected.) By
translational invariance we may express the calculated
four-spin correlation functions as

(SHHSH()S(0)S117(0))

in which 7 runs from 1 to 1(V+41) for N odd and from
1 to 3(V-+2) for N even in order to generate all the
possible different correlations on a closed chain of NV
spins. The function (S1t(#)Ss+(£)S;(0)S;41(0)) is not
in general simply related to {(S1?(£)S2*(£)S2(0)S412(0))
so a separate calculation has to be made of longitudinal
and transverse correlations. For j=1 it turns our that
the two functions are almost identical while for j>1
there is noticeable difference. However, the j=1 func-
tion is close to an order of magnitude larger than j>1
functions for all frequency intervals studied. (2) 7 and
k belong to one chain and ;7 and / to another chain.
Here time dependence of the pair z, £ is independent
of 4, I since different chains are involved; so an exact
decoupling

S (OSFOS(0)S(0))
=(SFOSK (0)XS (1S (0))

may be made. The quantity firi(w) is then given by

integration of the two-spin correlations fi—i(w”)

X fi—ilw—w’) in a manner analogous to (31). At
infinite temperature

(St ()SE(0)=2(S()Sx(0)),

(47)

(48)
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so that a separate calculation of transverse correlations
is not necessary. In some cases they were calculated
anyway to serve as a check on the program. Obviously
if < and / belong to one chain and ;7 and % to another,
Eq. (47) holds with % and !/ interchanged. All other
combinations give zero. For example, if 7 and ; belong
to one chain and % to / to another, then the function
decouples to (S:()SH(#))Sx(0)S(0))=0; and if
three indices belong to one chain and the fourth, say /,
belongs to another chain, then / may be decoupled to
give a result proportional to (S;=(0))=0.
Eq. (43a) thus may be written as

JO(“’)“‘ w3 | F;® | 2fijkl(w)
ikl

+8 2@ FijOF,® [ fii(@) fijlo—w)dw’, (49)

ikl o
where 3_;;u® means 7, 7, k, and / belong to the same
chain, and 7 is a neighbor of j and % is a neighbor of /,
according to our approximation discussed above, and
where 3 ;ix® means 7 and %k belong to one chain and
7 and 7 belong to a different chain. The coefficient 8
multiplying 31 ® is the result of a factor of 4 arising
from (48)—since fr—; and f_; are two-spin z-z cor-
relations—and a factor of 2 from the fact that an
identical sum is obtained for 7 and / on one chain and
j and & on another. Similar expressions are obtained
from (43b) and (43c).

Operations indicated by (49) and like equations from
(43b) and (43c) have been carried out for the CTS
lattice?® (Fig. 1) with N=6-9. For a given number of
spins on the chain, the summations are truncated by
the restriction that fy2 (V even) or fviny/2 (V odd)
is the maximum two-spin correlation which can be
computed for a closed chain of IV spins, and fy; is
similarly limited as discussed above. Calculations were
done both with H, along the ¢ axis and along the ¢ axis;
it being assumed that the magnetic linear chains are
in the direction of the ¢ axis. Frequency dependence is
essentially the same for the two cases, so only the a
axis results (for which comparison can be made with
experiment) are shown.

The resulting historgram, extrapolated to N= o, is
given in Fig. 13. For comparison with experiment, J/k
has been taken? to be 3.15°K as inferred from specific
heat and susceptibility data, and frequency is plotted
in GHz instead of units of J/% (when w=J/#, w/2w=66
X GHz). On the same figure are shown Rogers experi-
mental results!'*? at room temperature and the Gaus-
sian approximation with J/k=3.15°K. All points are
normalized to 52.7 GHz(#w/J=0.8) for convenience.
The Gaussian approximation (5) reduces in this case
to taking

@t Oga)=Bu'gsr) €02
where we have noted that w. is not necessarily the same

28 F. Mazzi, Acta Cryst. 8, 137 (1955).
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F16. 13. Frequency dependence of linewidth in Cu(NHj)sSOs
-H,0 at room temperature. ®, experimental points (Refs. 11 and
12). Horizontal lines are histogram values extrapolated to N= .
Dashed curve is Gaussian approximation [Eq. (50)]. All quantities
have been normalized to 52.7 GHz, at which point AH=AH,.
Hi;ti)gng(m points and Gaussian approximation are for J/k

for each M, so it is written w,(M). We have calculated
(gr'gar) and ((d%"/di?)—og2r) and obtained the result,
for Hy along the @ axis,

AH Gayssian=0.96(14-0.75 g—«*20e1)?
+0.67 e 2we®?) | (50)

where AH is measured in oersteds, and w,(1)=1.96 J/%
and w.(2)=2.23 J/%. It is clear from the figure that the
measured frequency dependence is completely out of
line with the Gaussian approximation but is in accord
with our computed correlation functions. A value,
J/k=0.5°K, is required to fit the experimental points
with a combination of Gaussians. Extrapolation of our
results to N=c is shown in Fig. 14 for the ratio
AH(52.7 GHz)/AH (13.2 GHz).

We calculate an absolute value AH=4.8 Oe at the
interval centered at 13.2 GHz. Rogers’ data fits
AH=8.6 Oe at 13.2 GHz. [His measurements are of
peak to peak width AH,_, on a derivative curve and
have been corrected for a Lorentzian by AH = (vV3/2)
XAH, ,]. The Gaussian approximation (50) gives
AH=2.3 Oe at zero frequency. The measured AH is
thus close to a factor of two greater than our calculated
number. This is possibly due to contribution of inter-
actions other than dipolar to the linewidth. Hyperfine
coupling is expected® to contribute less than 1 Oe to

o7
osf 4

AH(«:,)/AH(@Z)

05

(lo/N)*

F1c. 14. Calculated linewidth for N=6-9 (closed chains) and
extrapolation to N=c. Shown is ratio AH (w1)/AH (wz), where
w1=52.7 GHz, w,=13.2 GHz, and values are for intervals of
widths 26.3 and 52.7 GHz centered at w; and wi, respectively.
Frequencies are based on J/k=3.15°K.

#® R. N. Rogers (private communication).
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the low frequency AH, but anisotropic exchange may
be important. Since similar correlation functions are
involved, it is reasonable to expect that an additional
spin-spin interaction would give a similar frequency
dependence to that calculated here. We note" that a
discrepancy of about a factor of 2 also arises in the
three-dimensional salt K,;CuCls:-2H;O between the
measured AH and that calculated by Gaussian approxi-
mation. For this salt the Gaussian approximation gives
satisfactory explanation of the frequency dependence.

V. SUMMARY AND CONCLUSIONS

Two-spin and four-spin time-correlation functions
have been computed exactly for finite spin-3 Heisenberg
linear chains containing up to 10 particles. The results
are used to predict frequency dependence of electron
spin resonance linewidth in the linear chain salt
Cu(NH;),S04-H;0, and very good agreement is ob-
tained with experiment. The frequency dependence of
correlation functions and linewidth is most notably
characterized by a sharp rise near zero frequency which
makes a Gaussian approximation quite inadequate.
This zero-frequency anomaly is nof reflected in the
density of states. From the high-frequency behavior
of the self-correlation function an analytic expression
is derived for the short-time behavior of {S:#(#)S:%(0)).
This is found to agree well with calculations performed
by Windsor on classical linear chains but not with the
theory of Resibois and De Leener. The four-spin cor-
relation function {(S:*(#)Si+1%(£)S#(0)S:+1%(0)) is com-
puted and compared with the simple two-spin de-
coupling approximation, which is found to be fairly
reasonable over a range of frequencies.

Temperature dependence of the two-spin correlation
functions shows the near-zero frequency component
to decrease as the temperature is lowered from an
effectively infinite value to about 5J/k. At temperatures
below 5J/k results are inconclusive since different
patterns emerge for odd and even numbers of spins on
the chain.

Spatial Fourier analysis, useful for neutron scattering
formulas, is made of the two-spin correlation functions.
The wavelengths to which we are restricted by finite
chains are far too short for anything to be said about
the zero wave-vector limit. For short wavelengths
F,(w) peaks at some nonzero frequency.

We conclude that finite chain calculations are reliable
in predicting frequency dependence of correlation
functions at infinite temperature. Our histograms are
strongly suggestive of a divergence at zero frequency
but, of course, do not prove it. Because of this zero-
frequency behavior it is clear that predictions based
on calculation of moments cannot be expected to be
reliable for linear-chain problems, as is borne out by
the ESR experiments.

It is natural to ask what insight can be gained into
three-dimensional systems from results of this study.
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The answer, we fear, is largely negative since the salient
feature of our results, anomalous zero-frequency be-
havior, is likely to be strictly a dimensional effect, as
discussed here and by Fernandez and Gersch.®® The
high-frequency dependence of the self-correlation fo(w)
which is triangular up to a certain frequency (5.28 J/%
for the linear chain) and essentially zero above that,
may, however, not be a dimensional effect. This, we
feel, warrants further investigation. One positive note
concerns applicability of classical spin-time-correlation
functions. With classical spins it is possible to treat
two- and three-dimensional systems with nearly as
much accuracy as the linear chain since thousands of
spins may be included. For quantum-mechanical matrix
calculations as done here one is limited to not many
more than 10 spins. This number may be sufficient to
represent the infinite linear chain, but it cannot even
include all next-nearest neighbors for a simple cubic
lattice. Thus it is doubtful that our methods can
meaningfully be extended to higher dimensions. But
classical calculations®® agree remarkably well with
ours for the linear chain; and it is perhaps likely that
this agreement between quantum and classical systems
should continue into two and three dimensions. Hence
the results of Windsor®® and others® on classical-time
correlations in three dimensions may be considered as
reliable in view of the accuracy noted here.

ACKNOWLEDGMENTS

Above all we wish to thank Mrs. P. M. Bauer and
M. Subilia for programming and analyzing the open-
chain calculations. Dr. C. G. Windsor kindly com-
municated his classical calculations and gave permission
for their reproduction here. We have benefited greatly
from discussion and correspondence with Dr. J. C.
Bonner, Dr. M. E. Fisher, Dr. H. A. Gersch, Dr. R. B.
Griffiths, Dr. G. Reiter, and Dr. R. N. Rogers. Com-
puting was done with facilities of the University of
Kansas Computation Center, whose staff is gratefully
acknowledged.

APPENDIX: NUMERICAL NOTATION
FOR SPIN STATES

In this section a numerical notation for the states of
a linear chain is defined and the necessary algebra is
developed in such a way that the problem of computing
all possible states of the system, the action of arbitrary
operators on these states, matrix elements, etc., is
reduced to numerical operations which can be easily
handled by the computer. Consider the states of a
chain having 7 spins “up” and m spins “down” as a
linear array of » 4 signs and m — signs. Let #; be the
number of — signs to the left of the first 4 sign, %,
the number of — signs between the first and the second

% C. G. Windsor, Proc. Phys. Soc. (London) 91, 353 (1967).
3 G. H. Vineyard, R. E. Watson, and M. Blume, J. Appl. Phys.
39, 969 (1968).
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+ signs, #; the number of — signs between the (:—1)th
and the ¢th + signs, and #,,; the number of — signs
to the right of the last 4 sign in the chain. The set of
numbers (1,792,713, + *,#,41) can be used as a new rep-

resentation of the given state. For example, the state

(=—4+—++4+——+4+—) can be written (2,1,0,2,1).
The representation defined above must satisfy the
following two conditions:

(a) For given N and 7, there are 41 numbers .
(b) Zi=17+1 n;=m.

We now consider the #’s as decimal digits of an
integer number of 41 digits, i.e., we form the number

N=n1X10"4+n:X10 "+ - - 4+5,X10+n,1. (A1)

The number thus formed can be used to represent the
given state. In the example above, the given state is
represented by the number 21 021.

For given IV and r, we have then the various states
represented by a set of numbers 9T such that, according
to condition (2), the sum of their digits is constant.
From elementary arithmetic, we recall that numbers of
this type can be obtained from one another by adding
or subtracting multiples of nine. Using this property
we shall see that the numbers representing the various
states are connected by simple arithmetic operations.

With respect to condition (a), we may say that the
set of numbers representing the states have the same
number of digits if we conserve and count the zeros to
the left of the first nonzero digit. For example the state

+4——4—=0021.
The advantage of this method is that the

(-)

r

different states having 7 spins reversed can be generated
in numerical form starting from any given state. One
way of doing this systematically is as follows: Start
with the largest number of the set, i.e., the number
mX 10" which represents the state (#,0,0,:--,0), and
subtract 9X 10! as many times as possible without
violating condition (2), then subtract 9X10™2 from
the numbers obtained in the first step, then subtract
9X 102 and so on until we subtract 9 as many times
as possible without violating condition (b). Each such

subtraction gives a new state and the total number of
such operations generates the

N
(,)
v
states left.

An example will help to clarify the procedure. Con-
sider a chain with N =6 and r=2. There are

(-
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901
n n, Mo Nl
o St SO v dhomn W o
HAR X t
12 0 N+l h+2 M+n,+2 N

FrG. 15. Corresgondence between numerical notation and
orientation (4 or —) of spins.

states in this case. We start with the state

and subtract first 90 and then 9 without violating (b).
The required 15 numbers and operations performed
are given in Table I. Note that all numbers are different
and the sum of their digits is 4.

The states obtained when the operators of the
problem act on any state given in numerical form can
be found directly without recurring to the 4 and —
notation. In order to show the procedure, we consider
the correspondence between the two notations. First,
we number the spins from 1 to IV and refer to the jth
spin as occupying the “position 7.” When we refer to
a pair of spins, one of which is at position ¢ and the
other at position 7, we shall use the notation (4,7) to
denote the pair. Consider the state 9= (11,13," - * 7rs1).
The position number and the correspondence between
the numerical notation and the + and — notation is
as shown in Fig. 15.

The following rules are evident from examination of
the diagram:

Rule 1: The kth + sign is at position

k

=1

(A2)

Rule 2: (a) Every nonzero n; (except 73 and #,41)
indicates a (—-) pair at positions

k ®
=142 i, b+ n) k=2,3, -7

(A3)
7=l =1
and a (4 —) pair at positions
k—1 k—1
(k=142 miy k42 mi) k=2,3,---, 7. (A4)
i=1 i=1

TaBLE I. Generation of numerical states for N=6 and »=2 by
subtraction of 9 and 90 from basis state 400.

—9
400
310 301
—90 220 211 202
1 130 121 112 103

040 031 022 013 004
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TasLE II. Relations between #;, 7,41 and orientation of spins.

Thereisa (—) There isa +-)

pair at pair at
=0 41540 (r1, m1+1) (N —#ry1, N—nr4141)
™ Hrp1=0 (1, ma+1) (v,1)
-0 n,+17£0 (N,l) (N*nﬂ.l, N—'ﬂr+1+1)
m= n..1=0  There are no opposite-sign pairs other

than those stated in (a).

(b) Relations with respect to #; and #,.; are given in
Table II.

A. Translation Operator

When dealing with closed chains or “rings” it is
convenient to define a translation operator 7 which
translates spins to the left, i.e., for example, for N =6,
r=3, and in particular the state (——-+-+—-) we
have

r(— =+ =)= (= +—+-).

In general, if we act with this operator V times on a
given state we obtain the original state back.

In terms of our numerical notation, the action of 7
on a given state is found by subtracting from 9 the
number 10— 1. For example, 310= — — —+—+4

7(310)=310—99=211= — — 4 —+—.

The set of all translations of a given state is obtained
by subtracting 10"—1 as many times as possible. Each
one of these operations gives a new translation state.
When the next subtraction is not possible, we multiply
the last number obtained by 10 (this operation gives
a new translation state) and repeat the procedure
until we get the initial number again. An example is
shown in Table III.

We may see how this occurs by noting first that

T(nl;”b' : ':nr+l)= (nl_ 1,7 -, nr+1+1) s
if 7120 (AS)
7'(0,17'2; o ‘,7’ZT+1)= (n21n3) e )”T—H;O) ’ if #7:=0. (A6)

In the form of Eq. (A1) we can write
(11— 1) X 10"4n2X 10" 24+ - -0, 9+1
= 11X 107 4-15X 1014« + 4,1 — (107 — 1),

19X 107+n3X 1014+ - - 42,4, X 10
= (12X 1071423 X 1024 - - - 4-2,,1) X 10

n n, Ny ne Nrat
~— =
e ——— 4 — e s mem 4 e
N<+--+ - et — du wd = et = Fed - et
R =0 | O~0 1 O~ =0 | 0«0 | 0%0 | 0O
° ~ ~ ~

n Nyt Ney -1 -l Ny
Fic. 16. Diagrammatic representation of action of rotation
operator R on numerical state I1.
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TaBLE IIT. Generation of translations of the state 310. “Oper-
ation” refers to the operation performed on the state in the same
row to produce the state in the row beneath.

State Operation Equivalence

310 —99 ———t—+
211 —99 ——t—d—
112 —99 —+—+——
013 X10 +—t———
130 —99 —+———+
031 X10 +———+-
310

for the two cases given by (AS) and (A6), respectively.
Then, we see that the multiplication by 10 comes when
71 becomes zero.

B. Rotation Operator

Further reduction of the order of the matrices in
exact calculations on linear chains is obtained by
defining a rotation operator, R, which transforms a
spin “up” into a spin “down” and vice versa, i.e., for
example

R(+—++)=(—+=-).

In numerical notation, the action of R on the state
= (n1,ms," - * Mry1) is described by the formula

Ryu=10rrtnet--tnrt1 10t tnraf ...

+ 107lr+n7+l+ 1Qnr+1 (A'])

r+1 r+1

a=2 =a
Example:

R(+——+4—+)=R(0210)
= 102H+0 101101 10°= 1011
=—dt—t—.

Equation (A7) can be proved by means of the dia-
gram in Fig. 16 where we have written the original
state 91 and below it the resulting state R9 in both
+ and — notation and number notation. Note that
R has m-+1 digits, provided we count the #; zeros
to the left of the first nonzero digit. If the state has
r=m=%N (even N), we have that 9 and R have the
same number of digits.

C. Reflection Operator

For open chains we make use of an operator P which
reflects all spins about the midpoint. (With N odd, P
leaves the spin at lattice point $(V+41) unchanged.)
Since P produces a state in which the left-right order
of spins up and down is replaced by right-left order, it
is evident that

P(n17n27n3' ‘ 'nr—l;nr;nr+1)
= (Bry1,M0r M1 * ~M3MaMy) .

(A8)
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D. Exchange Hamiltonian

Action of the exchange Hamiltonian (1) on arbitrary
states can be described in numerical form as follows.
Consider first the operator

N

2 (SFSepr =SS,

=1
with condition Su.1#¥=S:%. The action of this operator
on a given state I is equal to a sum of states of the
form: q£9X10—1,  N£LIX10™Z ... NEH,
10(9t+10—1—1), and (91/10)4-1—10~L This sum
consists of only those terms which do not violate con-
dition (b).

Example: Suppose 91=310= — ——+4—+.

StSepr (1" - - Mrg1) = (g,
= (%2"‘1, ns,
_-—.0’

RS n1‘+1"1: O)x

otherwise.
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The terms which do not violate condition (b) are

RAH9X 107=3104-90= 400= — — — —+,
9—9X 10™1=310—90=220= — —+— —+,

(91/10)4+1—101=03141—10=022=+ — — -} — —,

Therefore, we have
N
2 (S+Sip—SiSia™) (310)

- = (400)+ (220)+ (310)+-(022).

To verify the procedure, we consider first the oper-
ators SitS;11~ and S5t Using rule 2 we have

k
ety Np— 1, nk+1+1, cccy n,+1), if nt7#0 and i=k— 1+Z ny k=1, 2, R

=1

if ni= O, nr+1?£0 and 1=N

k
SiSipat (o )= (1, -+, mpat+1, me—1, <o+ mpyy), i %20 and i=k—14+> my k=2,3, .-+, r41,
=1

= (0, ni—1, ng, -+, nr+1) )

=0, otherwise.

Summing over ¢ we obtain the following equations:

=1

if #,41=0, 7,520 and i=N

N r
2 SitSi (e prp) =20 (1=8,,,0) (1, -+, me—1, mpgat-1, -+, #rp1)
k=1

+ (1— 6nr+170)6n170(n2+ 1, ng, **-, Nrp1— 1, 0) ) (A9a)

N r+1
2SSt (ny,  meg) =2 (1=8n40) (1, +++, mer 1, ma—1, -+ <) 11y0)
=1 k=1

Now,

I= (n1,M2, * * P10, M041,* * * 5 rp1)

+ (1_ 6n1,0)5n,-+1,0(0, n1— 1, Mg, ** (A9b)

y nr+l) .

=m X107 -« « 0z 1 X 10754249, X 107 FH A0, X 10 F4 o o 12y,

therefore, the kth state in (A9a) is found by subtracting
9X10™* from 91, since

(nx—1)X 101 (14 14 1) X 10F =3, )X 107—F+1

and the kth state in (A9b) is found by adding 9X 10™—#+1
to 9, since

(ma—x+1) X 1074424 (1, — 1) X 10~FH =1, _; X 107+
+m X 107++H14 (10— 1) X 107*+1,

For the last state in (A9a) we have 91=7#,X10""1+4n;
X10™2+ -+ - +n,44, since it exists only if #;=0. Then,

(na+1)X10™4n5X 10"+ - -+ (1,41 — 1) X 10
=10(91+10"1).
For the last state in (A9b), N=#;X10"+n,X 101

=+ -+ -+n,X10, since it exists only if #,.;=0. In this
case we have
(m1—1)X10™+n,X 1024 - - 5,41

= (91/10)+1—101,
The requirement that 7,50 for the existence of the
kth state in Egs. (A9) is equivalent to the statement
that condition (b) must not be violated when we add
or subtract the required quantities.

Action of the operator 2_;—1¥ .S:%S:11? with Syys®
=57 is described by the formula

N
>SSt N

i=1
= %[N_ 4d0+4(1 - Bnnﬂ) (1_ 5nr+n0)] ) (AIO)

where 9= (n1,n2,- - - ,nr+i) and d, is equal to the number
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of nonzero »’s in 9. Equation (A10) is a direct con-
sequence of rule 3.
Examples:

S SS:11(310) = 16— (4X2)](310) = — 3 (310),

=1
N
S SitSi17(301) =1[6— (4X2)+4](301)=3(301).
=1

The chain of largest number of spins that we can
treat using this numerical method depends on the

maximum number of digits that a particular computer
can handle. On the other hand, the application of the
method is limited by the fact that none of the #’s can
have a value larger than 9. Since the matrix elements
with respect to states having z component of total spin
S.=M or S,=—M are identical, we have to deal only
with half the total matrix, i.e., with values m=2%N,
r=%N. Therefore, the method is limited to a maximum
of 18 spins in the chain, which is a larger number than
can be handled by present day computers since 18
spins would require diagonalization of matrices of the
order of 4800X<4800.
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The direction of easy magnetization in Gd is studied as a function of temperature and pressure. The
pertinent experimental results have already been given by Robinson, Milstein, and Jayaraman. A Gd sample
was used as the core of a small transformer; a constant input voltage was supplied to this transformer. The
secondary voltage was monitored as a function of temperature at several constant pressures. The secondary
voltage of the transformer, being proportional to the permeability of the sample, is a sensitive indicator of
changes in magnetic structure in the Gd sample. Typically, the secondary voltages behave as follows as the
temperature of the transformer is lowered: A sharp rise in the secondary voltage occurs at the Curie tem-
perature, followed by another sharp rise at a temperature well below the Curie point. The magnitude of the
secondary voltage at this latter transition is from two to three orders of magnitude greater than at the
transition from the paramagnetic to the ferromagnetic state. This transition is interpreted as a magnetic
transition in which the direction of easy magnetization in Gd deviates from the ¢ axis. The angle of deviation
is discussed in terms of the (small) anisotropy constants resulting from the weak crystalline field in Gd. In
terms of the output voltage, one is able to obtain the relative deviations of the direction of easy magnetiza-
tion from the ¢ axis. The temperatures, as a function of pressure, at which the maximum deviations occur
can also be obtained. As the temperature is lowered further, the direction of easy magnetization starts to

approach the ¢ axis again. Comparisons are made with other measurements of this angle of deviation.

INTRODUCTION

N an earlier paper' we presented the results of a
study undertaken primarily to determine the de-
pendence of the Curie temperature of gadolinium (Gd)
metal upon pressure. Figure 1 is one of the curves that
appeared in the earlier paper (it was then numbered
Fig. 5). The experimental details are discussed in Ref.
1. Briefly, a Gd sample was used as the core of a small
transformer, the secondary voltage, e, of which was
monitored as a function of temperature at several

* Part of this work was completed when one of us (L.B.R.)
held a John Simon Guggenheim Memorial Fellowship.

17, B. Robinson, F. Milstein, and A. Jayaraman, Phys. Rev.
134, A187 (1964).

constant pressures. Since the secondary voltage is pro-
portional to the permeability of the sample, it serves as
a sensitive indicator of changes in the magnetic struc-
ture of the sample. Hence, for example, e, increases
sharply at the Curie point T'¢ where the sample trans-
forms from the paramagnetic to the ferromagnetic state.

The principal effects observed in Fig. 1 are sum-
marized as follows:

(a) The Curie temperature T¢ decreases with increas-
ing pressure as shown by the shift with pressure of the
initial increase in secondary voltage. This effect occurs
in temperatures ranging from about 250 to 293°K.
(Data taken in this temperature range are published
as Fig. 3 of Ref. 1.)



