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Critical-Point Behavior of Classical Heisenberg Ferrirnagnets
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This paper discusses in detail the critical properties of a class of particularly simple ferrimagnets typified
by simple cubic and body-centered cubic lattices having alternate sites occupied by classical spins of diferent
magnitudes, Sg and S~. Heisenberg exchange interactions are assumed to act between nearest-neighbor sites.
For such ferrimagnets, general arguments are presented which determine certain features of the dependence
of the susceptibility x and the specific heat on the variables R =Ss/Sx and j=S&SsJ/xT. It is easily shown
that the critical point occurs at a 6xed

~ j ~
for either sign of the exchange and arbitrary spin values. More-

over, the exponent p of the singularity in p has a value independent of the sign of the exchange and of
the spin values. The only exception permitted occurs at the singularity of the simple antiferromagnet
(R=1,j(0),which has a reduced critical exponent. The nature of the dependence of x on R permits one to
obtain its expansion in powers of j from the known expansion coefficients for the related ferromagnet. A
Pads-approximant study of y for a range of R values is described. For R&1, the dominant singularity for
positive and negative j shows the familiar power-law behavior and is consistent with the general features
of the R dependence described above. The critical points and exponents are estimated for the cases studied
by a new method making use of the freedom to vary R in the ferrimagnet. A method of characterizing the
weaker singularities in p is described and investigated numerically. The implications of these results for real
ferrimagnets are examined.

I. INTRODUCTION
' 'N recent years there has been considerable effort
~ - devoted to the study of the critical properties of
Heisenberg ferromagnets. Relatively little comparable
work has been on Heisenberg ferrimagnets despite the
great physical interest of such systems. We are cur-
rent1.y engaged in a study of the critical properties of
Heisenberg ferrimagnets based on the first six co-
efficients in the high-temperature susceptibility series.
We have noticed, however, that certain striking simplifi-
cations occur when one passes to the classical limit
within a class of especially simple lattices. Rigorous
statements can then be made concerning the manner in
which the susceptibility, X, depends on the ratio of the
spin magnitudes involved. In particular, the coeKcients
in the series expansion of X are simply related to those
for the ferromagnetic problem. This feature has enabled
us to obtain the first eight coefFicients for ferrimagnets
based on the simple and body-centered cubic lattices
from those for the analogous ferromagnets published by
Wood and Rushbrooke. '

The classical Heisenberg ferrimagnet should provide
a useful preview of the properties of the quantum
system. A close relation is assured by the correspondence
principle, which states that the quantum system goes
over into the classical in the limit of large spin. Indeed,
results obtained for the classical cubic Heisenberg
ferromagnets by Wood and Rushbrooke, ' Stanley and
Kaplans s and Stanley do demonstrate a close similarity
in the critical behavior of classical and quantum
Heisenberg systems.

' P. I.%ood and G. S. Rushbrooke, Phys. Rev. Letters 17, 307
(1966).' H, E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981
(1966).

s H. E. Stanley and T. A. Kaplan, J.Appl. Phys. M, 977 (1967).
'H. E. Stanley, Phys Rev. 158, 546. (1967).

In this paper, we discuss the critical properties of a
particular type of classical Heisenberg ferrimagnet
which is based on a lattice composed of two alternate,
crystallographically equivalent sublattices. The two
sublattices are occupied by classical spins having differ-
ent magnitudes S~ and S~. The spins interact via
nearest-neighbor Heisenberg exchange. With these spe-
cializations, it turns out that the heat capacity in zero
magnetic field, CII, is a function of j' alone, where

j=S&S&J/xT. Thus the magnitudes of the spins may be
regarded as simply scaling the temperature dependence;
in terms of the variable j they have no affect at all. The
susceptibility X is a function of the same scaled variable

j; its only additional dependence on R=S&/Sz, the
spin ratio, is a factor 2R/(1+R') which weights the
part of X which is odd in j.These special forms of X and
C~ permit us to conclude that the critical points and
critical exponents are independent of E and are sym-
metric between positive and negative values of the
exchange constant J. There is only a single exception.
The critical exponent for the susceptibility y is decreased
at the antiferromagnetic singularity (R=1 and J(0).
For all other values of R and both signs of J, the value
of y is identical to that appropriate to the ferromagnet
(R=1 and J')0). These results are established in
Sec. II.

In Sec. III, we report the results of a Pade ap-
proximant study of the critical properties of X for
ferrimagnets based on the simple and body-centered
cubic lattices. The coefficients of the high-temperature
series were readily available through trivial modifj, cation
of the values for the ferromagnetic series presented by
Wood and Rushbrooke. ' The features derived in Sec. II,
in particular the constancy of the critical points and
exponents, have been verified for these lattices in this
approximation. Moreover, it has proved possib1e to use
the invariance of y with R to obtain an improved
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numerical estimate of its value. In this fashion, the
following values of y are obtained: 1.345 for the bcc and
1.385 for the sc lattices.

In Sec. IV, the relevance of our results to physical
ferrimagnets is considered. A preliminary account of
this research was presented at the International Con-
gress on Magnetism. '

II. FORMAL STATISTICAL MECHANICS

We shall be concerned with a ferrimagnet based on a
lattice in which each site belongs to one of two crystallo-
graphically equivalent sublattices, "A" and "B."Each
nearest neighbor of an A site is a 8 site and vice versa.
Each A site is occupied by a spin 5& and each 8 site by
a different spin S~. We assume the spins to interact via
Heisenberg exchange terms between nearest neighbor
spins on alternate sublattices. The Hamiltonian is then

X= 2JSASI)P —gIAHQ, —

plying Q and Pzz are chosen so that these functions are
unity for j=0. The total number of A or 8 sites present
is E while 2' is the number of nearest neighbors. In
general, we shall mean g or C~ when we speak of the
susceptibility or heat capacity, respectively. These
quantities may now be expressed in the form

Tr{Q' exp( —2jP)}Tr{1}

Tr{exp(—2jP)}Tr{Q'}

Tr{P' exp( —2jP)}Tr{1}
t-II=

Tr{exp(—2jP)}Tr{P'}

(6)

Since the traces involve an integration over the direc-
tions of the spins on the lattice sites, their value is
unchanged by the substitution n; ~ —n;. Thus, only
that part of the integrand even in unit vectors referring
to a particular sublattice gives a nonzero contribution.
Therefore,

P= (SASi)) ' Q S (A'S (~)

&i j)
Q=S Q +S Q,

Q S —lg y, (A)

Qi) ——Si) 'Q S,,' '.

If now we assume the spins to be classical, then

P= Q n;(") n, (s),
(i j)

QA
—P ~. (A)

Qs=p I .(s).

)t=3N (SA2+Ss ) Tr{(SA~QA2+S&2Q&2) cosh(2 jp)
+2SAS&QAQ& sinh(2 jP)}/Tr{cosh(2 jP)}, (7)

(1)
CH ——3(Ns) ' Tr{P' cosh(2 jP) }/Tr{cosh(2jP)}.
The crystallographic identity of the sublattices implies

Tr {QA' cosh (2jP)}=Tr {Q&'cosh (2jP)},
and hence, writing R for Si)/SA,

2=Ri(j')+ L2R/(1+R')7 j)c~(j'),
C~ ——C(j');

(2) )(&(j')=3N ' Tr{QA' cosh(2 jP)}/Tr{cosh(2jP)}, (8)

Q&(j') =3(Nj) ' Tr{QAQ& sinh(2 jP) }/Tr{cosh(2jP)},
C(j') =3(Ns) ' Tr{P2 cosh(2 jP)}/Tr{cosh(2jP)}.

The vectors n are ordinary unit vectors.
The susceptibility for zero magnetic field is

x=KT(8'/BH') lnLTr{exp( —PR)}71rr=o, (3)

where ~ is Boltzmann's constant. The heat capacity for
zero magnetic field is

The trace appearing in these expressions is simply an
integration over all possible directions of all unit
vectors n ' n {: ) We shall write

The functions gi, X2 and C depend on the lattice, but
have no explicit R dependence. Qf course, the variable
j =SAS&J/~T is uniformly scaled, for a fixed T, by the
factor S~Sg. In terms of j itself, however, the only R
dependence in either function, x or C~, is the factor
weighting the odd part of y.

For the purposes of the numerical investigation to be
described in the next section we shall assume that the
functions, g and Czz may be expanded in powers of j:

/=1+ Q A„j",
a~1

X= (SA'+ S))')(Ef'IA'/3~T) X(2),
C~= (4sN~/3) j'C~(j),

where j=SASsj/)(T. The region j(0has, as usual, the
physical interpretation of describing systems with
antiferromagnetic exchange, J(0. The factors multi-

' S. Freeman and P. J. Woj towicz, J.Appl. Phys. 89, 622 (1968).

Ca=1+ Q C j".
n 1

The coefficients C„are precisely those for the ferro-
magnetic case, R= i. The relation of the susceptibility
coefficients, A „,to those for the ferromagnet is apparent
at once from Kq. (8). Writing a„ to distinguish the
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ferromagnetic codFicients, we have A„=a„ for even n
and 2„=L2R/(1+R')]a„ for odd ii

The simple form of the dependence of 0& and g on R
has profound implications for the manner in which the
positive and negative J critical points and critical
exponents vary with E.. In terms of j, the location and
nature of the singularities of C~ are independent of the
spin magnitude, and are symmetrical between positive
and negative J.The properties of the susceptibility are
less straightforward.

It is usually assumed that near the ferromagnetic
critical point, the susceptibility in the paramagnetic
state has the form

~=~(1—j/j. ) ' (10)

The exponent y describes the strength of the singularity
in g at the critical point. The factor A gives an overall
weight which scales the susceptibility. Ke sha11 define
quantities analogous to j„&,and A. The definitions will
be chosen partly for convenience in view of the particu-
lar properties of the system under investigation, and
partly so as to presuppose as little as possible about the
nature of the singularity in P. Nonetheless, the defini-
tions will be such as to reduce to the same j„p and A
as in Eq. (10) when g has this simple form near the
critical point. This, of course, is the most interesting
case.

It will prove convenient to de6.ne a family of functions
p containing the various X&, (j)= g&(j')+Xjg2(j'), where
we have written X for 2R/(1+R') so that we may label
the members of the family with X as a subscript. The
range of values of X for which gi is to be contained in X
will be chosen as —1(P«1.The functions having 'A(0
are given physical meaning through the relation

2-iU) = xi(—j).
The function x ), may be regarded as giving, for positive
values of j, information on the system with J(0 and
the spin ratio corresponding to

~
X

~

. Alternatively, y &,

may be regarded as the staggered susceptibility of the
system whose susceptibility is gi. This follows from the
invariance of the partition function of this classical
system under simultaneous replacement of Jby —J and

Q~ by —Q~.
The fundamental property of the family g which we

exploit is that any member x), may be expressed as a
linear combination of any two arbitrarily chosen dis-
tinct members of the family, g and xs.

a.(j)=(~- /~ —)Xs(j)+0-~/ -~)~.(j). (12)

smallest value of j such that x&, (j) is analytic for all j':
j(j'&0. This definition presupposes that g&(j) is
analytic at the origin, of course.

If g and gs are analytic for some j, then it follows
from Eq. (12) that all the other members of g are
analytic at j as well. %e conclude from this that the
value of j+(X) is the same for all X,

j.(~) =j., (13)

except possibly for a single exceptional value, X=P«, for
which j+(Xo))j,. Moreover, since j (X}= —j+(—X); it
follows that

j-(~)= —j.
for allkexcept —Xo, forwhich j (—Xo) = —j+(4)(—j..
Thus, the critical points of the susceptibility are sym-
metric between positive and negative J and do not
change with spin ratio except that there may be a single
exceptional spin ratio for which the critical j's are
exceptionally large in magnitude. If we mak. e the
customary physical assumption that the critical points
given by x and Cz are necessarily the same, then we are
assured that there is no such exceptional spin ratio. %e
assume this to be the case throughout the following.
%hat we have deduced concerning the location of the
critical points of g constitutes evidence that this as-

sumption is consistent in the present case. The critical
temperature, T„ is given in terms of the critical j
value, j„by T,=

~
1~ 5&S&/i~ j,. This holds for either

sign of J.
For each P, we now define the positive j critical

exponent, y+(X), as the greatest lower bound of the
values of y' for which

(15)

The negative j critical exponent, y (X), is defined

analogously. The symmetry of Q implies that

v.(~)=v (-~). (16)

v.(~)-=v, (17)

except that possibly for a single value, P = P &, the value
of y+(X) may be exceptionally small:

Suppose that for some value of y', the limit in Eq. (15)
is zero for both 4=0. and li =P. Then it follows from

Eq. (12) that y' makes this limit vanish for every gi
in $; thus, for all X, y+(X) &y'. We may conclude that
for all values of X, y+(X) has the same constant value,

Thus, if some property of x& is dined by a linear opera-
tion independent of X and holds for two distinct rnem-

bers of X, Eq. (12) implies that it must hold for every
member of g.

We define the positive- j critical point of g&„j+(X), as
the largest value of j having the property that g&, (j) is
analytic for all j'. 0&j'(j. Similarly, j (X) is the

~.(~)&v.

From Eq. (16), it follows that

~-(~)=~

for all X except —X&, for which.(-~)=~+(~)(~ (2o)
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Now one certainly expects that the y for the simple
antiferromagnet (8=1,J(0) is less than that for the
ferromagnet (E= 1, J&0).We shall assume that this is
the case: y (1)(y+(1). Then the discussion above
implies that for all the properly ferrimagnetic systems,
regardless of the spin ratio or the sign of the exchange,
the critical exponent is the same as that of the simple
ferromagnet (8=1, J&0) F.or 0&~X&1,

(21)

The staggered susceptibility also has this same exponent
for all E and either sign of J, except for the ferromagnet
itself. This has a smaller value, as required by Eq. (20),
when X~= —1 is substituted.

Following the form of g assumed in Eq. (10), we

would naturally wish to de6ne A (X) as

(22)

However, it is not necessarily obvious that A (X) is then
finite and nonzero. This certainly is not a property
required by the definition of p. We may illustrate these
pathological cases by imagining A in Eq. (10) replaced

by )ln(1 —j/j, )) or by )ln(1 —j/j, )) '. Nowfor X=1,
Kq. (22) holds with A(—1)=0.This follows from the
assumption y (1)(y+(1).Thus if Eq. (22) holds with

finite A P.) for some other X&—1, it follows from Eq.
(12) that it holds for all X. We shall assume this to be the
case. This assumption is consistent with the results of
the numerical study described in Sec. III. Then Eq.
(12) implies that A (X) is a linear function of X. Since
A (—1)=0, we can write

(23)

where 0', is a constant.
The same technique outlined above can be used to

characterize the weaker singularities in g&,. Consider the
functions fi(j) defined for each X, —1&X&1,by

(24)

The totality of such functions has the same linear

property, Eq. (12), as the original collection, $. Clearly

p&, (j) has no singularities for
) j)(j,. Moreover, for

X=+1, it must have a singularity at j=—j,. This
corresponds to the critical point of the simple anti-

ferromagnet at which point g was supposed to be
singular. The leading terms which we have subtracted
out have no singularity for this value of j and X so this
particular singularity must still be present in fi,.
Therefore pz (j) has singularities at &j,for all X, by the
linear property of Eq. (12), except possibly for excep-
tional values as mentioned after Eqs. (13) and (14).We
cannot in this case argue on physical grounds against the
existence of these exceptional values. Critical exponents

may be defined for fi just as they were for Pz. The

argument given before for the constancy of such ex-
ponents holds in this case as well. It is still, however, not
necessary that these next smaller exponents charac-
terize the singularity of the simple antiferromagnet.
Their weighting factor, analogous to A(X), might be
such that they too make no contribution to this par-
ticular singularity. This is an interesting question in
itself and hopefully could be resolved by a Pade
approximant analysis.

III. PAD@ APPROXIMANT STUDY
OF CUBIC LATTICES

Coefficients a~ through a8 for the classical Heisenberg
ferromagnet have been published by Wood and Rush-
brooke' for the simple and body-centered cubic lattices.
The associated ferrimagnets, which have spins of differ-
ent magnitudes on the two sublattices, have the proper-
ties described in the previous section. Thus, the first
eight coefficients A& through A8 of the susceptibility
series for these ferrimagnets are available for analysis by
Pade approximants Lsee discussion following Kq. (9)$.
We have carried out this numerical study for two
reasons: first, to verify the properties predicted above
and to observe to what extent they are embodied in the
truncated series; second, to exploit the additional degree
of freedom present in E. for the study of the critical
parameters. As a preliminary step, Pade approximants
to pz, Qz@' and Qi'/Qi (where gi' ——dpi/d j) were con-
structed for X=0.1, 0.2, -, 0.9, 1.0. The locations and
residues of the poles of these approximants confirmed,
in a general way, the behavior predicted in Sec. II. The
approximants to gi had poles at both positive and
negative j near the published ferromagnetic values. The
negative pole disappeared as A. approached 1 and the
positive pole joined smoothly to the ferromagnetic
limit, X=1.0. The residues at +j, increase nearly
linearly as X increases from 0.1 to 1.0 while the residues
at —j, decrease and appear to pass through zero of X

near unity. These residues measure A(X) as it was
defined in Kq. (22). The approximants to gq@' show
these same features. However, the locations of the poles
of g&,

"' are more nearly constant with X and reproduce
more closely the value of j, expected from the previous
studies of the ferromagnet. '

The logarithmic derivative, g'/g should have poles at
j=~j,. The residue at each should be —p for all X/ 1.
This is observed to a degree for a range of intermediate
values of X. The negative- j pole occurs at a value nearly
symmetrical to the positive pole for values of X less than
about 0.6, it then moves away and becomes complex.
For the smaller values for A, the residue at the negative- j
pole is consistent with a value of y near 1.4.

As expected, the positive j pole is much better be-
haved. For values of X greater than about 0.3, the
estimates of j, and p for the positive- j singularity ob-
gained from the more consistent entries in the Pad6
table are constant to within a few parts per thousand up
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FIG. 1. Simple cubic lattice. Value of P4,3g approximant to
(j,—j)Rz'/Rz at j=j,. The labeled curves correspond to choices
of j, as follovs: (A) 0.345, (8) 0.3455, (C) 0.346, (D) 0.3465,
(E) 0.347.

to P =1.0. The y's are rather less constant but show a
broad region of X's less than one where their values are
steady. The values of j, and p for this plateau are

sc j,=0.3456, p = 1.378,
bcc j,=0.2425, &=1.347.

(25)

These estimates agree quite closely with those of
Wood and Rushbrooke' for P = 1. The behavior of the
approximants to x /x', as well as to x' itself and
gqsl', is consistent with the outline of the critical
properties of x), given in Sec. II. However, there are
several reasons why further work is necessary before the
quantitative estimates of j, andy given in Eq. (25) can
be accepted. Although the best estimates of j, and &
obtained from the Pade table in the region, X)0.3, are
quite constant, nonetheless, a given order of Pade
approximant often shows irregularities somewhere with-
in this region. Moreover, the consistency of the Pade
table becomes markedly worse as P ~ 1.0. This is most
noticeable for the sc lattice but can be discerned for the
bcc as well. In view of the fact that this is precisely
where the ferrima, gnetic system goes over into the
simple ferromagnet, this la.ck of perfect regularity is
unfortunate.

In order to study a function whose behavior could be
more easily interpreted, we formed Pade approximants
to (j.—j)z'/z and evaluated at j=j,. If j, is known,
such a procedure estimates y; in our case we wished to
study the behavior of these estimates with varying X

for a succession of choices of j,. Constructing Pade
tables and estimating from them the best value of y, the
resulting estimate is quite constant, as a function of X,
for appropriately chosen j,. However, more can be
learned by study of the estimates obtained from a
single-order Pade approximant, the [4,3$ for example.
In general, such an estimate is reasonably constant

except near a particular intermediate value of X P.=0.7
for the sc and X=0.85 for the bcc lattice). For nzost
values of j„the estimate of p regarded as a, function of
X, y(X), shows a, rapid variation nea, r this value of X;
in fact, it appears to have a pole there. However, if j, is
chosen within a rather narrow special range, this
singularity is absent and the resulting curve y(X) is
strikingly smooth and level down to quite small values
of X. This behavior is illustrated for simple and body-
centered cubic lattices in Figs. 1 and 2, respectively. We
cannot claim to understand what causes y(X) to behave
in this fashion. Nevertheless, the criterion of smooth,
level behavior is sufficiently straightforward and fIrmly
based theoretically, and the departure from this re-
quired mode of behavior suKciently striking for us to
feel justified in picking the exceptional value of j,which
makes y(X) level as the best estimate of j,. The level
pla, teau in y(X) as ) —+ 1 provides a corresponding esti-
mate of y. This type of behavior was found in both
[4,3j and [3,4) Pade approximants (also in the [5,2j
approximant in the case of the bcc lattice). The special
choices of j, which must be made to suit the different
orders of approximant di6er only by a few parts per
thousand. The best estimates of j, and p for the two
la,ttices are

bcc j,=0.2425~0.0002

y = 1.345~0.005,

sc j,=0.3460~0.0003

~= 1.385+0.01.

(26)

' H. E. Stanley, Phys. Rev. 164, 709 (1967).

The errors given are intended to indicate the range
within which we could loca, te j, by this method, as well
as the degree of consistency of the estimates based on
different orders of approximant. The Pade table for the
estimation of y from the various order approximants
showed a high degree of consistency for the chosen
values of j, over abnost all of the range of X.

The values of j, given in Eq. (26) are identical with
those which Wood and Rushbrooke' found in their
study of the ferromagnetic systems P.=1) based on
these lattices. These authors found y 1.36 for both
lattices. Our estimates of p are in qualitative agreement
with this value as well as with the value p = 1.38 for both
lattices obtained recently by Stanley. ' ' However, we do
see a clear and consistent difference between the two
lattices. The discrepancies between our results for p and
those of the previous investiga, tors is somewhat larger
than the errors cited in Eq. (26). The safest interpreta, —

tion of these discrepancies is to regard y as being de-
termined only to within a few percent as indicated by
the several estimates. We feel, however, that our method
(Pade approximants plus use of the theoretically justi-
fied nonvariation of p with X) is more precise and
reliable than techniques previously employed, especially
those involving linear extrapolations as used in Refs. 4
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and 6 in particular. Ke feel this to be the case despite
the use of an additional coefficient in the susceptibility
series (unfortunately not available to us when the
present work was completed) in Refs. 4 and 6.

At this point, it is natural to consider Pade ap-
proximants to g"& for a succession of values of y. The
location of the appropriate pole gives an estimate of j,
and the variation of this estimate with X may be in-

vestigated just as above. Unfortunately the curves

j,P,) obtained in this manner are considerably more
complex and less easily interpreted than those obtained
from (j,—j)g'/x above. For both lattices, the behavior
of j,(X) is irregular both for R close to unity and for
small values of R (X less than about 0.6). Attempts to
minimize each of these structures in turn give contra-
dictory estimates of p. Thus, for the simple cubic
lattice, the rapid variation near 8=1 may be pro-
gressively diminished by increasing p from 1.37 to 1.42;
however, this increase in p makes the singularity at
small E. increasingly prominent. On the other hand, for
the body-centered cubic lattice, decreasing p from 1.37
to 1.35 makes the singularity for R near one vanish, but
the reverse change in p is required to make the small E
singularity disappear. In the absence of any under-

standing of the origin or meaning of this behavior, we

shall simply disregard these properties of p"& except for
the following remarks. First, a choice of p in agreement
with Kq. (26) above does, at least, make the location of
the positive pole of g"& constant to within a few parts
per thousand over most of the range of X (or of R if we

think of it as varying between zero and one). This is
true for any of the higher-order Pade approximants.
These, moreover, show a high degree of mutual con-
sistency. Second, the procedure used to extract j, and p
from the Pade approximants to (j,—j))t'/x is partly
empirical. The mysterious behavior of the approximants
of I"& may decrease one's confidence in this method; on
the other hand, its correct evaluation of the critical
points, reliably known from the ferromagnets, is a
strong point in its favor. In balance, we regard the
estimates of the critical exponent, y given above as
being the best currently available for these systems.

Ke may now use the value of j, obtained above to
investigate the behavior of p& for negative j. The
critical exponent for the singularity at —j, can be
evaluated from —(j+j,)x'/x; the Pade approximants
to this function are evaluated at j= —j,. The exponent
shows a less regular behavior over a range of X than for
the j&0 singularity. This is to be expected since the
term singular at —j, appears in x multiplied by the
small weight factor (1—X) Q,. Nonetheless, in the bcc
case, the value obtained for the negative j exponent lies

within one percent of 1.36 for 0.1&P«0.6; and in the sc
case, it lies within one percent of 1.40 for 1&X&0.5. The
higher-order Pade approximants in these regions yield
fairly consistent estimates of y. For large P less than
unity, the values of the exponent at the negative j
singularity obtained in this fashion vary wildly aud

0 .I 2 .5 .4 .5 .6 .7 .8
I T ~ I I I

.9 .95 .99 .999 l.O

I
I

I
l

I

I I I I I I I I I

0 .I .2 .5 .4 .5 .6 .7 .8 .9 I.O

FIG. 2. Body-centered cubic lattice. Value of P4,3g approximant
to (j,—j)ftq'/fez at j=j,. The labeled curves correspond to
choices of j, as follows: (A) 0.2420, (B) 0.2425, (C) 0.2430.

show little consistency. However, for A. =1 itself, the
Pade table is a,gain very regula, r. The best estimates are

bcc p (—1) = —0.01&0.01,
sc p (—1)= —0.05+0.05. (27)

It is virtually certain that, in fact, y(—1)=0 for both
lattices since one expects a constant term to be present
in the antiferromagnetic susceptibility at this point.

Ke have evaluated the over-all Inultiplicative factor,
A () ), which weights the singular term (1—j/j, ) & in
z. Pade approxirnants were formed to (1—j/ j,)&xz(j)
and evaluated at j= j,. The values of j, and p used
were, respectively, 0.2425 and 1.345 for the bcc, and
0.346 and 1.385 for the sc. The Pade tables were quite
consistent and showed very clearly the expected linear
dependence of A on X. The general linear form of A (X)
may be written

A())=e,+(f,,) . (28)

Using the best estimat;es from the Pade tables for A (X),
we obtained the estimates of Q, i and Q. :

sc Q, g
=0.471,

(4=0.477;

bcc Q, i ——0.455,

Q, 2 =0.460.

(29)

A(h) = (1+))(t. (30)

The diGerence in the estimates of Q, i and Q, 2 probably
indicates the extent to which numerical errors have
accumulated by this stage in the calculation. Thus,
basing the error estimates on the extent of disagreement
in Eq. (29),

sc Q, =0.474~0.005,
bcc 8=0.457~0.005.

(31)

%e regard these results as consistent with the form
anticipated for A (X):
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TAsT E I. Pade approximant estimates of q for a range of X values.

A.

1.0
0.95
0.9
0.85
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

L4,3j p,4j
0.916
1.051
1.006
1.009
1.021
1.063
1.140
1.453
0.682
0.954
1.031
1,077

0.912
1.027
0.977
0.972
0.973
0.979
0.983
0.987
0.995
1.011
1.038
1.080

—0.1—0.2—0.3—0.4—0.5—0.6—0.7—0.8—0.85—0.9—0.95—1.0

[4,3g

1.139
1.164
1.189
1.213
1.239
1.265
1.290
1.316
1.328
1,340
1.351
1.362

L3,4$

1.008
1.100
1.146
1.184
1.219
1.251
1.281
1.310
1.323
1.336
1.348
1.360

It should be mentioned that the estimates of 8 depend
quite strongly on the values used for j, and p. If the
uncertainty in the estimates of these latter quantities
were included in the errors indicated in Eq. (31), these
errors would be larger by a factor of at least three.

The parameters j„p, 0', characterize completely the
leading singularities in x&—tha, t is to say, the most
rapidly divergent part at the real singularities closest to

j=0. These leading singular terms have the form

8, — +
-(1—j/ j.)' (1+j/ j')'-

(32)

u, = (1—j/j. )~x, —(1+&)e (33)

is more tractable. Ke have investigated the critical
exponent of this function at +j, for —1&X(1by the

The possibility of subtracting this term out of g, and
investigating successively weaker singularities was dis-
cussed in Sec. II.Unfortunately, the function Pi defined
in Eq. (24) is not well suited to analysis by Pade
approximants. The error terms due to the approximate
values we must use for the parameters j„pand 0', are so
highly singular that they domina, te the behavior of the
Pade approximants even though their numerical con-
tribution to the value of the function is small over most
of its domain. The function

same method used with g&, . The Pade approximants to
(j—j,)Q&,'/0; were formed and evaluated at j,. The
results for the bcc lattice are given in Table I. The
values of the parameters j„p and 0', used were re-
spectively 0.2425, 1.385, 0.457. The behavior for the sc
lattice was essentially the same though less regular.
Note that the exponent q in this table represents a
singular term in gi proportional to

(1 j/j.)—' (34)

The evidence suggests that a singular term of the power-
law type with exponent y'=y —1 is present in g except
at the critical point of the simple antiferromagnet
(X= —1 and j=j,or equivalently X=+1and j= j,). —
At this latter exceptional point the lea, ding exponent
seems to be of order zero. This is presumably just the
constant term expected to be present.

IV. EXPERIMENTAL IMPLICATIONS

For the special type of classical system studied in the
preceding sections, there is a close similarity between
the properly ferrimagnetic and the simple ferromagnetic
systems in their critical properties. In fact, the critical
index, p, is precisely the same regardless of the magni-
tudes of the spins on the two sublattices or the sign of
the exchange (excepting the simple antiferromagnet).
We believe that these findings have strong implications
for the critical point behavior of real ferrimagnets. The
exponents of the classical and quantum Heisenberg
ferrornagnets have proved to be quite similar. '' It is
reasonable to expect that this wiB hold true for the
ferrimagnets as well. Thus we expect that the exponents
of the real ferrimagnets will be in the neighborhood of
1.35 (barring unforeseen sensitivity to lattice structure).

Preliminary experimental results~ for yttrium iron
garnet have indicated a value of y less than one. The
experiments, however, were not performed with the
intention of observing the critical behavior. We believe
that further experiments are highly desirable.

7 E. E. Anderson, Phys. Rev. Letters 17, 375 (1966).


