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The group 84 is applied to the study of energy-level separations and correlation energies in
the ground-state configurations of first-rom atoms. The separation between two nearly de-
generate levels, e.g. , 2s S and 2P 8, considering the+i»1/rij part of the Hamiltonian

only, can then be determined by means of group theory, eliminating the need of solving the
secular equation arising from the usual configuration-interaction procedure. Extending this
work to the one-electron part of the Hamiltonian enables us to estimate the actual splittings
and the &(2s ) nondynamical (near degeneracy) correlation energy for the first-row atoms. The
Z and N dependence of this type of correlation is seen to be closely related to the group theo-
retical treatment. Finally this method is extended to a treatment of the nondynamical corre-
lation in second-row atoms.

I. THE NATURE OF ELECTRON CORRELATION

The correlation energy of a system is defined as
the difference between the exact nonrelativistic
energy of the system and the Hartree-Fock energy.
If Q 0, EHF are the Hartree-Fock wave function
and energy respectively, and X, E are the
correlation wave function and energy, then the
exact wave function and energy can be written as

/=f0+X, E=E„F+E

where (Q, [ P,) =1, (y[Pg =0. (2)

Sinanogiu' has shown that the correlation energy
for atoms may be ayportioned among the various

In the usual approaches to the problem of the
effects of electron correlation, configuration- inter-
action methods are used to determine the inter-
action among closely lying configurations of the
same 9, symmetry. In a previous paper' we used
the group P4 to classify the energy levels of atoms
containing more electrons than hydrogen. Here
we treat R4 as a starting point for our study of the
energy levels and treat the many-electron effects
as a perturbation of the group symmetry. Using
P4 we determine energy-level separations and
"nondynamical"-type (near degeneracy) correlation
effects in first-rom atoms. In addition the depen-
dence of this correlation energy on Z, the nuclear
charge, and on N, the number of electrons, is
discussed. Finally we extend the work to a pre-
liminary study of second-row atoms for which
there are very few configuration-interaction calcu-
lations.

We begin by discussing correlation energy from
the point of view of the "many-electron theory" of
Sinanoglu, ' emphasizing the nondynamical type
which will be considered in this work. After briefly
outlining the conventional method of calculation, the
group-theoretical approach is described for first-
row atoms. The Z and N dependence of the non-
dynamical correlation is elucidated and finally the
extension to second-row atoms is carried out.

pairs of electrons in the system, and that in
general, correlation effects arising from the
simultaneous interactions involving more than
two electrons can be neglected. Thus to a good
approximation

Q ~ ~

(12 ~ ~ ~ N)
v

where g" are pair-correlation wave functions and

eij are ecoupled pair-correlation energies.
Furthermore, the correlation energy for each
pair of electrons may be divided into a dynamical
part that is essentially independent of the atom,
and a nondynamical yart which can not be trans-
ferred from atom to atom. This nondynamical
correlation arises from the. effects of the inter-
action of the ground configuration with a small
number of nearly degenerate configurations.
Thus the correlation energy of the two 2s electrons
in Be, &(2s'), arises primarily from the inter-
action of the two lowest singlet S configurations,
namely, 1s'2s' 'S and 1s'2p"S.

Sin~e dynamical correlation is transferable, it
is possible to treat it semi-empirically. That is,
once a value for the dynamical energy of a partic-
ular pair is obtained for one atom, this value can
be used for the same pair in any other atom or
ion. The nondynamical correlation clearly pres-
ents more of a problem, since it must be calcu-
lated for each atom. The nature of the non-
transferability, that is, its dependence on Z
(nuclear charge) and N (number of electrons) has
been discussed previously; the Z dependence by
Layzer, ' and Linderberg and Shull, 4 the N deyen-
dence by McKoy and Sinanoglu. ' Here we shall
relate this Z and N dependence to the properties
of the group R4. To a good approximation, the
nondynamical correlation for two 2s electrons is
a linear function of these Z and N yarameters.
We shall attempt the calculation of s(2s') using
R4 grouy theory. This procedure gives a more
mathematical and physical interpretation to the
nondynamical correlation energy effect.
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K

K =0 (4)

The usual method for calculating nondynamical
cor relation and the related energy-level separ ations
makes use of configuration interaction. ' I.et us
assume, as is the case for first-rom atoms, that
there is just one excited state which has the same
symmetry as the ground state and is fairly close
in energy to this ground state. Then if E, and E,
are the Hartree-Pock energies of the ground and
of the excited configurations, respectively, dmin—E is the nondynamical correlation energy, and
Xmax —&mi» xs the splitting where ~min, Xmax
are the smaller and larger roots of the secular
equation

=2I1 +2I +F (1s, 1s)HF

+4FO(ls, 2s) —2GO(ls, 2s)+Fo(2s, 2s), (5)

E»»» =2I1 +2I
2

+F0(1s, 1s)HF

+4F,(1s, 2p) —2G, (1s, 2p)

+Fo(2P, 2P) + 10F,(2P, 2P), (6)

the familiar Slater I E and G parameters '&'
the Hartree-Fock levels for the ground and
excited configurations can be expressed by

and K is the interaction matrix element between
the two configurations.

II. THE GROUP-THEORETICAL APPROACH

E»2, --2I1 + 27'
2 +F0(2s, 2s),HF

HF
Els22p&, g =2Ils+2g2p +F0(2p, 2p)

(7)

We will now discuss a more group-theoretical
method for determining splittings and nondynam-
ical correlation. We have seen in paper I how the
four-dimensional rotation group R4 can be applied
to atoms containing more than one electron. The
transformation properties under R4 of various
configurations of first-row atoms were derived
and Coulomb and exchange integrals calculated.
In the process of evaluating the integrals, the
two-particle Coulomb operator G =Qf ~&1/xf&
was expressed in terms of tensors transforming
according to irreducible representations of R4.
It is this two-particle Coulomb operator which is
responsible for the interaction between the con-
figurations and thus for the nondynamical corre-
lation. This is true since only the two-electron
operator G of the Hamiltonian has nonzero matrix
elements between two configurations differing by
two orbitals, e. g. , ls 2s and 1s 2p 8 of Be.
Therefore we determine the splitting due to this
part of the Hamiltonian alone. The effect of the
remainder of the Hamiltonian, the part that gives
rise to energy differences due to the inequality of
I2s and I2P, is introduced as a correction. I2s
and '- are the Slater I parameters, 7 one-elec-
tron iritegrals of the form

Jy" (1)[-r'/2m+ II]y(1)d~, .

If the atom were exactly R4 symmetric, then
I2s =I 2P, and the sylitting would arise entirely
from the two-electron part of the Hamiltonian
and no correction would be necessary.

+10F,(2P, 2P),

where

=I2 +2E0(ls, 2s) —G (1s,2s),2s 2s

=I2 +2F0(ls, 2p) —Gl(ls, 2p) . (10)

J
1s'2s' 'S 0

Thus g2s, g2p are the Hartree-Fock orbital en-
ergies of a hypothetical Be+ ion as it exists in the
Be atom, using the Hartree-Fock orbitals of Be.
Since we are concerned with energy differences
only, the energy scale is irrelevant and we can
subtract the common term 2I1s from each of
(5) and (6). We may regard this term as a
"vacuum" energy. I et us now make the approx-
imation that our system possesses R~ symmetry.
We note that the 1s' part we have dropped does
itself transform according to the identity repre-
sentation of R~. We raw consider an average g
instead of g2s and g2 since, if we in fact did
have R4 symmetry, tfie orbital energies for a 2s
and 2p electron would be the same. The term is
now common to both (7) and (8), and so it too may
be subtracted from each expression. These g
terms may be regarded as "self-energy" terms
since they represent the interaction of the 2s or
the 2p orbital with itself and the vacuum. We
are now left with the two-electron interaction
terms,

A. Splitting Due to the Two-electron Part of the
Hamiltonian E1,2, ,~ = F0(2P, 2P) + 10F2 (2P, 2P), (12)

We consider Be as an example for the calcu-
lation of the splitting caused by the interaction
of the 1s 2s 'S and 1s 2p 'S configurations and
of the nondynamical correlation energy. Using

and can apply the R~ methods discussed previously.
The various states of the Be atom have been

classified with respect to irreducible represen-
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tations of R4. Following the discussion in the
preceding paragraph, we consider here electrons
with principal quantum number 2 only. This does
not affect the symmetry classification, since
the n = 1 shell is completely filled and thus trans-
forms according to the identity representation
of R, . Since R4 is a, larger group than R, the
ordinary three-dimensional rotation group, and
includes A3 as a subgroup, B~ relates configura-
tions having the same P, symmetry. For ex-
ample, the two 'S states of Be we are treating
can be combined to transform as the (00) and
(20) representations of R~. Thus

(oo)S = [ k (»') —(v 3/2)(2P')] S

(20)S =[ (v 3/2)(2s')+ —', (2P')] S,

It has been predicted. by Sinanoglu that combi-
nations of 2s2 and 2P' transforming according to
irreducible representations of A~ would come
close to the combinations obtained by means of
two-by-two configuration interaction. The mixing
of these two states in Be is similar to the mixing
of the ground-configuration wave function of meta-
stable He, 2s"S, with the excited configuration
2P' 'S, provided of course that we use the proper
orbitals for metastable He. Wulfman' has pointed
out the extremely good agreement between the co-
efficients obtained by classification according to
B4 and the coefficients obtained from a configu-
ration calculation using a hydrogenic basis limited
to orbitals with principal quantum number 2 as
calculated by Lipsky and Russek. " The ratios
2s: 2p in the g4 states are 0. 587 and 1.732,
while the Lipsky and Russek ratios are 0. 56 and
1, 726.

If we now evaluate the a, (000) part of the
Coulomb interaction' for each of the states de-
scribed in Eqs. 13, we see that the two R4 states
are nearly degenerate with respect to an A~-
symmetric Hamiltonian. The entire Coulomb
operator G splits this near degeneracy. This
operator does not commute with g4, it is not an
B4-symmetric operator. Its transformation prop-
erties can be found and were determined in See. III
of the preceding paper. We saw that the Coulomb
operator giving nonzero matrix elements between
configurations, all of whose electrons have princi-
pal quantum number 2, was a linear combination
of tensors transforming as the (000), (200), and
(400) irreducible representations of R~. The
diagonal matrix elements of this operator for
either state of Be, i. e. either of the (00) or (20)
irreducible representations, may be calculated
using the Wigner-Eekart Theorem. Since both
the A~ Clebsch-Gordan coefficients and the re-
duced matrix elements for g4 are known, the
calculation of the diagonal matrix elements is
easily effected. If the description of the states
using B4 remains satisfactory after the intro-
duction of the G potential, then the difference in
the diagonal matrix elements will give a good
approximation to the actual splitting.

To continue with our example of the splitting of
the two lowest 'S states of Be, we evaluate the
diagonal matrix elements ( (00) I G 1 (00)) and

E'(2s, 2s) —& (I/v 3 )G'(2s, 2p)
=0,

( /W3 )G'(2s 2P) Z'(2P 2P)+ Z'(2P, 2p) —~
(14)

The results of these calculations, using Hartree-
Fock orbitals, are given in Table I. The values
calculated by means of A~ and those obtained by
solving the secular equation using hydrogen or-
bitals for each method do not agree with each
other at all. Hartree-Fock orbitals give this
better agreement because they are more diffuse
than hydrogenic ones. Consequently the 2s' and
2P' levels are more nearly degenerate and thus
fit more closely the model of the splitting of
degenerate levels. Again we emphasize that this
discussion deals with the E~ part only without
the "self-energy" correction. This correction is
discussed in the next section.

In this treatment we are ignoring the off-diag-
onal matrix element ( (00) I P I/x&& l (20)). If this
term were included and the usual degenerate
perturbation theory applied, we would get exactly
the same result as we do in the ordinary configu-
ration interaction method, i. e. , the result of
Eq. (14). It makes no difference which linear
combination of configurations we take as the un-
perturbed functions. Diagonalizing and solving
the secular equation will always yield the same
eigenvalues and eigenfunctions. The importance
of the R, approach lies in the fact that group
theory enables us to obtain a very good approx-
imation to the exact calculation. In other words,
after making the transformation from the con-
figuration 2s''S, 2P' 'S to those linear combi-
nations which transform according to irreducible
representations of A~, the off-diagonal matrix
elements become small in comparison with the
difference between the diagonal elements. We
have essentially diagonalized the Hamiltonian
matrix group theoretically, and are justified in
our assumption that the g4 classification scheme

TABLE I. Splittings arising from the two-electron
operator part of the Hamiltonian (in a.u. ).

Be S
B P
C P

Calculated
using R4

0.272
0.246
0.229

C alculated using
configuration-
interaction

Hartree-Fock orbitals

0.280
0.257
0.231

( (200) ) G ( (200) ). The level separation as given
by B4 is simply the difference between these two
terms. Making use of the Clebsch-Gordan co-
efficients for R4 and the numerical values for the
parameters in the G potential previously calcu-
lated, we can now evaluate the splitting.

We can compare this value of the splitting with
the actual two-configuration interaction for the

E part of the problem only. Thus we solve the
equation
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remains good even after the introduction of the
Coulomb interaction.

B. The Self-Energy Correction

We must now correct for the fact that g2s & 5 2p
and the fact that the two Hartree-Fock configu-
rations do interact. If there were no interaction
between the Hartree-Fock levels, the splitting
for Be would be simply

[2«2 —&2,) l + 9'0(2p, 2p}

+ 10m, (2P, 2P) —Z, (2s, 2&)]

In the previous section we saw the effect that the
interaction has on the second term of Eq. (15).
We must now make a correction for the eff ect of
the interaction on the first term and determine
the correction to the self-energy.

We will obtain an expression for this correction
by adding an operator to the Hamiltonian with the
following properties. The operator is expressed
in terms of irreducible tensors transforming
according to A4. The coefficients of these ten-
sors are the orbital energies gn~ defined pre-
viously, where n is the principal quantum number
and / is the angular momentum quantum number.
The orbital wave functions are eigenfunctions of
this operator with eigenvalues equal to the appro-
priate orbital energies gn~. It will be seen that
there is a natural way of determining this opera-
tor.

Let us first consider a special case of this
operator in which gn~ is set equal to gn~I. We
denote this operator by C. C is a sum of one-
electron operators cz, where i is the number of
electrons in the system under consideration. For
the sake of simplicity we will omit the subscript
i when it is not important to specify a particular
ci ~ By setting gn~ = pnme, i.e. equating orbital
energies of electrons of the same principal quan-
tum number n, we are saying that A~ symmetry
is retained. The operator c has the same value
when applied to all orbitals of the same n, or in
other words it has the same value when applied
to any row of a particular representation of B4.
If the value of an operator is entirely specified
by the representation of the state on which it acts,
it must be completely symmetrical with respect
to R» and must transform like the identity repre-
sentation. We can write this operator in the form
of a secondMegree homogeneous function of the
partners of the basic representation, i. e. , the
(10) representation of A». We therefore have

c = 7i [o.(1000)(1000)+ P(1010)(1010)

+y(1011)(101—1)+5(101—1}(1011)]. (16)

Because c is a completely symmetrical one-elec-
tron operator, we can easily find the values of
the constants n, P, y, and 5 using the reduction
formula for the A4 spherical harmonics given by
Shibuya and Wulfman. " We see that

n = 6[(0000)(0000)I (1000)] = 1,

P = 8[(1010)(1010)I (1000)] = 1,

y = 8[(1011)(101—1) I (1000)] = —1,
6 = 8[(101—1)(1011)I (1000)] = —1,

where the 8 are the one-electron reduction co-
efficients. Using these values of n, P, y, and 5
we have

c = —,'g[(1000)(1000)+ (1010)(1010)

—(1011}(101—1)—(101—1)(1011)]. (18)

The factor of 4 is inserted so that c will have the
value p when evaluated on any state of principal
quantum number 2. We now modify the operator
to take into account the fact that g2s & g2 . The
operator must give rI2s when applied to Z2s or-
bital and g2~ when applied to a 2p orbital. This
modification can be accomplished by setting

c =e) +e2+83+e4

such that

el(2s) =&2 (2s), e2(2po) =ri2 (2po),

e8(2p, )=n2p(2p ), e4(2p )=@2 (2p ),

and all other combinations, e. g. e, (2p+), give
zero. This decomposition is easily effected and
it is found that

el = —»'rI2 [2 (1000)(1000)——,'(1010)(1010)

+ —,'(1011)(101-1)+ —,'(101—1)(1011)],

e2 =-,rl2 [- —,'(1000)(1000)+-,'(1010)(1010)

+ —,
' (1011)(101—1)+ —,

' (101—1)(1011)],
(19)

e& = »ri 2
[- —', (1000)(1000)—-', (1010)(1010)

—2 (1011)(101—1)+ —,'(101 —1)(1011)],

e4 = —»'g2 [- 2(1000)(1000)- ~(1010)(1010)

+ —,
' (1011)(101—1)——,

' (101—1)(1011)].

We now allow C =Qcf' to act on the states trans-
forming according to the irreducible representa-
tions of A4 that we found previously. To find the
correction to the splitting we must calculate

C I(200) —C'(000) . (2o)

2(q —q )+c'[(2oo) —(ooo)] (21)

This result could of course have been obtained by
simply noting the coefficients of the linear combi-
nation of the 2s' and 2p' configurations and using
the Slater-Condon rules for one-electron opera-
tors. However the method used here shows more
clearly the group-theoretical basis for the correc-
tion.

Thus the self-energyIpart of the energy differ-
ence for Be can be expx'essed as
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For boron there is an analogous expression. For
carbon however it is necessary to make an addi-
tional correction. The type of operator used
above gives information about the relative num-
ber of p electrons with respect to s electrons.
It yields no information about the coupling of the
p electrons. For carbon the operator C gives
the same correction for each of the three states
transforming according to irreducible representa-
tions of R4 describing the configurations 2s'2p'
and 2p4. We have

(200) = [(I/v'2)(2s'2p') —(I/&2)(2p')] 'S,
(201) = [(I//2)(2s'2p') —(I//2)(2p')] 'J',

(202) = [(I/42)(2s'2p') —(I/v 2)(2p4)] 'D

These three states (200), (201), and (202) are the
linear combinations of 'S, 'P, and 'D configura-
tions, respectively. The correction is the same
in each case because corresponding coefficients
of the configurations are the same for each state.
For example the coefficient of the (2p~) configura-
tion is —I/v'2 for each of the three states (200),
(201), and (202). The same relations hold true
for the other A, states for these configurations
(000), (111), and (222), so that the correction to
the energy difference of the two B4 states for
each of the 'S, 'P, 'D symmetries is the same.
For beryllium (with no P electrons in the ground
state) and for boron (one p electron) there is no
ambiguity, but for carbon the nature of the cou-
pling must be introduced explicitly. The Young
diagrams for the space and spin parts of the p'
configuration are helpful in this context. The
space-spin diagrams for the 'S, 'D, and 'P
states are given in Fig. 1. Only for the 'P and
the 'D case is it possible to have two of the same
entries in one diagram. That is, the orbital part
of 'D and the spin part of P can be represented
by the diagrams given in Fig. 2. Therefore we
expect the correction to the one-electron part
of the interaction to be the same for the 'D and
'P terms but different from the 'S term. In fact,
the correction must again be proportional to the
difference in orbital energies with a coefficient
equal to the maximum number of pairs of identi-
cal entries possible in either one of the space or
spin Young diagrams. This type of correction
gives rise to a nonvanishing term for carbon only.

III. ENERGY LEVEL SEPARATIONS AND
NONDYNAMICAL CORRELATION

The total splitting between the two lowest sin-

FIG. 2. Young diagrams for (a) the orbital part of
D, and (b) the spin part of P.

glet S levels of our model Be atom may now be
obtained by simply summing the various contri-
butions already determined in the previous two
subsections. The results for Be, as well as for
8 and C, together with a comparison with the
actual calculation using two-by-two configuration
interaction [see Eq. (14)] are shown in Table II.
We see that the 8, calculated values for the split-
tings are in agreement with those calculated by
conf iguration interaction.

The e(2s') nondynamical correlation energy
may now be obtained very simply from the value
of the splitting. Thus

(22)

where EII is the difference in energy between the
R, symmetrical states, e. g. (20) and (00) in Be,
and EI is the difference in energy between the un-
mixed configurations, e. g. 1s'2s"S and 1s'2p''S
in Be. Table III gives this e(2s2) nondynamical
correlation calculated by the use of A4 for the
ground states of the first-row atoms Be through
Ne, and gives the corresponding values for the
actual atoms as given by McKoy and Sinanoglu. '

We now consider other aspects of the nondynami-
cal correlation. How does e(2s') vary as 2 (nu-
clear cha, rge) is increased while N (number of
electrons) is kept constant? Linderberg and Shul14
showed that if hydrogen functions are used e(2s')
can be expected to be linear in Z. They expanded
the expressions for the energy of the single ground-
state configuration and of the best linear combina-
tion of the two lowest configurations of the same
symmetry for the Be isoelectronic sequence in
powers of Z.

1 2
HF 2

(23)

E . = —1.25Z2+ 1.571Z —'
two conf lg.

The difference in energy between these two ex-
pressions is the nondynamical e(2s'). The terms

TABLE II. Splittings arising from the entire
Hamiltonian (in a.u. ).

D abc[ ~S

FIG. 1. Young diagrams for the D, ~S, and P states.

Be ~S

B P
C P

Calculated
using R4

0. 454
0. 581
0. 784

Calculated using
configuration

interaction

0.448
0. 577
0.780
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TABLE III. &(2s ) Nondynamical correlation
energy for first-row atoms (in a. u. ).

Be S
2P

C P
N 4S

0 3P
F P
Ne S

Calculated
using R4

—0. 045
—0. 032
-0.0185

0
0
0
0

Calculated
using

configuration
interaction

—0. 042
—0. 030
-0.017

0
0
0
0

Calculated
by McKoy and

Sinanoglu~

—0. 0416
—0. 0298
—0. 0168

0
0
0

0. 0005

quadratic in Z cancel because I2s =I2p and the
only other important terms are linear in Z. Let
us now look at the Z dependence using the R4
picture.

The coefficients of the configurations compris-
ing an R4 symmetric state are independent of Z.
Thus for example in dealing with a system with
two electrons of principal quantum number two,
Be, B+, C++, ... ,

(20)S = (v3/2)(1s'2s' 'S) ——,'(1s'2P' 'S) .

e(2s ) = —' lC'[(20) —(00)] + 7

—[F (2s, 2s) —Fo(2p, 2p) ——', F'(2p, 2P)]), (25)

where 7 is the two-electron contribution to the
splitting calculated in Sec. II. Equation (25) is
composed of Coulomb and exchange integrals
which appear in the second and third terms of
(25) together with one-electron orbital energies
of the form k(g2P —q2s) arising from the first
term. We wish to show that each of the terms
in (25) is linear in Z. Let us first consider
terms involving the orbital energies. We extend
the idea of Linderberg and Shull and expand the
one-electron orbital energies g in powers of Z.

s=a1Z +b1Z+c

The K3/2 and —,
' are constants independent of Z;

2s', 2p' are the properly chosen Hartree-Fock
orbitals for the particular member of the iso-
electronic sequence under discussion. Since the
correction to the self-energy term is also based
on the R4 symmetric functions, its form is also
invariant among the members of an isoelectronic
sequence. If we write the correlation energy for,
say the Be isoelectronic sequence, using equations
(20) and (22) we find

include terms in (26) beyond the leading one. If
we now continue to assume that a, = a, as is the
case in the R4 approximation, retain the linear
terms, but drop all succeeding terms, we would
have

q =aZ'+b Z2s 1

~2
——aZ +b2Z'

(27)

Since the coefficients of &2s and p2p are equal in
Eq. (25), the quadratic contribution becomes zero
and thus the terms involving q2s, r)2P in (25) are
linear in Z. Since in our approximation the F and
G parameters are linear in Z and the two-electron
term 7 is a linear combination of F and G parame-
ters, the remaining terms in (25) are linear in Z.
We are justified in assuming that the Hartree-Fock
Coulomb and exchange integrals have approximate-
ly the same Z dependence as the hydrogen ones,
since we found in paper I that the use of the model
+1/rz& potential in R, gave equally good results
for hydrogen and Hartree- Fock orbitals. Since
strict Z-dependence is a property of R4 symmetry
our assumption seems reasonable. By treating
our calculation as a perturbation of an exactly R4
symmetrical problem, the hydrogen atom, we are
able to derive the linear Z dependence of the e(2s')
nondynamical correlation for a model much closer
than hydrogen to the real atom.

The Z dependence of the R» calculated e(2s')
correlation energy compared with the values cal-
culated separately for each Z by means of config-
uration interaction is given in Table IV. We see
that the Z dependence for the actual values is
approximately linear. Furthermore the agree-
ment between the correlation energies calculated
by means of R4 and by configuration interaction
improves as Z increases. As Z increases the 2s
and 2p levels in atoms become more nearly de-
generate and the R4 approximation of the hydrogen-
like degeneracy becomes more valid. In addition,
from a consideration of the Layzer expansion of
the energy in inverse powers of Z, it is clear that
increasing Z decreases the importance of the
larger inverse powers that were neglected in the
argument for linear Z-dependence of the e(2s')
correlation energy.

The dependence of e(2s') on N, the number of
electrons, can be understood by means of the
exclusion principle. In the language of the "many-
eleetron theory, "' the exclusion principle imposes
"orbital orthogonality" conditions on the correla-
tion wave function, ' i. e. , (u~" ) k) = 0. Thus for
Be the correlation wave func ion is

u„=c,[(a(2p 2P ) —+(2P,2P )

—~(2P.2p.)1;

= a2Z' b2Z+ c2+

(26) for B:
u3» = c,[$(2P+2p ) -@(2P+2P )] '

In the R4 approximation, only the leading term is
nonzero and a, =a, . As we have seen, fj2s & '02p,
and the R4 approximation can not be used for the
terms involving the g2s, q2p. It is necessary to

for C:

u„=c,[(a(2P 2p )]; (30)
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TABLE IV. Z dependence of e'(2s2) nondynamical correlation energy (in eV).

—&(2s )Z
calculated
using 84 —[Z/(Z —1)]&(2s )

—~(2s') Z
calculated

by McKoy 5
Sinanoglu —[Z/(Z —1)J e(2g )

Be S isoelectronic sequence

4

6
7
8
9

10

1.22
1.52
1.83
2. 13
2.44
2. 74
3.05

1.22
1.52
1.83
2. 13
2.44
2. 74
3.05

B P isoelectronic sequence

1.132
1.417
1, 828
2. 309
2. 554
2. 900
3.248

1.415
1.70
2. 13
2. 63
2. 87
3.22

5
6
7
8
9

10

0.870
1.045
1.219
1.393
1.567
1.741

0.870
1.045
1.219
1.393
1.567
1.741

0. 811
1, 069
1.270
1.477
1.692
1.882

0. 973
1.247
1.429
1.662
1.880

C P isoelectronic sequence

6
7
8
9

10

0.503
0.587
0. 671
0.754
0. 838

0.503
0.587
0.671
0.754
0.838

0.457
0.563
0.656
0, 745
0. 832

0 ~ 533
0. 633
0. 738
0. 828

and it is zero for the ground states of the other
first-row atoms. ' The exclusion principle mani-
fests itself just as clearly using the R4 approach.
Table I of paper I shows that for N~S, F'P, and
Ne'8 there is only one state of the proper symme-
try. For O'P there are two states (111)and
(1 —11), but these states are degenerate and do
not mix. Thus for these atoms there is no 2s'
nondynamical cor relation.

Let us now look at the atoms with nonzero 2s2
correlation energy. We see that Q~ for Be, B, and
C have successively three, two, and one terms. 0
we assume that each of these terms contributes
roughly the same amount to the correlation energy
as is reasonable from symmetry considerations,
it is clear that the nondynamical correlation energy
will decrease from Be to B to C. To a first approx-
imation we take this dependence on N to be given by
a term linear in the number of p electrons in the
ground configuration. As the number of p electrons
increases, the number of possible excitations of
the 2s electrons is reduced because of restrictions
imposed by the Pauli exclusion principle. These
excitations of the 2s electrons are responsible for
the nondynamical correlation energy. Combining
this effect with the linear Z dependence we have

s (2s2) = Z(a —bN),

where a and b are constants and N is the number of
p electrons in the ground configuration. For the
calculation of e(2s') using P., we set a = 0. 306 eV
and b = 0. 112 eV, while for the calculation of McKoy
and Sinanoglu' we set a =0. 300 eV and b =0. 112 eV.

We find that Eq. (31) with the appropriate values of
a and b gives values for e(2s') correlation energy
that agree quite well with those calculated by both
the "many- electron theory'" and by group-theoreti-
cal methods.

IV. EXTENSION TO SECOND-ROVf ATOMS

The methods described above can easily be ex-
tended to the second row. We will be concerned
with the nondynamical correlation only, since we
have seen that the present group-theoretical ap-
proach cannot give the actual energy-level separa-
tions accurately; the dynamical correlations are
left out. The calculation proceeds in exactly the
same way as for the first row. We treat in our
example the 3s''8 3p''8, and 3d''S mixing in
magnesium. We subtract out the vacuum and
self-energy terms and use R4 to diagonalize the
three-by-three configuration-interaction matrix.

We find a value of 0. 179 a. u. for the lowest eigen-
value, the eigenvalue corresponding to the (400)
state. The actual diagonalization gives a value
of 0. 166 a. u. Putting in the correction for the
orbital contribution to the correlation energy we
find a value of —0. 031 a. u, for c(3s'). This
value is in good agreement with the value of

0. 0306 a. u. given by McKoy and Sinanoglu. "
We also note that a linear Z dependence for e(3s')
correlation energy is predicted for the same
reasons as linear Z dependence was explained
for the nondynamical correlation in first row
atoms. Examination of the McKoy and Sinanoglu
results show that this prediction is borne out
fairly well.
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V. CONCLUSION ties are not available.

Vfe have seen that R4 can be applied to first
row atoms to give very good approximations to
the values of nondynamical correlation energy.
In addition the Z dependence and the role of the
exclusion principle are elucidated. The applica-
tion to the second row shows that it should be
possible to obtain estimates of nondynamical cor-
relation in atoms where values for these quanti-
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Absolute intensities were measured in the continuous emission spectrum resulting from
electron attachment to the halogen atoms in a shock-heated plasma seeded with sodium

halides. The intensity measurements were used to determine new photodetachment cross
sections for the negative chlorine, bromine, and iodine ions in the wavelength region be-
tween 3000 and 4000 A. These cross sections are presented here and, where possible, are
compared with theoretical and experimental values obtained by other methods. For the case
in which the halogen atom is left in the ground state ( Psq~), the present experiments give
photodetachment cross sections of 1.2x 10" cm for Cl, 2. Ox 10 ~ cm for Br, and 2. 2

x 10 ~ cm for I near the detachment thresholds.

I. INTRODUCTION

When a neutral halogen atom captures a free
electron to form a negative ion, the excess energy,
consisting of the binding energy and the kinetic
energy of the electron, may be transferred to a
third body (usually another electron), or it may
be converted to radiation. The radiative two-
body attachment process is considered herein.
Because the free electrons in a plasma have a
continuous energy distribution corresponding to

the electron temperature, the spectrum resulting
from electron capture is continuous and has a
long-wavelength limit specified by the electron
affinity of the atoms. The electron-capture con-
tinuum is analogous to the positive-ion recom-
bination continuum extending beyond the conver-
gence limit of a particular line series of a neu-
tral atom. The negative halogen ion, however,
exhibits no discrete line spectrum, owing to the
absence of any energy levels below the detach-
ment energy. For this reason, the electron-cap-


