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The theory developed in parts I and II of the present series of papers is used to interpret the dielectric
properties of LiTa03. The problem is comfortably overdetermined, allowing both for a determination of the
parameters involved in the theory and for a consistency check of the theory itself. The agreement between
theory and experiment is quite good using completely temperature-independent parameters, but becomes
excellent if a temperature dependence of the Lorentz 6eld parameter is allowed. When the values obtained
for the parameters of the effective Hamiltonian are related to a detailed description of the system in terms
of a microscopic model, it becomes apparent that a representation in terms of a set of effective point charges
at the various nuclear sites is inadequate. It is suggested that a representation of each ion by two effective
charges, a core charge and a shell charge, may be more appropriate.

I. INTRODUCTION LiTa03 has been accumulated over the past year or
so, since single crystals of the compound are of interest
for a range of devices in the nonlinear optics 6eld.

The principle behind the theoretical method is to
construct an effective Hamiltonian for ionic motion in
a ferroelectric system from rather general considera-
tions, believing that the general form of this Hamil-
tonian will be essentially the same for a wide range of
ferroelectrics. The statistical mechanical part of the
theoretical problem can then be disposed of, describing
the various temperature-dependent dielectric properties
in terms of the parameters contained in the Hamil-
tonian. For some particularly simple ferroelectrics
(namely, those with essentially only one soft mode) the
problem is comfortably overdetermined, there being
considerably more separate pieces of experimental
information than there are independent parameters in
the effective Hamiltonian. Such is the case for LiTa03,
and it is the purpose of this paper to evaluate the set of
parameters which hopefully are sufficient to describe
the ferroelectric phenomena associated with this salt.
More importantly, however, we shall examine closely
the internal self-consistency of the theory looking out,
in particular, for a possible temperature dependence of
any of the parameters.

The effective-Hamiltonian theory differs fundamen-
tally from a free-energy approach as developed by
Devonshire, 4 the latter being a thermodynamic ap-
proach with macroscopic variables and parameters. The
parameters to be determined in the present paper are
microscopic and are therefore related directly to the
fundamental interactions within the electron-ion sys-
tem. The detailed form of the latter cannot be set down
until a particular model is chosen to represent the
system, and decisions made concerning the origin of
the most significant energy contributions. It is not the
purpose of the present paper to discuss such models in
detail since, at the present stage of development, a
detailed description of this kind would necessarily be

' 'N parts I and IP ' of the present series of papers,
- an effective-field theory has been developed to

describe the lattice dynamics of ferroelectric systems.
The theory, as so far developed, uses classical statistics
and takes its simplest form for systems in which the
ferroelectric phenomena are, to a good approximation,
describable in terms of a single-"soft"-optic mode of
lattice vibration. For such a system, quantitative
theoretical calculations have been carried out in parts I
and II with an emphasis on displacement ferroelectrics
and second-order phase transitions, although, as stressed
in the earlier papers, the theoretical method is readily
extended to include order-disorder ferroelectrics and
6rst-order transitions.

In the present paper we apply the theory in detail to
the displacernent ferroelectric lithium tantalate LiTa03.
The choice of LiTa03 as our 6rst "test case" was made
for a number of separate reasons. First, measurements
of the temperature dependence of Raman scattering in
LiTa03 for temperatures below the Curie point show'
that only one vibrational mode is grossly temperature-
dependent and that this has the correct symmetry
(infrared active for the electric vector parallel to the
direction of spontaneous polarization) to control the
ferroelectric behavior of the system. Second, the soft
mode at low temperatures (T((T,) has an energy which
is some three times smaller than the energy kT, assoc-
iated with the Curie temperature T,. This means that
quantum effects associated with dielectric phenomena
are certainly small until the temperature T falls below
T,/3, so that most of the temperature range of interest,
and the phase transition in particular, is adequately
described by classical statistics. Third, and perhaps
most signi6cantly, a wealth of experimental data on
both linear and nonlinear dielectric properties of

' M. E.Lines, erst preceeding paper, Phys. Rev. 177, 797 (1969),
hereafter referred to as part I.

'M. E. Lines, second preceeding paper, Phys. Rev. 177, 812
(1969), hereafter referred to as part II.' I. P. Kaminow and W. D. Johnston, Jr., Phys. Rev. 168,
(1968).

1045 4 F. Jona and G. Shirane, I&'erroelectnc Crystals (Pergamon
Press, Inc., New York, 1962).
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extremely tentative. Nevertheless, even a cursory
assessment of the role played by the parameters of the
effective Hamiltonian in a microscopic-xo. odel theory
enables us to use the results obtained below to emphasize
at least a few of the less obvious features that a satis-
factory model must incorporate.

Following the development of the theory in parts I
and II, we attempt to describe the ferroelectric proper-
ties of LiTa03 using the effective or "displacement"
Hamiltonian

In this Hamiltonian, s and $ are respectively, the con-

jugate momentum and displacement coordinates of the
soft mode (which will, for a one-soft-mode ferroelectric,
alone describe the gross features of the ferroelectric
phenomena), e is the volume of a primitive cell in the
crystal lattice, and (P;,„)=(S/v)(P) is the ensemble
(thermally) averaged ionic polarization per unit volume.
The external (Maxwell) electric field E is assumed to be
applied in the direction of spontaneous polarization, for
only in this instance will the one-soft-mode approxima-
tion be appropriate. ' Since the volume e is directly
measurable, the Hamiltonian (1.1) contains ffve un-

knowns which are to be determined by comparing
theory with experiment, namely, ~0, A, 8, gS, and yS.
There is, however, a hidden sixth parameter, because
the Hamiltonian (1.1) describes only the ionic motion
(or, more accurately, the motion of the ions excluding
the ionic distortions arising from the long-range forces
or effective fields; see Sec. 3) of the lattice. Most experi-
mental measurements, however, concern the total
polarization (P) or one of its derivatives where, in

part I, we relate (P) to (P;, ) through the equation
(P)=rl'(P;, ), deffning a parameter r)' which, in our

frequency range of interest (at, or below, typical optical-
phonon frequencies) is assumed to be independent of
frequency. This gives us the extra parameter q'S.

For the moment these parameters are merely tem-
perature-independent quantities to be determined (and
in fact, comfortably overdetermined) by direct com-

parison of theory with experiment. The assumption con-

cerning temperature independence hopefully relegates
thermal expansion and strain eftects to a comparatively
minor role as far as the gross temperature-dependent
features of the bulk ferroelectric properties are con-
cerned. This restriction can also be reassessed later in
the paper in the light of the detailed 6ndings for LiTa03.

2. ANALYSIS OF EXPERIMENTAL DATA

All the theoretical developments and numerical com-
putations required for the interpretation and assessment
of the experimental data to be analyzed below have been
presented in parts I and II of the present series of
papers. tA'e may refer directly to the relevant sections,
6gures, equations, etc. We shall 6nd that the interpreta-
tion of the experimental results for LiTa03 require a

negative A coefficient in (1.1). In this case, as stressed
in Sec. Sb of part I, it is very convenient to work in
terms of the dimensionless parameters a'= (Bk'T')"'/
o&s' P'= (Bk'T')'~'/(gyS'/e) and 8= (B'kT)'I'/( A)—
where k is Boltzmann's constant, and, in particular, in
terms of the temperature-independent ratios P'/n'
=res'/(ilyS'/e) and (p')'~'/8= —2/(BrlyS'/e)'i'. Directly
below, we derive eight relationships between these two
ratios for LiTa03. This is a measure of the overdeter-
mination of the problem and provides us with a con-
venient form for assessing self-consistency. Using these
results, we shall select optimum values for P'/n' and
(P')'~'/8 and then proceed to an evaluation of the six
parameters discussed in the introduction.

A. Spontaneous Polarization as a
Function of Temperature

A number of measurements of the spontaneous
polarization of LiTa03 have recently been reported.
Two separate measurements of room-temperature
polarization, one obtained by a static pyroelectric
technique' and the other by switching the polarization
using liquid electrodes and high pulsed fields, ' agree on a
value of 50 pC/cm' to an accuracy of a few percent.
The most complete measurements of the temperature
dependence of spontaneous polarization have been
made by Glass' using the dynamic technique of
Chynoweth. He reports a measurement of reduced
polarization P/Pe (where Pe is the saturation value of
spontaneous polarization at low temperatures as a func-
tion of reduced temperature T/T, for temperatures
between 300'K and the Curie point, which is close to
890'K.

The experimental curve is shown in Fig. 1, where it
is compared with a set of theoretical curves taken from
Fig. 8 of part I, which are drawn for the particular case
P'/n'=1. For this case, a best-fft theoretical curve has
(P')"'/8=1. 25. The fft is quite good but the theoretical
curve falls off a little too slowly with temperature at low
temperatures. A similar set of theoretical curves can be
drawn for arbitrary P'jo.' values, the agreement between
theory and experiment being about equally good for
all cases. Thus, the Qtting procedure defines a relation-
ship between the two ratio parameters and this is
sketched in Fig. 2.

B. Speci6c Heat

Also measured by Glass~ was the speci6c-heat curve
for LiTa03 in the vicinity of the Curie temperature. A
marked anomaly could be distinguished at T, with a
form indicating a second-order phase transition (no

~ H. Iwasaki, ¹ Ushida, and T. Vamada, Japan J. Appl. Phys.
6, 1336 (1967).

6 S. H. Wemple, M. DiDomenico and I. Camlibel, Appl. Phys.
Letters 12, 209 (1968).

7 A. M. Glass, Phys. Rev. 172, 564 (1968).
s A. G. Chynoweth, J. Appl. Phys. 2?, 78 (1956).
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' FIG. 1. The curves of reduced spontaneous polarization versus

reduced temperature for the particular. .. case P'/n'=1 are repro-
ducedffromIIFig. fg~~of part I. They are compared~with the experi-
mental findings (open circles)Ifor)LiTaOg.

latent heat). As stressed by Glass, a 6t of theory with
experiment for the dielectric anomaly is complicated
by a lack of knowledge concerning the "background"
specihc heat, which is due to all the other phonons in
the lattice and far outweighs the "dielectric" contribu-
tion from the soft mode. Nevertheless, the magnitude
of the speci6c-heat discontinuity at T, is quite dednite
and is presumably explicable in terms of the dielectric
contribution alone. Glass' measures the speci6c-heat
jump to be 1.6 cal/mole deg which, in terms of the
microscopic units used in the theoretical discussion of
part II, is 1.6 (k/e), where k is the Boltzmann constant
and e is the volume of a primitive cell (which, for the
LiTa03 structures is' 106)(10 "cm' and contains two
formula weights). Using the specific-heat theory of
part II, e.g., Figs. 2 and 3 of that paper, this condition
again defines a relationship between the parameters
P'/n' and (P')'Is/3 which is also shown in Fig. 2.

We note from the measurements of Glass that
quantum effects are already quite apparent in the
background specilc heat for temperatures T,. They
suggest a mean frequency for background phonons of

400 cm '. As stressed in part II, this is not incon-
sistent with the use of a classical theory for the dielectric
anomaly, since the soft-mode frequency has an energy
which is always very much smaller than kT, . Quantum
effects for the soft mode will certainly not be apparent
for temperatures much above 300'K.

It is apparent that the experimental and theoretical
curve shapes for the speci6c-heat anomaly are qualita-
tively similar and, by choosing a rather arbitrary

9 S. C. Abrahams, W. C. Hamilton, and A. Sequeira, J. Phys.
Chem. Solids 2S, 1693 (1967).

Fn. 2. A number of curves, each derived from experimental data
for LiTa03, are compared on a et'/p', (p')"'/S plot. Curve (i) is
derived from the shape of the spontaneous polarization curve
(ii) from the specific-heat discontinuity at the Curie temperature,
(iii) from the soft-mode frequency at low temperatures, and (iv)
from the value of spontaneous polarization at low temperatures.
Shaded area (v) contains points consistent with the findings for
soft-mode frequency near the Curie temperature combined with
the limits (dashed curves) that the transition must be of displace-
ment type and of second order. The ulled circle and arrows
indicate the degree of self-consistency of the data.

background contribution, some test of curve shape can
be attempted (see, for example Glassr who uses a
Devonshire thermodynamic approach). Nothing very
quantitative results from such a comparison because
of the uncertainty concerning background contribu-
tions. Nevertheless, it is perhaps of interest to show the
"best-fit" curves and this we do as follows. Jumping
ahead, we take values of p'/a' and (p')'~s/fi which
will be found later to be close to the optimum values
for LiTa03, viz. , 2.3 and 1.9, respectively. Using
these values we compute the classical specific-heat
curve for the soft mode using the theory of part II.
The result is shown in Fig. 3.This curve is now used for
comparison with the experimental results (Fig. 4).
The 6t is quite good but not perfect. Some similarities
and some differences are evident when a comparison is
made with the Devonshire approach of Glass (Fig. 4
of Ref. 7). First, in both cases the specific-heat jump at
T, is experimentally some 15% smaller than theory,
and the theoretical curve shapes are comparable.
However, the statistical dielectric contribution to
speci6c heat contains a sizable high-temperature tail
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(due primarily, though not entirely, to a temperature-
independent contribution of -,'(k/e) from the momentum
coordinate of the soft mode) and it decreases much
more slowly with decreasing temperature in the ferro-
electric region. These differences have just been ab-
sorbed into the unknown background specific heat and
do not a8ect significantly the fit with experiment. Also
indicated in Fig. 3 is a semiquantitative estimate of the
quantum-mechanical quenching of specific heat at low
temperatures, calculated on the assumption that the
soft mode is quasiharmonic at low temperatures.

C. Dielectric Constant

The dielectric constant at or about room temperature
has been investigated for LiTa03 by Barker" by

FxG. 3. The contribution of the soft mode to speci6c heat is
calculated classically for LiTa03 using the optimum values of
n'/P' and (P')"/b deduced from Fig. 2 and discussed in the text
The quantum-mechanical "freezing out" of the soft-mode speci6c
heat a8ects the calculation for LiTa03 only when T/T, ((1 and is
indicated (dashed curve) in the figure.

e= eg&+
0& —M +ZG)'yf

(2.1)

where 8;, 0;, p, , are the strength, frequency, and
linewidth, respectively, of the jth infrared-active mode
(and e„ is the frequency-independent contribution to
the dielectric constant arising from the vacuum and
»gh-frequency electronic process), Barker's finds the
best oscillator fit to give a value 30 for the strength
of the soft mode in LiTa03 at room temperature. This
then is a measure of the contribution of the soft mode
to the dielectric constant at room temperature.

As the temperature approaches T„ the contribution
of the soft mode to dielectric constant becomes very
large and the entire magnitude of the dielectric constant
becomes, to a good approximation, that of the soft
mode alone. Glass~ has measured e for LiTa03 near the
Curie point at 1 kHz in both the polar and nonpolar
phases. In each phase he finds a Curie-Weiss law for
temperatures close enough to T, as follows:

&para =
1.6/10'

&ferro
T—T.

'
0.72' 105

Tc
(2.2)

Theoretically, from part I, we have (noting that
c= 4z-r)'X;.„)

kg' T. 1 4m'' T, 1
&para = &ferro = (2.3)

T—T,C„y T—T, Cg

where C„=——,'Cf ———,
' —p', and p,

' has been computed in
Fig. 12 of part I. Applying and adiabatic correction to
er„„(see Glassr), since the theory calculates isothermal
values, modifies the numerical coefficient in (2.2) only
marginally, to 0.76. Using (2.2) and (2.3) we deduce

n'/V= 14(s f '), — (2 4)

k, 30—
O
V)l-

28—

where we have used the fact that T,= 890'K. The value
of —,—p' is already quite well determined from the
spontaneous polarization and specific-heat curves of
Fig. 2 since it is a rather slowly varying function of the
parameters in this region of P'/n', (P')"'/8 space. Using
Fig. 2 of this paper, and Figs. 6 and 12 of part I, we find

26—
3
—p, =0.95~0.10, (2 5)

24-
I 00 200 300 400 500 600 700

TEMPERATURE ('C)

from which it follows that r)'/y 13&1 for LiTaOs.

D. Soft-Mode Frequency
FIG. 4. The upper curve shows the experimental specific-heat

curve for LiTa03. The best 6t of theory (Fig. 3) with experiment
is obtained by choosing a smooth "background" specific heat as
indicated by the lower curve. The resulting total specific heat is
then given theoretically by the filled circles.

"A. S. Barker, Jr., and J. A. Ditzenberger (to be published).

The temperature dependence of the soft-mode fre-
quency in the ferroelectric phase of LiTa03 has been
measured both by a study of the infrared reQection
spectra" and of the Raman spectra. ' At very low
temperatures, the soft mode has a frequency which
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approaches 218 cm ' as T —+ O'K. At room temperature
the frequency has decreased to 200 cm ', and from

300'K right up to the Curie point (890'K) it follows
fairly closely the law oi(T) =245)(T, T)—/T, jils cm '.

At room temperature, we can combine Barker's value
of 30 for the soft-mode strength (Eq. (2.1)) with the
theoretical estimate LEq. (7.7) of part Ig for the
contribution of the soft mode to ionic susceptibility.
Neglecting linewidth, we can express the strength of
the soft mode as

egg'S'
$=

vco'(T)
(2.6)

where we have written the soft-mode frequency as
to (T) to conform with the notation of part II.A question
arises here as to whether we are justified in using the
same effective Hamiltonian parameters to interpret the
low-frequency susceptibility results of Glass' and the
high-frequency results of the infrared reQectivity and
Raman experiments since, presumably, the former
measures properties of the free system (frequencies
below the piezoelectric resonances) and the latter
properties of the clamped system. The answer is
probably yes since, although the pertinent experiment
does not appear to have been carried out for LiTa03,
the low-frequency dielectric constant (for external field
parallel to spontaneous polarization) in isomorphic
LiNb03 is almost entirely connected with phonons and
therefore very insensitive to frequency right up to
frequencies of the order of, but still below, those of the
phonon modes. ""

Using (2.6) for T=300'K, we find

~'(300)/~e'= ( 4/ 3)0(0'/7) (~'/p') (2 7)

where we have used the fact that riy5'/so~a'=n'/8' by
definition. Since &o(0)/to(300) = 218/200, it follows that

~'(0)/~0'= o 50(n'/7) (~'/p') (2 8)

Putting ri'/y= 13 as calculated above, (2.8) gives
to(0)/(op as a function of n'/P'. Hut, oi'(0)/ops' has
already been calculated quite generally as a function of
P'/n' and (P')'l'/8 in Fig. 6 of part II. Combining the
latter with (2.8) provides us with another relationship
between these dimensionless parameters which is
plotted, with the others, in Fig. 2.

For somewhat higher temperatures, both theory and
experiment suggest a law &o(T) ~ (T,—T)'". Consider
first the small-anharmonicity approximation for soft-
mode frequency near the Curie point which, although
rather crude for the present case, has a very simple
form and can be used to demonstrate our procedure for
this limit. It is, for the ferroelectric phase,

~'(T)/~o'= = (s —
l ')( .—T)/T' ( )

Experimentally, this form holds right down to room

"K.Nassau, H. J. Levinstein, and G. M. Loiacono, J. Phys.
Chem. Solids 27, 989 (1966).

temperature. If this is to be so theoretically also, we

must have
(2.10)to'(300)/(os'= -', (s —p') .

Using (2.7) we find

p'/~'- (~/10) (~'/v) p(-,')—~'&-', (2.11)

which, by use of (2.4), reduces to p'/n'= 4.4, demonstrat-
ing that LiTa03 is not a small-anharmonicity system
(p'/o. '=1), and indicating that the negative sign of the
quartic anharmonicity plays a vital part in the appear-
ance of ferroelectricity in this salt, i.e., in the presence
of a positive quartic anharmonicity, this value of
P'/n' would not sustain a ferroelectric order at any
temperature.

To proceed more quantitatively for the case when
anharmonicity is not small we use the theory developed
in part II. Computing numerically we find a value
P'/n'= 2.5&0.5 where the error brackets indicate
errors possibly incurred through the use of the approxi-
mation outlined in the last paragraph of part II coupled
with the approximate evaluation of numerical integrals.

Coupling this result with the quite definite limits on
p'/rr' and (p')'"/8 resulting from the conditions that the
phase transition is of second order and the nonpolar
phase centrosymmetric, restricts these parameters to a
small region P'/n' = 2.5+0.5, (P')'"/8 = 2.0&0.4, which
is indicated in Fig. 2. As discussed in part II, the
system has a centrosymmetric nonpolar state (displace-
ment phase transition) if p'/n')sr(p''"/6)', and the
transition is of second order if P'/rr'(1+ s (P' "s/5)'. The
limiting curves are shown (dashed) in Fig. 2. One further
restriction discussed in part II could also be applied in
the present case. Experimentally the soft-mode fre-
quency would seem to go to zero as T —+ T,. Classically,
this occurs only when P'/a') —,'(P' 'i'/8)'. However,
because of the possible relaxation of this condition when

quantum tunnelling is allowed for, we have not attached
much weight to it even though it is not in conQict with
the other findings.

"S.C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids
28, 1685 (1967).

E. Crystal-Structure Data

Single-crystal x-ray and neutron-diffraction studies
of LiTa03 have been carried out by Abrahams et al.9'
The structure below the Curie point is well established,
having crystal space group R3c(Cs„s) and the primitive
cell contains two formula units. Above the Curie
temperature the structure is almost certainly R3c(Dss')
which is centrosymmetric. The basic structure in the
nonpolar phase consists of planes of oxygen ions as
sketched in Fig. 5, with Ta ions in inversion center
positions midway between adjacent planes and with
the Li ions coplanar with the oxygen triangles. In
going to the ferroelectric phase, the ions move with
respect to their center of mass and, at room temperature,



M. E. L I N ES 177

OxYGEN

polarization and soft-mode frequency at room tempera-
ture (50 pC/cms and 200 cm ', respectively) we obtain
tl/tl'=1. 34.

The possibility of making use of the soft-mode
strength in the present context to eliminate the charge-
dependent variable S from the basic equation for
spontaneous polarization has also been realized by
Axe."However, he uses the approximation p p 1y

thereby neglecting the electronic contribution to polar-
ization except insofar as the use of the experimental
value for soft-mode frequency includes it implicity.

TANTALUM

LITHIUM

FIG. 5. The LiTa03 crystal structure in the nonpolar phase
indicating a sequence of distorted (oxygen ion) octahedra along
the polar axis. The Li ions are coplanar with oxygen triangles and
the Ta ions are in inversion center positions midway between
adjacent oxygen triangles. In the polar phase, the Li and Ta ions
shift along the c axis with respect to the oxygen framework.

the magnitude of the respective shifts along the direc-
tion of the polar axis have been measured by Abrahams
et al. to be q(Li)=043 A, g(0)= —0.17 A, and q(Ta)
=0.029 A.

Now, from part I (Sec. 3), the variable ( is defined in
terms of the q's for the single-soft-mode approximation
by

(2.12)ps=lb)~ P Myles =1,

30r0'(300) ri'
(»'= (~)'.

4vrvg
(2.13)

Everything is known in this equation except the ratio
tl'/rl. Thus, using the measured va, lues of spontaneous

where b runs over all ions in a primitive cell, and where
M signifies mass. Using (2.12) in conjunction with the
measured shifts for LiTaOs, we find ($)=2.38 ainu'" A
at room temperature.

This is of great interest since the spontaneous
polarization is immediately expressible in terms of (t) as
(»=g'(S/v)(P). Using (2.6), and putting the soft-mode
strength equal to 30 at room temperature, we obtain

F. Spontaneous Polarization as T —& 0

In part I, we found that a rather simple relationship
existed between the spontaneous polarization at low
temperatures and the Curie temperature T,. We may
write it

~~ = p (&/ri )('9/ri )9'o)' (2 14)

where p' as a function of the dimensionless variables
has been computed in Fig. 10 of part I, Using the values
tl/tl'= 1.34 and g'/q =13 established above, this reduces
to direct evaluation of p'. Experimentally, we know
the room-temperature value of spontaneous polarization
is" 50 pC/cm' and that the Curie temperature isr
890'K. Using the temperature dependence of polariza-
tion data of Glass, ~ we estimate a limiting value of
spontaneous polarization as temperature T —+0 to be
53 pC/cm'. With these numbers, Eq. (2.14) reduces to
p'=0.45 which, from Fig. 10 of part I provides us with
another relationship between P'/n' and (P')"'/8 for
LiTaOs. However, Eq. (2.14) also has solutions outside
the g'/q =13 region and, for completeness, we have
solved Eqs. (2.4) and (2.14) simultaneously to obtain
the more general form of this anal condition relating the
dimensionless parameters; it is shown, with the others,
in Fig. 2.

We are now in a position to assess the self-consistency
of the data as interpreted by the effective-6eld theory.
All the relevant information is in Fig. 2, where we And

that it is possible to select a pair of values

P'/n'= 2.5&0.5 (8')"'/5= 2.0+0.25, (2.15)

which, with the error brackets indicated, are able to
account for all the data obtained thus far, i.e., 6ve
separate pieces of information concerning equalities
and three concerning inequalities.

Using the values (2.15), it is now a straightforward
process to estimate the values of the eGective-Hamil-
tonian parameters for LiTaOs. The equation (»
= (ri S/v)($), considered earlier in connection with
Eq. (2.13), yields directly ri'S=520 cmsl' sec ', the
errors involved here being dominantly those incurred
experimentally and may be typically &10%%uo. From

"J.D. Axe, Solid State Commun. 5, 413 (1967),
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TABLE IX, The best 6t of theory with experiment obtainable using completely temperature-independent parameters; obtained with
orb=128 cm ' A = —71k(amu) '(A) ' 8=4.5k(amu) '(A) ' ri'5=500 cm'" sec ' g/g'=1. 3, g'/y=12.

Property

1. Curie Temperature T, ('K)
2. Paraelectic susceptibility near T,
3. Ferroelectric susceptibility near T,
4. Shape of polarization curve
5. Soft-mode freguency near T, in the nonpolar phase (cm ')
6. and in the polar phase (cm ')
7. Specijc-heat jump at T, (cal/mole deg)
8. Polarization near T, (pc/cm~)
9. Energy of order

10. Magnitude (f) of distortion from nonpolar phase, at room
temperature (amu'" A)

11. Spontaneous polarization as T —+ 0 pC/cm'
12. Soft-mode frequency as T —& 0 (cm ')
13. Soft-mode strength at room temperature

Theory

894
1.5OX 10~/(T —T.)
0.75 X 10'/(T, —T)

1.00~
115[(T—T,)/T, g"'
230[(T,—T)/T, j'"

1.9
86.3[(T,—T)/T, g"

0.63kT,/v

2.79
60

279
16.5

Expt

890
1.6X10'/(T —T,}
0 72X10'/(T. —T)

1.04~
not known

245[(T. T)/T—,]"
1.6

85[(T.—T)/T, g"
not known

2.38
53

218
30

Difference

+o%

+4%—4%
~ ~ ~

—6%
+19'
+2%

+17%
+ j-3%
+28%—45%

a Measured as the value of the radius vector for the case P/Po = TiT~.

TABLE III. Like Table II but with one modification. The
parameter y is allowed to be temperature-dependent to the
extent p-+ —,'p as T, —+ T ~ 0. Thus, only the low-temperature
results 10—13 are modified from Table XX, on substituting y/3
fol p.

Property Theory Expt DiGer-
ence

factor pb. For the moment, we shall merely introduce
this temperature dependence as an extra parameter to
be determined, like to others, by a comparison of theory
with experiment. The problem is still comfortably over-
determined. In Table III, we show the results of the
modified theory in which the Lorentz parameter is
allowed to vary smoothly from y —+ y/3 as the tempera-
ture goes from T, —+ 0. Thus, only the low temperature
properties from Table II have been modified. The result
is to reduce the error between theory and experiment to
less than 10%%u~ in every case except one. The one excep-
tion is now the specific-heat discontinuity at T, with an
error of 19% an estimate which is not changed by the
introduction of a temperature dependence to y. This
discrepancy is not serious since the experimental ac-
curacy of this result would seem only a little better
than +20'%%uq (Glassr).

We have managed to obtain a fairly quantitative
description of the ferroelectric properties of LiTa03 in
terms of an effective Hamiltonian. To this extent the
immediate goal, as set out in part I, has been achieved
for this particular system. However, as stressed in part
I, the statistical problem is only part of the story. Its
solution, in the effective-field approximation, has proved
tractable without the necessity of recourse to a detailed

model for the system. This is the strength of the method.
It also stresses, however, that there is still a lot to be
done before a complete understanding of the origin of
all the important microscopic contributions to energy
can be obtained. Nevertheless, even at this stage, it is
instructive to ponder the results obtained for the
parameters of the effective Hamiltonian. They do shed
light on a few of the difficulties which will be en-

countered when an attempt is made to construct a
realistic model for a ferroelectric system of the present
type.

3. EFFECTIVE CHARGES IN LiTa03

In constructing the effective (or "displacement" )
Hamiltonian in part I we did, in fact, make use of a
rudimentary model, using the concepts of effective
point charges and electronic polarizabilities to construct
microscopic equations connecting these quantities to
parameters of the displacement Hamiltonian. We have
not used these equations thus far and, since we feel
that the form of the displacement Hamiltonian is

probably more general than the model used in part I
to establish it, we do so now only to point out the great
care that is necessary in assessing results on such a
simple model.

In Sec. 3 of part I, we described the ferroelectric
system in terms of effective point charges eb (each
experiencing an internal field E|„b) and electronic
polarizabilities nb. From part I, using the one-soft-
mode approximation and dropping all tensor notation
(all displacements along the polar axis), we have

10. Magnitude (e) of distortion from
nonpolar phase, at room temper-
ature (amu"~ A}

11. Spontaneous polarization as T —+ 0
(pc/Cm')

12. Soft-mode frequency as T ~ 0
(cm ')

13. Soft-mode strength at room
temperature

2.37 2.38 —0%

205 218

—4%

—6'Fo

30.6 30 +2'Fo

S=p ebQb,
b

tlS = +(1+q'nlrb)eblb,

'g'7S=P rl 'rbebgb,

(3.1)

(3 2)

(3.3)
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where

CX= 0', b &

V b

(3.4)

(3.5)

(3.6)

where we have put iI'/y=12 from Table II. Now,
combining (3.1) and (3.2), we find

650= (500/rI')+54niI', (3.8)

which is an equation for p' if we can estimate n. The
latter can be done by noting the published value'4 for
the refractive index at optical frequencies of LiTa03,
which is e,~&,,——2.18, the difference between ordinary
and extraordinary index of refraction being completely
negligible in the present context. At optical frequencies,
the ionic motion is frozen out and the electronic
component of susceptibility X,&„dominates. From Eq.
(3.6) of part I we find X,i., g'n Us——ing t.his, together
with

~tm= (~eptic)'= 1+47rxelee, (3.9)

produces the result g'ca=0. 30 which, combined with
(3.8) gives iI'=0.79 and, therefore, iI= 1.03.This finding
contradicts the initial assertion that g' must be greater
than unity in LiTa03. Where is the Aaw?

Before taking up this question it is helpful to assemble
some more convicting and puzzling evidence. In the
"crystal-structure data" subsection of the previous

'4 P. V. Lenzo, E. H. Turner, E. G. Spencer, and A. A. Ballman,
Appl. Phys. Letters 8, 81 (1966).

In all the above, the summation b runs over all effective
charge sites in the primitive cell of the lattice.

At first sight, it is tempting to think of the charge
eb as the static charge (nuclear plus electronic) which
resides in some suitably chosen volume surrounding
site b, and to think of yb as the Lorentz parameter
computed for the site b itself. Let us proceed initially
with this picture. Now, for LiTaO3, in going from the
nonpolar to the polar state, the positive ions (lithium
and tantalum) move in the (say) positive direction with
respect to the center of mass, the negative ions in the
negative direction. Thus, yb is positive for all sites.
Since polarizabilities are positive for all ions, it follows
that iI' must be greater than unity LEq. (3.5)). Also,
from part I, (P;, )= (1/iI')(P), so that the ionic contribu-
tion to polarization is less than the total (ionic plus
electronic) polarization. This all seems reasonable
enough; but consider the following. From the calcula-
tions of the previous section q'5=500 cm@' sec ' and
iI/iI'=1. 3. Therefore, iI5=650 cm@' sec ' and, from
(3.3),

g ybebub (qS) (y/——q') =54 cm@' sec ', (3.7)

section, we quote the Inagnitudes of the ionic shifts
(from the nonpolar state) at room temperature as
measured for LiTa03 by x-ray and neutron diffraction.
Using (2.12) we calculate the components Nb of the
normalized eigenvector of the soft mode as I(Li) =0.18,
u(Ta) =0.012, N(0) = —0.071, in units of amu 'I'.
Combining this with (3.1) we can learn something about
the effective charges. Suppose, as seems reasonable,
that lithium goes into LiTa03 essentially as Li+ with
charge +1 (units of electronic charge). This being so
we have

(3.10)

in terms of which (3.1) becomes

2 {0.18+0.012t, (Ta)+0.071/1+ e (Ta)))
=500/g' cm'~' sec ' amu'~'. (3.11)

This reduces to
e (Ta) = (8.1/g') —3.0. (3.12)

Thus, this is the value of eGective tantalum charge
which would appear to be in accord with experimental
dielectric measurements and, in particular, with the
measured value of spontaneous polarization. If we
neglect electronic effects, putting g=q'= 1, we find the
ionic values e(Ta) =+5, e(0)= —2. But this is to be
compared with the results of a nuclear magnetic res-
onance study of LiTa03 by Peterson et a/. "who also
neglect electronic effects and, calculating the electric
field gradient at the nucleus in question from an
effective point charge environment, find e(Ta) = 1.21,
e(0) = —0.74.

At least part of the explanation must be that the
nuclear magnetic resonance work and the eGective
charge calculations of the present section measure two
essentially diferent quantities. The former is concerned
with the static environment at any particular tempera-
ture, the latter with a movement of charge in going
from the nonpolar to the polar state. "This, however,
cannot be the whole story since, in terms of any set of
effective ion point charges, the earlier finding that
p'( j. is still clearly anomalous.

We are led to a possible understanding of the latter by
taking note of two other rather surprising results for the
effective-Hamiltonian parameters as calculated in Sec.
2. First, the Lorentz parameter y, which on the naivest
of approximations is the familiar 47r/3, is found to be
very small indeed; probably 0.1. Second, a variation
in this from y to y/3 as temperature is reduced from
T, to 0 seems very large in view of the calculation of
Barker and Loudon'~ for the variation of some Lorentz
parameters yb in isomorphic LiNbOb (take care to
distinguish the soft-mode Lorentz parameter y and the
Lorentz parameters per site pb when the latter vary
from site to site).

"G. E. Peterson and P. M. Bridenbaugh, J. Chem. Phys.
48, 3402 (1968).

'6 This suggestion was made by A. S. Barker, Jr.» A. S. Barker and R. Loudon, Phys. Rev. 158, 433 (1967).
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Consider a tantalum ion in LiTa03. It has an ion
core with charge +13 which is quite compact, and an
outer shell of anything from 13 to 8 electrons (depending
on the degree of covalency) which spreads out over a
much larger volume in the lattice. Now, suppose that
the degree of covalency in LiTa03 is sufFiciently large
to violate the point charge approximation for dipolar
interactions. The Lorentz parameter yb at the site b

will then be position-dependent and vary somewhat
over the effective volume of the tantalum ion. Suppose,
for the sake of de6niteness, that there are Il outer shell
electrons and that the average value of the Lorentz
parameter for these more widely distributed electrons
is some 10% larger than the value ya at the core site.
Such a modest variation is perhaps not unreasonable.
The Lorentz force on the ion as a whole is now pro-
portional to

t 13—11(11)jvb=0 97b=vb(«f)e(Ta) (3 13)

where we have dedned an effective Lorentz parameter
ya(eH) and hence an associated effective field E~„a(eH)
=E+ya(eff)(P) for the whole ion. Since, in the present
example, e(Ta) =2, then ya(eff) =0.45yb. The numbers
in this example are not, of course, to be taken too
seriously. They do, however, illustrate that if the point
charge approximation for dipolar interactions breaks
down, then the effective Lorentz parameter for an
ion centered at site b may bear little relationship to the
actual value of the Lorentz parameter evaluated at or
near that site; it may even be of opposite sign. This may
help to explain the small value found for the mode
parameter p in LiTa03. It could also explain a fairly
large temperature dependence of this same parameter
looking on it as a variation caused by the change of
environment in going from the nonpolar to polar state
again magnified by the effect depicted in (3.13).A small

variation in yb can cause a much larger percentage
variation in yb(eff) and hence in the soft mode y.

We can now put all these ideas together. Let us
consider ions at sites b with charge +1Vae on the ion
cores and charge —nbe in the outer shells (e being the
magnitude of the electronic charge). Even in the
nonpolar state where (E)=0, an ion b probably does not
vibrate simply as an undeformed effective charge
(Xb—na)e. When the ion is not in a centrosymmetric
environment, it will almost certainly distort under the
effects of a combination of electrostatic and covalent
forces. In I'ig. 7, we depict the motion schematically.
Let the ion core move through a distance gb and the
electrons in the outer shell, on the average, through
a distance qb+bqb Then. ,

1
I' = QEbeqb —nbe(q—b+8qb)

p b

Z(&-a nb+—&na) eqb = Peb-+qa, (3.14)
b b

where we have defined

8naqa nab—q—a—, and eb+= (Ea—na+bna)e. (3.15)

The sign of bnb/(Xb —na) is such that electrostatic forces
tend to make it positive and covalency effects tend to
make it negative. If we associate Peterson's" charge
values with (Ea nb) e, then —it is clear that dna/(Xa —nb)
is positive for LiTa03 and that, therefore, electrostatic
forces dominate the ionic distortion. If we assume, as a
erst approximation, that blab ~ qb then blab is independent
of the amplitude of the motion. All the forces operating
in this motion are already contained in the parameters
a0s, A, 8, of the displacement Hamiltonian (1.1).

If we now consider the polar state, the situation is
changed only by the addition of a local 6eld E&.,b

which adds to the polarization an electronic term
O, bEi« to give

-ne
P= Q(eb+qa+naEi. ,a), —

b

(3.16)

t=o OR-27r
QJ

FOR OXYGEN IN LiTaOg

N=6
n =67
sq/q = 0.$

7rt=—
OJ t=-37r

24J

FIG. 7. A schematic representation of the vibrational motion of
an oxygen ion in the nonpolar phase, representing the ion by a
core of charge +Pe vibrating with amplitude q, and a shell
(charge —ee) with amplitude q+bq. The results for LiTaQ3
suggest that for this salt, bg/g might be of the order of 30oro.

where Ei«' Lnot Ei«(eff)) is appropriate for the polar-
izability term. It is clear that eb+ is the important effec-
tive charge to consider in conjunction with polarization.

However, another important point arises when we
consider the contribution in energy made by the long-
range forces (or effective field). This takes the form
)compare Kq. (3.3) of part Ig

P(eaqaE~„(eff) nae(hqb)Ei„a-

+-',nb(E~..')'j. (3.17)

If we take nb to be independent of qb, we can drop the
final term in (3.17) since we are only concerned with
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where
eb*——(iVb —nb+ wbhnb)e,

m b y——b/yb (eff)

(3.19)

(3.20)

Thus, let us suppose that the system cannot be described
in terms of a single set of effective charges (one for each
ion) and that we must concern ourselves at least with
both a core and a shell charge for each ion. It is readily
verified that all the previous work on the displacement
Hamiltonian is still valid, but now with the definitions

S=p eb+nb,
b

yS= P(1+rt'uyb')eb+nb,

(3.21)

(3.22)

rtyS= p iI'yb'eb+Nb, (3.23)

C= Qb)
V b

(3.24)

where

1
Gab

p b j (3.25)

vb'= (eb*/eb+)vb(«). (3.26)

Comparing with Eqs. (3.1) to (3.5) we see that eb+ has
replaced eb, and that yb' has replaced yb except in the
delnition of it in (3.25). Since it is only yb(eff) which is
required to be positive for all sites, the ending g'&1
is no longer necessarily anomalous. It would result if at
some sites (probably the oxygen sites in LiTaOb) Vb
is negative but yb(eff) positive. Thus, for example, if
we write X=6 and n=7, this could result if the
negative value of Vb for the oxygen cores has a magni-
tude greater than 7/6 times that appropriate for the
ion shell. We stress, however, that this is being suggested
as only one of perhaps many possible explanations in
terms of yet more sophisticated models.

Within the new framework we write formally I';,„
= (S/v)$, where S=pb eb+nb It is evid. ent that P;. is
now no longer an ionic contribution to polarization in
the usual sense but already includes all the electronic
contribution resulting from ionic distortion due to

the motion of qb. Doing this we find

—1
V'= PPeb+qbE+eb*qbyb(eff)(P)7, (3.18)

short-range forces. Only the contribution from the
effective 6eld is missing, and it is just this extra elec-
tronic term which is corrected for by the parameter
iI' when we write (P)=q'(P„, ) for the ferroelectric state.

Finally, we can extract from our numbers just a
little information concerning the degree of ionic distor-
tion present in LiTa03 when the ions are removed from
centrosymmetric positions either by the onset of
ferroelectricity or merely by vibrational motion in the
nonpolar phase.

We have earlier evaluated the components Nb of the
normalized eigenvector of the soft mode for LiTa03.
We readily verify that, because of its very large mass,
the tantalum ion contributes only a small amount

( 10%) to a sum pb eblb. Since we expect the tan-
talum ion to be considerably less polarizable than the
oxygens, it probably contributes even less to pb eb+lb.
Lithium is likely to be present essentially as Li+ and,
with a small and compact closed-shell structure, the
distortion sects referred to above are likely to be small
for it, allowing us to write e+(Li) =e(Li) =1 electronic
unit e. A charge conservation equation of the form
(3.10) need not hold for the effective charges eb+ so that
we are not justified in using the results (3.10)—(3.12) to
write e+(Ta) = 7, e(0)= —2.7 in units of e. Nevertheless,
the contribution of the tantalum ion being small, we
shall not be greatly in error by allowing about 10%
for its contribution to pb eb+Nb to estimate

0.18e —0.21e+(0)= (0.6/g')e=0. 75e, (3.27)

which is e+(0)= —2.7e and agrees with the earlier
estimate. %'e are not able, however, to say anything
about e+(Ta) and the above value of 7e may be com-
pletely spurious. If, as seems likely, the nuclear magnetic
resonance experiments measure something approximat-
ing (Eb—nb)e, then we calculate for the oxygen ions
"en= —2. Putting n=7, it follows that bq/q= —8n/n
=0.3. In words, the outer electron shell of an oxygen
ion in LiTa03 has thermal vibrations in the nonpolar
state with amplitude some 30% larger than that of the
ion core. A similar effect, but reduced in magnitude by
a factor iI' (i.e., from about 30% to 25%) results for
the thermally averaged positions of the oxygen core and
shell when the system cools below its Curie temperature.
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