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approximation, only one strongly temperature-depen-
dent optical-phonon mode. For such a system we have
described many dielectrics properties quantitatively in
terms of the parameters of the displacement Hamilto-
nian. These properties include polarization, soft-mode
frequency, and linear and nonlinear static and dynamic
susceptibilities, all as functions of temperature both
near to and away from the Curie temperature.

A comparison of theory with experiment for some or
all of these dielectric properties is suf5cient to determine
the relevant parameters of the displacement Hamilto-
nian. These parameters are microscopic and are very
much more closely related to the fundamental forces of
the system than are the parameters of a thermody-
namic theory. In part III we actually determine them
for lithium tantalate, and proceed to show how they
can be used to elucidate less obvious features of de-
tailed microscopic behavior and to support, or to
reject, particular microscopic models.

The accuracy that can be achieved in any such under-
taking probably depends most signi6cantly on the
validity of the "one-soft-mode" approximation for the
particular ferroelectric concerned. A quantitative assess-
ment of the number and degree of softness of the various
optic modes can be made by direct measurement of the
infrared or Raman spectra as a function of temperature.

The hope is that for a number of displacement
ferroelectrics (and possibly even order-disorder ferro-
electrics; see part II) the use of the displacement
Hamiltonian and classical statistics will allow for a
fairly quantitative description of nondissipative di-
electric properties in terms of relatively few microscopic
parameters which can themselves, as a result, be esti-
mated with reasonable accuracy. In this way, less
emphasis need be placed on thermodynamic (macro-
scopic) theories and explanations of experimental data
can perhaps, more frequently, be given directly in terms
of microscopic theory.
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The effective field theory for displacement ferroelectrics which was developed in part I of the present series
of papers is extended to include specific-heat, energy-of-ordering, and more detailed soft-mode-frequency
calculations. Numerical results are computed for a simple one-soft-mode system in preparation for a test
of the theory on the displacement ferroelectric LiTao& (which is presented in the following paper). Detailed
shapes of the specific-heat curves are computed and the discontinuity at the Curie temperature is dis-
played. The soft-mode-frequency calculations are extended beyond the small-anharmonicity region dis-
cussed in part I, thereby removing the last small-anharmonicity restriction from the method. Freed from
all small-anharmonicity restrictions, it is demonstrated that the present approach is no longer confined to
displacement systems, but is equally applicable for order-disorder ferroelectrics and goes over quite smoothly
from one class of ferroelectric to the other.

1. INTRODUCTIOÃ
' "N part I of the present series of papers, ' an attempt
~ - was made to construct a workhorse theory for dis-
placement ferroelectrics bearing a resemblance in spirit
to the molecular-field theory (or, more closely, the
cluster theories) of magnetism. In the theory, advantage
is taken of the relative insensitivity of optic-mode fre-
quencies to wave vector, in the absence of long-range
electrostatic forces, to write an effective Hamiltonian
for their motion in terms of a single primitive cell of the
crystal lattice. The long-range dipolar interactions are
then accommodated in an effective-6eld approximation
by replacing all the other cells of the system by their
thermal (ensemble) averages. The latter statistical ap-

'M. E. Lines, preceding paper, Phys. Rev. 177, 79/ (1969),
hereafter referred to as part I.

proximation is basically a high-temperature one (neg-
lecting short-range correlations between cells), but is
one which is likely, in view of the long range of the
dipolar forces, to give quite a good description of the
system over the entire temperature range.

The great advantage which accrues from accepting
the statistical mechanical restrictions associated with
the use of an effective-field theory is the ability to
describe at least some ferroelectric systems in terms of
comparatively few parameters associated with an eGec-
tive Hamiltonian; few enough, in particular, for these
"unknowns" to be comfortably overdetermined by a
comparison of theory with experiment for dielectric
properties alone.

In part I, quantitative statistical calculations were
performed for a particularly simple case; that of a dis-
placement ferroelectric which has only one grossly
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temperature-dependent optic lattice mode. We also used
classical statistics but, because of this, we were not
restricted to the use of perturbation theories or weakly
anharmonic systems. Also, we used an effective Hamil-
tonian which is able to describe both second- and first-
order phase transitions and which, as we shall point out
in the present paper, is not restricted to displacement-
type ferroelectrics but goes over quite naturally to
allow for the description of order-disorder transitions as
well.

In the following paper (part III of the present
series), we test the theory for the 6rst time on a real
ferroelectric system, namely lithium tantalate LiTa03.
However, in order to interpret all the relevant data now
available, it is necessary to extend the theory of part I in
two directions; 6rst, to calculate the dielectric contri-
bution to speci6c heat and energy of ordering and,
second, to extend the earlier discussions of soft-mode
frequency to cover the entire temperature range and to
allow for anharmonicity which is not necessarily small.
This will be done in the present paper so that, together,
parts I and II will cover all the theory necessary for use
in assessing the dielectric properties of LiTa03 in the
eGective-Geld approximation. Part III is then concerned
solely with a comparison of theory with experiment and
a related discussion of the resulting strengths and/or
weaknesses of the method.

where s. and g are the conjugate momentum and dis-
placement coordinates of the soft anode in question, E
is an external (Maxwell) electric 6eld, (P;, ) is the
ensemble averaged ionic polarization per unit volume,
e is the volume of the primitive cell and coo, A, 8, g, S, 7
are temperature-independent parameters to be deter-
mined by comparing the results of theory with experi-
ment for any particular case for which the Hamiltonian
is applicable. These parameters can, of course, be simply
related to fundamental force constants, polarizabilities,
etc., in any speci6c model for the microscopic system
since they are themselves (in contrast, for example, to
the parameters appearing in a Devonshire free-energy
expansion') microscopic quantities.

The thermodynamic Grst law for the system can be
written

TdS= dU &]p0&P jp~ p (2.2)

where S is entropy and U the internal energy of the
system. DiGerentiating with respect to temperature and
using the fact that the local Geld Ei„=gyPjp in the

'F. Iona and G. Shirane, Ferroelectric Crystals (Pergamon
Press, Inc. , New York, 1962).

2. SPECIFIC HEAT

In part I we write an effective Hamiltonian per
primitive cell (volume v) for a simple one-soft-mode
displacement ferroelectric in the form

l.5

0.5
0.80

absence of an applied field (see part I), we find a speci6c
heat

T(dS/dT) =d(U ', rtyP;. '—)/—dT. (2.3)

The contribution of the momentum coordinate to the
specific heat per unit volume arises only from the term

00 00

8 dT

&Xe«'l
s~' expl l«dk/(p. f.), (2.4)

I /T )

where (p.f.) is the partition function. It gives a tempera-
ture-independent term sr(k/v), where k is the Boltzmann
constant. Ke are, of course, concerned at present only
with the dielectric contribution to speci6c heat (which
contains the ferroelectric anomaly at the Curie point).
Any temperature-independent contribution will, in
practice, be indistinguishable from the very large back-
ground specific heat due to all other phonon modes of
the system. Thus, the speci6c-heat anomaly can be
described, at least classically, in terms of the displace-
ment coordinate i: only. Using (2.3) we write it as

&gnPm = (V+-,'~~S~(P;.,))

tr
—V)

&& expl ld(
EuT)

expl ld(
kuT)

where (P;, )= (S/e)(f) from part I (we include pointed
brackets for ensemble averages explicitly in statistica1
expressions; they are, of course, implied in the thermo-
dynamic equations) and where

V= ,','/+A $'+BY—rt-S&(E+q(P;..)) (2.6)

with external field E=O. Physically, the explicit (P;, )
term in (2.5) ensures that we do not count the intercell
dipolar energies twice when summing energies over cells
in a,n effective-fieid approximation,

2
Wp't8

Fro. 1. The energy of ferroelectric dipole alignment rt F- (dined
in Sec. 2) is plotted as a function of the dimensionless parameters
P'/n' and (P )'"/b. The units of energy are kT, per primitive cell.
The computations cover second-order phase transitions only.
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FzG. 2. The speci6c heat c, , associated with the soft mode is
plotted as a function of reduced temperature and of (IS')'"/b for
the case P'/n'=0. A temperature-independent contribution equal
to -', (k/v) from the momentum coordinate of the effective Hamil-
tonian is not included.

Now, (P;,„)as a function of temperature has already
been computed in part I for a range of values of the
effective Hamiltonian parameters. It follows that c, „
can now be computed directly from (2.5). This is most
conveniently done in terms of the dimensionless parame-
tersP'/rr'=&os'/(rfyS'/v) and (P')'"/8= A/(BrlyS'/v)"—
which were used in part I. We have computed numeri-
cally for the case where A is negative, which is
appropriate for LiTaO3 and, we suspect, for most other
ferroelectric systems of interest, e.g., order-disorder
systems and those exhibiting a first-order phase
transition.

In Fig. 1, we show the computed values of hE
=E(T,) —E(0), the energy associated with the ferro-
electric ordering, where

vE(T) =(V+ 'rfyI';, ')r —-,'kT-, (2.7)

the difference in energy between the harmonic and
anharmonic cases. Computations are carried out only
over that area of p'/n', (p')'I'/8 space corresponding to a
second-order phase transition (see part I) and results
are given in units of kT,/v, where T, is the Curie
temperature.

In Figs. 2 and 3, the specific heat c,„, is plotted as a
function of T/T, for various values of P'/n' and (P')'~'/8.
The curve shapes show a discontinuity at the Curie
temperature but retain a high-temperature tail indica-
tive of short-range interaction effects (effects which, in
our effective-Geld approximation, result solely from
interactions within each primitive cell). In the small
anharmonicity limit p'/n' —+ 1, (p')'~'/8 ~ 0, we see that
c, , -+ sr k/v and becomes temperature-independent
and equal to the momentum contribution.

The calculations are all classical and so we are not
surprised to And a violation of the thermodynamic third
law as T—+ 0. In any real system, quantum effects must

eventually dominate at low temperatures and reducec, to zero in this limit. This shortcoming of the
present computations is not serious in practice for
systems which are essentially classical (as far as di-
electric properties are concerned) for temperatures T„
since only in this latter temperature range can the
dielectric anomaly in the speci6c heat be experimentally
separated from the phonon background. For the par-
ticular case of LiTaO3, the soft-mode frequency at low
temperatures is 200 cm ' which is about 300'K in
temperature units. For an oscillator of frequency v,

quantum "freezing out" effects for speci6c heat begin
when kT/kv=1, and the specific heat is half quenched
when kT/kv=0. 3 (see for example Rushbrookes). Thus,
for LiTa03, quantum effects begin to appear when
T 300'K and c,„, is half quenched when T 100'K.
The Curie temperature is 890'K. It is quite likely, how-

ever, that quantum effects in the background spec@.c
heat will be felt at a much higher temperature since the
mean or "Einstein" frequency of all phonons in the
lattice is considerably higher than that of the zero-
wave-vector soft mode.
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FIG. 3. As Fig. 2, but for P'/n'= 1.

' G. S. Rushbrooke, Introduction to Stutistica/ Mechanics
(Clarendon Press, Qxford, England, 1949), p. 33.

3. DISPLACEMENT AND ORDER-DISORDER
FERROELECTRIC8

The present theory, as developed in part I, was
designed to describe displacement ferroelectrics. Such
systems are usually thought of as those for which each
and every elementary cell of the crystal loses its dipole
moment for temperatures greater than T„ that is,
becomes centrosymmetric. Other ferroelectrics retain
elementary dipole moments in each cell even in the non-
polar state, the macroscopic polarization being statis-
tically zero when T&T, because of a randomness in
distribution of the elementary dipoles. These are re-
ferred to as order-disorder systems.
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U($) = s(up'P+AP+8c'=0,

(didk)U($) = o'5+4AP+68P=o

Solving, we 6nd

; '=cup'/28= (—A/28)'.

(3 2)

(3.3)

It follows that the system represents an order-disorder
situation if A') 2Bcoo which, in terms of the dimension-
less parameters used in Fig. 1, becomes

P'/o.'(—(P"ls/h)s, order-disorder. (3.4)

It is of interest to compare this inequality with two
others derived in part I. In the present notation, a
system will exhibit ferroelectric ordering only if p'/n'( 1

+zss(p"Is/b)', and the phase transition will be of second

In reality, the situation can never be quite as clear
cut as this. Since we are concerned with the state of the
system for T& T„we must always be concerned with
thermally averaged quantities in attempting to diGer-
entiate between the two types of ferroelectric. Thus,
order-disorder systems will, in general, be those for
which the most probable distribution of ions within a
primitive cell when T& T, is not centrosymmetric.

To simplify lattice dynamical calculations for ferro-
electric systems it is often convenient to represent the
nonpolar state by a centrosymmetric effective ion po-
tential function, in which only even terms in the optic-
mode expansion need be retained (see part I).However,
it is not generally recognized that the use of such a
potential function does not restrict the method to
displacement-type systems, except when a subsequent
use of perturbation methods restricts the theory further
to cases of small anharmonicity. In the present theory,
the small-anharmonicity restriction is lifted and we may
readily demonstrate how it is possible to progress
smoothly from displacement to order-disorder systems
by a continuous variation of the relevant parameters in
the effective Hamiltonian (2.1).

Consider the case when the coeKcient A is negative.
For temperatures T& T„and with zero external 6eld,
the effective Hamiltonian per cell reduces to

ABC ((= '(7r +(op'P)+-A $'+8/ T& T, . (3.1)

The displacement coordinate contribution U($) to (3.1)
is roughly sketched in Fig. 4 for increasing values of
negative quartic anharmonicity. It is evident that there
is a limiting value of A above which the potential U
develops side minima for which U($;„)(U(0). In this
region $ is statistically located with equal probability
near each of these side minima and is more likely to be
found there than near what is now a subsidiary mini-
mum at )=0 (the centrosymmetric position). Thus, the
condition U((; ) = U(0) marks the boundary between
what are normally thought of as displacernent and
order-disorder ferroelectrics. In detail, the required
boundary is obtained from the simultaneous nonzero
solution of the equations

FIG. 4. A rough sketch of the variation in shape of the potential
U(P) [Eq. (4.12)] as the negative quartic contribution to an-
harmonicity is increased.

order if P'/n'(1+ss(P"l'/8)'. Thus, it follows that all
order-disorder systems will become ferroelectric (within
the effective field and one-soft-mode approximations) at
a low enough temperature, and that displacement and
order-disorder ferroelectrics can both exhibit either
first- or second-order phase transitions. However, we
ought still to retain some reservations about the proof
of the latter statement since the coeScient -,'in the
above inequality for second-order transitions was ob-
tained rigorously only in the small-anharmonicity limit
(part I).

One remaining inequality which will be discussed in
the following section can also be mentioned here. We
shall find below that, in a classical system, the soft mode
of the lattice has a frequency which tends to zero at the
Curie temperature only if the potential function U(()
has a single local minimum (i.e., at )=0).The limiting
condition occurs when the first and second derivatives
of U(&) with respect to P are simultaneously equal to
zero. That is, when

(d/d$) U($) =(opsf+4AP+68$=0
(d'/dP) U($) =(u '+12A @+308('=0

(3 5)

Solving, we find a zero-frequency soft mode at T, only
if A(3 a8& ps2/, which, in dimensionless Parameters, is

'Pn/' &'(s"P'Ih/)'. We sh-ould emphasize that this is a
classical result and does not allow for any possibility of
tunnelling through a potential barrier. It seems clear
(see, for example, Vaks et al ') that for c. ases where
barrier penetrability is not small, a quantum description
of critical vibrations for T —+ T, will allow for a soft-
mode frequency going to zero somewhat beyond the
classical boundary. The various regions of interest
within the p'/u', (p')'ls/5 parameter space are shown in

Fig. 5.

V. G. Vaks, V. M. Galitskii, and A. I. Larkin, Zh. Eksperim. i
Teor. Fiz. 51, 1592 (1966) [English transl. : Soviet Phys. —JETP
24, 1071 (1967)].
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It follows that the equation of motion for f, is

Bf /Bt= tr„(Bp/Bt) =tr„(X.+X; 4, p), (4 3)

l.5

0 ORDER

—DISORDER

where we have used the fact that the trace over the
reservoir of a commutator of two operators vanishes if
one of the operators depends only on the reservoir
variables. Equation (4.3) now reduces to

Bf,/Bt= (X„f,)+tr„(X;„,p) (4.4)

0.5 In the Hartree or self-consistent-Geld approximation,
we write p= f,f,. Then, noting that

I.
I.O 2.0

(X'.4,f.f.)=f.(X.4,f.)+(f.X.4,f.) (4 5)

FlG. 5. In the nomenclature of the present series of papers, the
qualitative features of the ferroelectric behavior are governed by
the parameters P'/n' and (P')' /isSThe dBerent types of phase
transition describable in terms of these parameters are shown,
where 44(T,) refers to the soft-mode frequency at the Curie
temperature. Ke have dined a displacement ferroelectric as one
for which the most probable distribution of ions when T)T, is
centrosymmetric. The results for 44(T,) are obtained from s
classical calculation and no allowance has been made for quantum-
mechanical tunnelling.

4. SOFT-MODE FREQUENCY

In part I, we calculated the temperature dependence
of soft-mode frequency only for temperatures close to
the Curie point referring, for details, to an earlier
description of nonequilibrium properties for a similar
model given by Aizu. ' However, as stressed in part I,
these results are limited also to the small-anharmonicity
approximation even though Aizu overlooks this and
applies them outside this very limited domain. In order
to interpret the soft-mode data for LiTa03 in part III,
we require theoretical results for the entire temperature
range and results which are also valid far outside the
small-anharmonicity region. We proceed as follows.

From the assembly of primitive cells making up the
lattice, we single out one to be the system, " the rest
acting as a "reservoir. "We write the total Hamiltonian
K as the sum of a system Hamiltonian X„a reservoir
Hamiltonian K„, and an interaction Hamiltonian K; ~.

The density matrix (or distribution function in the
classical case) for the combined system reservoir complex
we label p. It has an equation of motion

the equation of motion for the system density matrix
(distribution function) reduces to

where
Bf,/Bt= (X,+(X;.,)„,f,),

(X;.4)„=tr„(frXja4).

(4.6)

(4 &)

Thus, in this approximation, the system behaves as if
it were subject to an effective Hamiltonian X,+(X; 4)„.

Considering the one-sof t-mode ferroelectric problem
and, in particular, Hamiltonian (2.1), it is now clear
how we can cast this particular problem in the above
formalism by writing

X,=-', (s'+cop'P)+AP+8$' —rtSjE, (4.8)

(X;.,),= —~Sg~P';..),. (4.9)

9"-)=9''-).=9'' ) = (1/&) tr (Sf &) (4 1o)

Now, working classically, and therefore deGning

(u, b) to be the Poisson bracket (Bu/B$) (Bb/B7r)
—(Ba/Bsr) (Bb/B$), Eq. (4.6) becomes

Bf, Bf. BU Bf,
rtS (Li"+y(I';. )) ——sr, (4.11)

Bt Bsr B$ B$

where
U= —,'&op'@+A $4+8@. (4.12)

Moreover, since we shall only be directly concerned
with the zero-wave-vector mode, we can write

Bp/Bt= (X p)
One easily veri&es that the equilibrium value of f, is

4.1

where (X,p) represents the conunutator divided by sh

(or the Poisson bracket' for the classical case). The
density matrix f. for the system is the trace over
reservoir variables of p, that is

f,=tr„p (4.2)

' K. Aisu, J. Phys. Soc. Japan 21, 1240 (1966).
4D. ter Haar, ElerI4eats of Ho4ssttolsom Mechosscs (North-

Hollsnd Publishing Co., Amsterdam, 1961).

f.,=exp(
I ur) exp' ~dsrdP, (4.13)

t' —X,p)

4, ir )

X =X,+(X;„),,„. (4.14)

Care is taken to distinguish between (X;~4) and (X;a,),p
(we may now drop the subscript s), the subscript eq
denoting the situation in the limit f~ f~ of Eq.
(4.13).
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Using the values for (P),p —(f),ps comPuted in Part I,
Eq. (4.25) becomes, for T~ T„

k(T—T.)C

(gyS'/v)

2'=-~+ P f., lg. l dx, (4.32)
g2(gII2 Q)2

Fin. 6. The soft-mode frequency co(T ~ 0) is shown in the form
~'(T —+ 0)/ceps as a function of P'/n' and (P')'"/h. The caiculation
has been carried out by a method which is valid both for dis-
placement and order-disorder systems, and also for ferroelectrics
exhibiting either a first- or second-order phase transition at T,.

where C takes on values -', —p,
' and —2(-,'—1u') in the

paraelectric and ferroelectric states, respectively, (where
p' is computed in Fig. 12 of part I), and where 5 is the
paraelectric value of ff~ l $p l'dX.

For systems with single minimum U($) we have 6=0,
and it follows immediately that co2~ T—T, as T —+ T,
from both the polar and nonpolar phases for such a case.
%'e can now make contact with Aizu' by considering the
case for small anharmonicity. In this limit, ~II —+ ~0 and
the motion is again quasiharmonic (i.e., all $„zero
except for n=0, 1). Thus, for T +T„E—q. (4.32)
reduces to

Thus, as T~ 0, we find pp —& cp(0), where

co'(0) =cop'+122 Pp'+ 308$p4 —(rfySs/s) . (4.31)
gpss/s

k(T—T,)4' =—(8).,=
MO

co kTg

~p'(nvS'/s)
(4.33)

Using (4.26), we can easily express &p(0) in terms of the
parameters of the effective Hamiltonian. It is most
easily cast in terms of the dimensionless parameters
p'/cr' and (p')'1s/8 and we show the final result in Fig. 6
where we plot ops(0)/&pos as a function of these dimen-
sionless parameters, the calculations being valid for
displacement and order-disorder regions as well as for
both second- and first-order systems. In particular, we
note that cp(0) -+ 0 as we approach the ferroelectric-
nonferroelectric boundary.

B. Near the Curie Temperature

For temperatures T~ T, we are also able to effect
some simplification of (4.25). Let us first consider the
term J'f,ol )pl'dX. The function $p is the value of $
averaged over a period of oscillation (i.e., averaged over
8 for a particular value of X).For temperatures T)T„
where the effective potential U from (4.12) is symmetric
in P, l )pl' is zero for all X unless U($) has subsidiary
minima for some nonzero values of $. In Sec. 3, we
showed this to occur when P'/n'( s'(P"~s/8)-s In gener. al,
the integral J'f„l $p l

sdX is made up of two parts; one
which is temperature-independent and, in particular, is
zero for the case of a single minimum U(g), and one
which is temperature-dependent and is very closely,
though not exactly, equal to (p),ps.

co„'(T-+ Tc) =ppo'@~(T Tc)/T„—
ppy'(T ~ T,) =&as'4 g(T T,)/T„—(4.34)

where the subscripts p and f refer to the paraelectric and
ferroelectric phases, respectively. Aizu, however, uses
these equations for the limit (P')"'/5~0, (P'/n')
~ cops —+ 0 (for which case C ~= 1 and C r ———2), and this
is certainly far outside the small anharmonicity range
for which they are valid.

For larger anharmonicity systems, frequencies must
be computed numerically using (4.32). For most cases
within the displacement phase of p'/a', (p')'"/5 space,
the error incurred by neglecting all values of e larger
than one is quite small. With this approximation, the
soft-mode problem reduces to a determination of or~ and
gi(X) by solving the classical mechanical problem of
motion in a potential U($) LEq. (4.12)] followed by a
numerical evaluation of

tt' 1 ) (—X)
I hl'I —

I expl
E~~& kkT I

making use of the fact that coII'))co' for all K when
T~ T'

where we have used the Eq. (5.2) from part I to relate

(P),o at the Curie temperature to kT, . From (4.33) we
find


