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A statistical approximation is developed for displacement ferroelectrics which enables dielectric properties
to be described directly in terms of a limited number of microscopic parameters. In particular, for systems
with only one grossly temperature-dependent optic mode of lattice vibration, the number of parameters is
suKciently few that they can be overdetermined by a direct comparison of theory with dielectric properties
alone. These microscopic parameters are very much more closely connected with the fundamental micro-
scopic forces in the system than are the more familiar macroscopic (thermodynamic) parameters. For a
single-soft-mode system, many dielectric properties are calculated quantitatively in terms of the micro-
scopic parameters. These properties include polarization, soft-mode frequency, static and dynamic suscep-
tibilities, all as functions of temperature both close to and away from the Curie point. Sections discussing
the order of the phase transition and some nonlinear properties of the polar phase are also presented. In
parts II and III of the present series of papers the method is extended and used to discuss in detail the
dielectric properties of lithium tantalate.

1. INTRODUCTION

~HIS paper is the first of a series of three discussing
ferroelectric systems and, in particular, displace-

ment ferroelectrics for which a transition to a polar
state arises from instabilities against particular modes of
vibration. ' ' They are particularly concerned with the
description of bulk dielectric properties, such as polar-
ization, susceptibilities, Curie temperature, nature of the
phase transition etc., in terms of microscopic concepts,
by use of statistical mechanics.

In interpreting the experimental findings for dis-
placement ferroelectrics, great emphasis has always
been placed on macroscopic (thermodynamic) theories
expressed in terms of phenomenological free-energy
expansions. This contrasts greatly with the situation
in magnetic studies, where very little use is made of
macroscopic theories, bulk magnetic properties being
almost always described directly in terms of a micro-
scopic effective (or spin) Hamiltonian by use of statisti-
cal mechanics. The reason for the difference in emphasis
is not difBcult to find; to the present time, no micro-
scopic "workhorse" theory for displacement ferro-
electrics has been presented which is immediately
useful (from the experimentalists point of view) in the
sense that it contains few enough parameters that they
can be determined, or even overdetermined, from
dielectric measurements alone.

Thus, the question we are trying to answer here is
whether the dielectric properties of displacement ferro-
electrics can be described, in a reasonably quantitative
fashion, in terms of a few microscopic parameters. If we
are concerned with statistical rigor, then the answer is
no. This is apparent from the numerous theoretical
papers~" which have calculated the formal relation-
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ships between microscopic concepts and the thermo-
dynamic parameters of a free-energy expansion. Such
relationships, though theoretically illuminating, have
limited practical value as far as the experimentalist is
concerned, since they relate myriad microscopic param-
eters to a handful of macroscopic parameters.

In this paper we demonstrate that, by accepting a
statistical approximation analogous to that used in
the cluster theories of magnetism, it is possible to
derive a microscopic eRective Hamiltonian which, at
least for some displacement ferroelectrics, has few
enough parameters to enable their direct evaluation by
a comparison of theory with experiment. These param-
eters are microscopic quantities, and are, therefore,
very much more closely connected with the fundamental
microscopic forces in the system than are the macro-
scopic parameters associated with thermodynamic con-
cepts, in terms of which quantitative theories for dis-
placement ferroelectrics are usually cast.

The theory developed in this paper is extended and
used in the following papers (parts II and III of the
present series) to discuss the dielectric properties of
lithium tantalate. We 6nd that it is capable of giving a
good quantitative description of the lithium-tantalate
system and that the problem is overdetermined to a
considerable degree, thus enabling the self-consistency
of the method to be assessed. The quantitative values
determined for the microscopic parameters of the effec-
tive Hamiltonian then prove useful in elucidating some
less obvious features of the detailed microscopic
behavior of that particular system.

To construct a microscopic theory for ferroelectrics
from 6rst principles necessarily entails the use of a
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formidable number of parameters about which little
of a quantitative nature is known a pnori (e.g. , all the
signiGcant interionic forces, their Grst several deriva-
tives with respect to the crystal axes, electron-ion
interactions, electronic polarizabilities etc.). Neverthe-
less, a formal use of lattice-dynamical theory allows the
motion of the system to be cast in terms of normal
modes of vibration, the translational invariance of the
lattice being used to de6ne a reciprocal-lattice wave
vector. The basic simplicity of the ferroelectric system
is that its dielectric properties depend directly only on
the zero-wave-vector optic modes, and, of these, only
a very few strongly temperature-dependent (or soft)
modes contribute significantly.

The special diKculty which arises in the statistical
part of the theory is that, for ferroelectrics, the long-
range electrostatic dipolar interactions reduce the
harmonic contributions to the "soft" mode or modes
to such an extent that anharmonic contributions can
become large by comparison, thereby prohibiting the
use of conventional perturbation theories. Various
attempts have been made to overcome this di6iculty.
Silverman and Joseph' ' have used a transformation to
include a large part of the anharmonicity in the un-
perturbed Hamiltonian using this approach to discuss
the dielectric properties of the paraelectric phase.
Another line of development has been pursued by
Doniach who has outlined a derivation of free energy
based on a variational principle. Cowley, 9 and Kwok
and Miller" have attacked the quantum-statistical
problem by use of the Green's-function techniques of
many-body theory. In these theories, the many-body
aspect of the problem takes the form of interactions
between the zero wave-vector modes of the system and
the other nonzero wave-vector modes. The description
therefore includes effective-mode parameters for all
phonon modes, essentially an in6nite number of micro-
scopic unknowns. "

In this paper we make use of the fact that for
ordinary (not ferroelectric) systems for which dipolar
forces are less important, the optic-mode frequencies are
often fairly insensitive to wave vector. Thus, we postu. -

late that in the absence of long-range dipolar interac-
tions, many dielectric systems have optic modes which
can be described essentially in terms of a single primitive
cell of the lattice, i.e., the relative phase of the oscilla-
tions in neighboring primitive cells has only a minor
effect on the optic mode frequencies. In this approxima-
tion, the system consists of essentially independent
primitive cells, each described by the same set of optic-
mode frequencies. This being so, we now include the
interactions between cells in an eGective-6eld approxi-
mation, centering our attention on one ce11and replacing
all others by their ensemble (thermal) averages.

This produces an approximation essentiaOy equiva-
lent to those of the cluster theories of magnetism, for
which interactions within a certain duster of magnetic
ions are treated rigorously but the interactions between

the cluster and the rest of the lattice are replaced by
effective 6elds. The approximation is basically a high-
temperature one but should give a meaningful approxi-
mation over the entire temperature range and, in view
of the long range of the dipolar forces is possibly more
accurate for ferroelectrics than for the analogous mag-
netic theories referred to.

In this description, by accepting the statistical
approximations involved, we have gained very signi6-
cantly in reducing the number of parameters required
to describe the system. The resulting effective or
"displacement" Hamiltonian consists only of a sum of
effective oscillators, one for each soft mode of the
primitive cell and, in particular, for ferroelectric
systems which have only one grossly temperature-
dependent mode of lattice vibration (lithium tantalate
is a good example) we reduce the effective Hamiltonian
to that of a single effective oscillator for which the
"unknowns" contained therein can be overdetermined
by direct comparison of theory with experiment.

We have carried out the relevant statistical calcula-
tions using classical statistics since, for this case, there
is no need to limit the calculations to small anharmo-
nicity systems or use any form of perturbation approxi-
mation. This is important because lithium tantalate (to
be discussed in detail in part III) is well outside the
small-anharmonicity region and also because (as dis-
cussed in part II), without limitations associated with
small anharmonicity, the effective or "displacement"
Hamiltonian method can be readily extended to discuss
order-disorder ferroelectrics as well as displacement
systems. Moreover, most ferroelectric systems are
essentially classical near and above their Curie tempera-
tures, so that the use of classical statistics gives an
adequate description of the phase transition for most
cases.

In Sec. 2 we describe the theoretical foundation of
the displacement Hamiltonian and in Sec. 3 derive it in
detail. In Sec. 4 we develop formally the classical
statistical theory for the general many-mode system.
In Sec. 5, quantitative calculations are performed for
a system which has only one strongly temperature-
dependent mode. Calculations are made of polariza-
tion (over the entire polar region), Curie temperature,
susceptibilities as functions of temperature and fre-
quency (both within and beyond the Curie-Weiss
region), and the frequency dependence of the ferro-
electric mode near T.. Section 6 discusses the conditions
which determine the order of the phase transition, and
in Sec. 7 we calculate some nonlinear properties of the
polar phase.

In the following papers, parts II and III of the present
series, the theory is extended to include contributions of
the soft mode to speci6c heat, and to remove all small
anharmonicity restrictions from the results concerning
soft-mode frequency. The theory is then applied in
detail to the displacement ferroelectric lithium tanta-
late.
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Xion+Xeleotron+Xeleotron-ion r (2.1)

where 3C;, describes a collection of ions interacting
through a potential U(R;R;, ~ ) which depends only
on the positions of the ion centers, X,,i„~, „describes
the valence electrons, and 3'.,i„~„„ is a suitably
chosen potential which is taken to represent the inter-
actions between electrons and ions.

It is well known (see, for example, Ziman") that the
electronic and ionic motions can be separated to a very
good approximation by use of the adiabatic principle,
for which we And an effective Hamiltonian for the
ionic motion in the form

p I2

+U(R, ,R;,".)+S(R;,R;,".), (2.2)
' 2M;

where, in an obvious notation, the first and second
terms are the kinetic and potential energy, respectively,
of the ionic lattice. The last term in Eq. (2.2) is the
contribution from electron-ion interactions and will

vary according to the electronic state of the system.
If we assume that our system remains essentially
in its ground electronic state (i.e., filled electron bands
and fairly large band gaps), then we can combine

U(R;,R;, ~ ) and E(R;,R;, ) to give an effective
ion-ion potential V(R;,R;, .) which is independent
of temperature, the ionic Hamiltonian reducing to

p.2

+V(R;,R;, ")
' 2M;

(2.3)

We first consider the ionic system in the absence of
electrostatic dipolar interactions. The basic theory of
lattice vibrations is derived from (2.3) by expanding V
as a Taylor series in the small displacements q; of the
ions from their equilibrium positions, and making use
of the translational symmetry of the lattice to diagonal-
ize the quadratic part of the Hamiltonian. Quite
formally, one obtains

X;. =p Xo(K,p)
K,y

X'(K,P; K',P'; ), (2.4)
~ ~ ~ P y~ e ~ ~

where 'K and K' are reciprocal lattice vectors, P and
p' label the various acoustic and optic modes of the
system, 3Co is a simple harmonic-oscillator Hamiltonian
defining phonons K, and P, and where X' is a potential
term describing the many and varied phonon-phonon
interactions for the system.

The optical modes of zero wave vector, and especially
the transverse ones for which there are no depolariza-

' J. M. Zima, n, Electrons end Phonons (Clarendon Press,
Oxford, 1960).

2. THEORETICAL FOUNDATIONS

The basic Hamiltonian which is customarily written
to describe a solid is of the form

tion forces, control the dielectric properties of the
system. In fact, in the work to follow, we shall be
concerned with those bulk properties of the system
which can be defined in terins of K=O operators and
are therefore uniform throughout the lattice. We
think, in particular, of the ionic polarization P;,„and
the dielectric constant ~, which fall into this category.

In calculating the partition function and various
averages of K=O operators, it is only necessary to
retain those terms in (2.4) which explicitly contain
zero-wave-vector operators. Thus, we may reduce the
Hamiltonian of interest to

X;.„=P Xp(O,P)

+P P X'(0p K'p' .)

At this stage we make use of a IIartree approximation
for which we write the interactions between any
particular mode of interest (O,p) and the rest of the
lattice modes by replacing all operatprs involving the
latter by their ensemble averages. In this approxima-
tion, which is in essence a perturbation approximation,
best valid for systems with small anharmpnicity, pur
Hamiltonian reduces to a set of effective Hamiltonians,
one for each zero-wave-vector mode. We find

Xion =P Xeii (O,P) & (2 6)

where Xef f(0,p) contains only the canonically conjugate
operators tr(0,p) and $(0,p), which describe the general-
ized momentum and coordinate of the (0,p) mode
lattice vibration. If we now omit the {)label and write
the conjugate coordinates tr~ and $„, respectively, the
effective Hamiltonian for the pth mode assumes most
generally the form

Xeii(O,P) = &7r&2+&~II 2$ &++ L g
e (2.7)

In this equation, the first two terms on the right-hand
side are just Xo(0,p) from (2.5) where II ' is the stiffness
of the "isolated" p mode. The coefficients g„„all ar;se
from phonon-phonon interaction terms and wi]l al]. in
g~n~~al, »ow a temperature dependence. In
Anderson' has looked at these coefficients in more detail
and, although we shall not be concerned with their
detailed form in the present paper, one or two pertinent
cprrnnents should be made concerning them.

Firstly, the C2 term leads to a thermal variation of
stiffness for each mode. When this variatiori is large
the Hartree approximation is probably poor. The C»
terms are the dilatation and other uniform strains.
In particular, C~„where the subscript u denotes an
acoustic mode, is the source of thermal expansion. The
coefficients C „ for e) 2 represent, of course the
anharrnonic contributions to the various effective
Hamiltonians
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We shall discuss in the following sections the details
of the statistical mechanics of displacement type
ferroelectrics using the basic representation (2.6), (2.7).
We are now required to incorporate the long-range
electrostatic dipolar interactions into the Hamiltonian.
In principle, this can be done rigorously by finding a
canonical coordinate transformation from (~„,P„) to
(7r„',P„') in terms of which the dipolar contribution
transforms to a negative stiffness contribution (quad-
ratic in $„').All the problems connected with a resultant
small quadratic term then follow.

We attempt to avoid these problems by going back
to (2.7) and, as explained in the introduction, reinter-
preting 7r„and $~ a,s operators referring to a single
primitive ceB, say the ith. The dipolar interactions are
then of a form involving the products &„(s)&„(j).We
now make a statistical approximation, replacing all
primitive cells except the ith by their ensemble averages.
The dipolar contributions then become proportional to
$~(i)($„), giving terms linear in the primitive-cell
normal-mode parameter P„(i), where angle brackets
denote an ensemble average. The resulting Hamiltonian
for the motion can now be examined statistically and
the thermal average (P„) determined in a self-consistent
fashion. First steps, in the spirit of this approximation,
have already been taken by Aizu. "

This statistical approximation neglects any effects
resulting from short-range correlations between cells
and is therefore most accurate when the intercell
interactions (or, more accurately, those intercell inter-
actions which depend strongly upon wave vector) are
of long range. It is also most accurate at higher tempera-
tures, where there is sufficient thermal energy to excite
optic phonons over a reasonably large volume of the
Brillouin zone. The degree of accuracy in magnetic
theory (very short range interactions) is well known.
It should be rather better for ferroelectrics.

In the following section we deduce the detailed form
of the statistically approximated dipolar energy. We
do this in terms of a model which replaces ions by effec-
tive charges and electronic polarizabilities. There is
reason to believe, however (part III), that the general
form of the resulting effective or displacement Hamil-
tonian is considerably more general than the model used
to construct it. That is to say, the microscopic param-
eters of the displacement Hamiltonian could also be
related to the detailed structure of a more sophisticated
model.

Our immediate aim is to use the resulting displace-
ment Hamiltonian to demonstrate that, for at least
some displacement ferroelectrics, the dielectric proper-
ties can be explained quantitatively in terms of surpris-
ingly few microscopic parameters. We shall hope (and
find for the case of lithium tantalate) that these param-
eters are not grossly temperature-dependent so that a
surprisingly good interpretation of experimental results

u I Aisn, J. Phys. Sec. Japan 21, 1240 (1966).

is obtained even with completely temperature-inde-
pendent parameters.

In the present paper we consider systems with a
centrosymmetric nonpolar phase, describing the ferro-
electric phase in terms of deviations from it. Thus,
from symmetry arguments, $„cannot enter into (2.7)
in odd powers for optic modes. The Hamiltonian (2.7)
therefore reduces to

where Z~ runs over optic modes of the primitive cell.
For many ferroelectric systems, only one or two

modes contribute significantly to ferroelectric proper-
ties. Also, we often need retain only one or two anhar-
monic terms to describe adequately the motion of these
modes.

1P=- P (rrsEi. ,'+esqs), (3.2)

where e is the volume of a primitive cell, e~ is the elec-
tronic polarizability of the bth ion, and Z q runs over all
ions in a single primitive cell. It is convenient to label
the separate contributions of E&„s and q& to P as the
e ectronic and ionic polarizations P,i„and P;,„, re-
spectively. The total contribution to the system Hamil-
tonian from the long-range dipolar forces, and the ex-
ternal Geld is

V'= g Lebqs Ei..'+-', es(Ei..')'j. (3 3)

We shall be concerned with the equation of motion for
qs and, since the n& terms in (3.3) are independent of

"J.C. Slater, Phys. Rev. 78, 748 (1950).

3. DISPLACEMENT HAMILTONIAN IN DETAIL

In the statistical approximation to be used, we
replace all cells of the system except one by their
thermal averages. It follows that the electrostatic
interactions between the cell of interest and the rest of
the environment can be expressed in terms of effective
fields.

We now set up the effective Hamiltonian to be used
for the statistical mechanical calculations and we shall
allow for an external electric (Maxwell) field E. Let
P be the total polarization per unit voluine, and let
Ei„s be the local electric field at site b of the primitive
cell in question. The local field is related to the thermally
averaged polarization (P) via a Lorentz-field tensor
y& which varies widely from site to site."

We write

Ei.,'= E+ps(P). (3 &)

The total polarization P is determined by the local
field, and. the displacement g~ of the ionic charge e~
from its equilibrium position by the equation
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qb, we need not retain them. Hence

—1 —1
g ebqb E&.,b=

In the new coordinate system, the ionic Hamiltonian
per unit cell, up to quadratic terms, is

ebqb' PE+ pb(P)j, (3 4) ~ p p
y

We can write this equation in terms of (P;, ) by using
(3.2) to relate (P;,„) to (P). We 6nd, for the latte

1
(P'-) =(P)—r, (E+7 (P)),

v

from which it follows that
S~=p ebllb» (3.17)

where the formalisms (b1~S~)E and. (b1„S~)(~„{P;,))
imply scalar products, and where

where
&P)=n'((P'-)+uE) (3.6)

and
(3.7)

b1„S„=p qbtebub„

p~ g~S&=p Xb chub&.

(3.18)

(3.19)

(3.8)

In terms of {P;.„), the potential V' is now expressed.
as

Q ebqb (qbE+Xb(P;. )), (3.9)

where

gb
——pbbs'n+ I,

1
XQ —PQ'g b

(3.10)

(3.11)

where V(qb, qb, ) is now the effective interionic
potential energy but excluding the contributions from
intercell dipolar forces; it concerns, therefore, the sects
of dominantly short-range forces.

Expanding V as a Taylor series in the q's, we may
readily diagonalize that part of K;, involving terms up
to quadratic in p. The required transformation to new
conjugate coordinates vr„and $„ is familiar from any
standard text on lattice vibrations, and may be written

~,=Z ub, .pb, 5 =Z ~bub .q» (3 13)

pb=Mb P &umb'» qb=P ubzPz,
y n

(3.14)

where (Mb)'~'ub~ is the bth component of the pth
normalized eigenvector, and satis6es

Since the purpose of this section is solely to demon-
strate the form of the eRective ion Hamiltonian required
to describe dielectric properties in both polar and non-
polar states, only the form of (3.9) is of concern to
us. The detailed expressions for the coeKcients involved
will not concern us further in this paper.

The ionic Hamiltonian for our system now takes the
forxIl

X;..=-~ p +V(qb, q ,b) I+V', (3.12)
eE b ZiV,

Once again, we shall not be particularly concerned
with the relationships between the relevant parameters
and the fundamental properties of the lattice. We shall
treat these parameters simply as quantities to be esti-
mated by comparing with experiment the relevant re-
sults of a statistical theory using this Hamiltonian.
Thus, we have not written out explicitly the matrix equa-
tion for eigenvalues 0„', we shall not use it.

It is now evident, by comparing Kqs. (3.16) and (2.8),
that our final eRective Hamiltonian per unit ce11 for
the dielectric properties of a ferroelectric will take the
form

—~.S.&.(E+Y.(P'-))) (3 2o)

We shall retain anharmonic terms only up to P in
the subsequent calculations, this being the least number
of anharmonic terms which can reasonably be hoped
to describe free ferroelectric crystals. To treat free, as
opposed to clamped systems it is, in general, necessary
to go beyond P, since this lowest-order anharmonic
term can be negative in free ferroelectric crystals's r4 {as
we shall see, this may or may not lead to a erst-order
transition), and the lattice must necessarily be stabilized
in the polar state by some higher-order anharmonicity.
We shall combine the C» quadratic term into the tem-
perature-independent term ~~0„'$„', recognizing that it
will lend some temperature dependence to the stiAness.

Thus, the Hamiltonian which we shall use is

vX.gf =Q (,'(~„'+co„'$„')+A„p„'+8~]-„s

—~.S &.(E+T.(P'-&)), (3 21)

where we have written C»——3„, C»—g„, and g„
+2cr„=co„. This is our displacement Harniltonian,
which we suggest is adequate for describing the dielectric
properties of displacement-type ferroelectric systems. It

3fbub&'nb~~ = 8~&~. (3.15) "A. F. Devonshire, Phii. Mal. 40, 1040 (1949); 42, 1065
(1951).



802 M. E. L I MES

is to be used to determine the temperature dependence
of polarization, linear and nonlinear susceptibility, etc.
of ferroelectrics in exactly the same spirit that an
exchange Hamiltonian is used in magnetism to deter-
mine the temperature dependence of bulk magnetic
properties for spin-ordered systems.

However, one practical limitation is obvious. Since
we have no less than five "unknown parameters" per
mode, namely, &o', A, 8, pS, and y, we can only expect
any success in determining them quantitatively from
our statistical mechanical relationships alone if we
can find systems which have, to a good approximation,
only one soft mode. We can proceed quite formally
through the classical statistics retaining all the modes

p of Eq. (3.21) and this we shall do. However, when
we perform actual numerical calculations we shall
restrict the discussion to the one soft-mode case.

4. FORMAL CLASSICAL STATISTICS FOR
THE MANY-MODE CASE

Since
1

P;..=—P ei,hali„
b

we can express the thermal average (P;,„) in terms of

(p ) by use of the transformation equation, (3.14),
giving

where 5~, is the component of 5„in the direction of the
spontaneous polarization, and where we have written
(nA) (vn(p ~ ))=n~vpn. (~.-).

Thus, in principle at least, we have calculated the
spontaneous ionic polarization as a function of tempera-
ture. The total polarization (P) is related to the ionic
polarization through Eq. (3.6). ln particular, for the
case of zero external Geld, there is a direct proportion-
ality.

The static susceptibility follows in a straightforward
manner from the expression (4.2) for polarization. For
simplicity we shall restrict ourselves to directions of
external field E for which the susceptibility is scalar,
i.e., E parallel to an axis of symmetry of the crystal
which may, or may not, be the direction of spontaneous
polarization. If we define an ionic susceptibility X;,„= B(P;,„)/BE when E~ 0, then a direct differentiation
of (4.2) with respect to E gives

2

~ (1+& x' ) ((~ )-(~ )), (4~)he
where we define S„sas the component of S„in the direc-
tion of the applied field, where q~s=S q tE/g„zg and
'r~s = ~„g„yp/gr zS&zE, and where the angle brackets
refer to ensemble averages of the form

(„"expl — — Id&„
kr

(P;-)=-2 S.(k.). (4.1)

Thus, an implicit equation for ionic polarization can
immediately be written in the form

(P,..)=-pl S
1

i~E
where

U„~dt„~(.exp —
I I, (4 2)

kr iz, i'

U„=-', .'~.'+~,4'+~A'
—q S & (E+y (P;, )), (4.3)

and where Z„ is the partition function

expl-
kr

(4.4)

For the case of zero external field, we may calculate
the ferroelectric Curie temperature by expanding the
exponentials in (4.2) for the limit (P;, )—+ 0. We find

a temperature T„given by

n.vP.' "
kr, =Q t„' expl — Id)„

kr, )

expl — ld4, (4.3)
kr. )

«pl —ld4 (4 g)
& kr&

For the particular case of applied field E being parallel
to (P;, ), we write p„s and y„z simply as g„and y„,
respectively. We also note, in connection with (4 7)
that ($,)=0 in the paraelectric phase.

The dynamic susceptibihty is readily calculated by
examining the equation of motion of the classical dis-
tribution function. Details of such a calculation for
T=T, have been given by Aizu" and need not be
repeated here, although it should be stressed, despite
Aizu's contrary implication, that these results are
strictly valid only in the limit of small anharmonicity.
We calculate a frequency-dependent susceptibility, in
this limit, of the form

x'»(~) =& L1+vms'xi. n(~)g

g ~5
X L(g,2)—(g,)2j (4 9

kTe cg '—~2

The ionic susceptibility is directly related to the tota
susceptibility X(ca) through Eq. (3.6) by differentiation
with respect to E. We Gnd

X(~)=n'LX. (~)+a). (4.10)

where

(4.6)
For directions of applied Geld perpendicular to the

spontaneous polarization, the soft modes which are
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responsible for the ferroelectricity of the system will

contribute little. For the other modes of the crystal
lattice, anharmonic eBects are less important, and we
find ($„)'«($~'), and ($~') approximately proportional
to temperature. This leads us to anticipate a largely
temperature-independent perpendicular electric suscep-
tibility.

For applied field parallel to the direction of spon-
taneous polarization, the situation is quite different.
Let T,' be the temperature at which, for an applied
6eld of frequency co, the parallel susceptibility becomes
infinite. It follows that

where we have written C„(T,') for the value of ($„')—($i,)' at the temperature T,'. Using (4.11) and con-
sidering temperatures close to T,', retaining terms only
to first order in (T T,')/T,—', we 6nd that the equation
for ionic (parallel) susceptibility reduces to

-pyxion

where we have written

the system will display a Curie-Weiss susceptibility
below T,'(ferro) and above T,'(para). These tempera-
tures are frequency-dependent, but will not in practice
be distinguishable from the real Curie point for applied
frequencies small with respect to typical optical-phonon
values.

For a 6xed temperature T, the parallel susceptibility
will diverge for a value of frequency which makes
T,'=T. Using (4.11), for the case aP«co„', we inay
readily show that this so called "soft mode" or "ferro-
electric mode" has a frequency co, given by

rv,2(ferro)=Ci(T, —T) cv '(para)=C~(T —T,), (4.15)

where C~ and C2 are temperature-independent if the
parameters in our starting displacement Harniltonian
are not dependent on temperature. We note that Eqs.
(4.15) involve the real Curie temperature T„so that
the ferroelectric-mode frequency comes down to zero
(from both sides) at the Curie point, whereas the par-
allel susceptibility diverges at two temperatures, usually
very close to T, but separated from it by small fre-
quency-dependent amounts.

Thus, even using a formalism which retains the full
complexity of the multimode system, we are able to
deduce a few qualitative features of the ferroelectric
transition. For quantitative work, however, we shall
move to the other extreme, and consider in detail the
dielectric properties of a displacement ferroelectric
using the "single-mode" approximation.

(4.13)

as the equation defining the parameter X~ (again
retaining only the Grst-order term in an expansion in
terms of temperature deviations from T,'). This param-
eter has different values in the polar and nonpolar
states, in particular, X~ —+ 1 for hard modes, being
greater than unity in the polar state and less than
unity in the nonpolar state.

From (4.12) we can calculate X;,„explicitly. It takes
the form of a Curie-|Vveiss law &;, =CT,'/(T T,'), —
where C is temperature-independent and given by

5. SINGLE-MODE APPROXIMATION

We now consider a system which has only one
strongly temperature-dependent mode. For such a
system, (P;,„)~~S and, for E(~(P;„), we can dispense
with all vector and tensor notation and write the effec-
tive Hamiltonian

where we have retained a subscript only for ohio to
distinguish it from the frequency variable co, which will
be used later in connection with the dynamic suscepti-
bility.

From Sec. 4 we can write down the statistical esti-
mates for T„and for (P;, ) as a function of temperature,
in the form

P exp( —U/kT. )dg

Thus, for any frequency of applied field, the parallel
electric susceptibility obeys a Curie-Weiss law about
T,'. In general, Eq. (4.11) has two solutions for T,',
one on either side of T„which we may denote by
T,'(ferro) and T,'(para), respectively. Since C„(T) is
not analytic at T= T, (having a discontinuity in slope
at this point), Eq. (4.13) is valid only for T) T,'(para)
and for T& T,'(ferro). Therefore, in the general case,

exp( —U/kT, )d), E=O, (5.2)

oo

(P;,„)=—
g exp( —V/kT)d(

exp( —V/kT) d$, (5.3)
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I.O

08

n= (kTA)'~'/cats' and P= (kTA)'I /(rlyS'/v) With this
nomenclature we ind, from (5.2),

x'
p, = xs eel — —x4 [«

0.6

04

( xs

exp( — —x' [«, (5.6)
2n, i

where the subscript c refers to the case T=T,. The
integrals involved have been evaluated numerically to
give P, as a function of n„which in turn gives P, as a
function of P/n=u&ss/(r)ySs/v) The .Curie temperature
follows as

0.2 kT.= (1/A) (0.338rlyS'f/v)' (5.7)

l

0.2
I

0.4
I

0.6 0.8 LO

where f, as a function of &ao'/(riyS'/v), is shown in Fig.
1. To quite a good approximation, we find 1 =1—cess/(r)yS'/v), in which case

~ /(q y s/~)

FIG. 1. The function f of Eq. (5.7), plotted as a function of
p/n=cuo'/(v7S'/v) which measures the ratio of contributions to
harmonic energy from short-range and long-range (dipolar) forces,
respectively.

where
U= 'a)s'/+A P+J3P-(54)

V= t/ —&~S(Z+&(P;..)). (5.5)

In cases where the coeflicient A is positive, the e6'ects
of the P term is probably negligible. This case, and the
limit gy~)vedas, was the system discussed by Aizu. "
We shall also consider this positive-A case, but without
any restrictions on the parameter magnitudes (except to
neglect the P anharmonicity). This serves as a simple
introduction to the more general situation, where we
allow A to be negative; a case which often appears to
be important for free crystals. For example, this helps
to explain the Grst-order ferroelectric transition ob-
served for BaTi03. However, we shall Gnd that a
negative value for the coefficient A does not necessarily
lead to a first-order transition, and that systems may
have a negative value of A and yet still show a second-
order phase transition. Study of the dielectric properties
of LiNbOs" and LiTaOs (Part III), indicate that these
are examples of the latter. Such "negative-A" systems
must, of course, have their ferroelectric displacement
limited by terms higher than fourth order in anharmo-
nicity. We shall assume that our systems are stabilized
in such cases by sixth-order terms.

A. Positive-A Case

Neglecting $' terms, and transforming to the dimen-
sionless variable x= (A/kT)'I'&, our problem can be
neatly cast in terms of the dimensionless parameters

's M. E. Lines (unpublished) ~

k T,=0.114(r)yS'/vA) t (r)ySs/v) —(op'j. (5.8)

The ionic polarization is computed from (5.3) which,
in terms of the variable x, and for the case of zero
external Geld, may be written

where

x' Pxi
x exp~ ———x4+—~«

2n pi
rx

exp~ ——x'+—dx, (5.9)
2n p

(5.10)

S- 1 (riyS'
(P'-)r=o=-

v 4A( v ) (5.11)

is the ionic polarization at T=o, obtained by minimiz-
ing H.rg with respect to $, and using (5.7) for T„we
may plot curves of reduced polarization P/Ps (P;, )/——
(P;o„)r p against reduced temperature T/T, (where
P is the total polarization, and Po its value at absolute
zero). These curves, as functions of p/n are shown in
Fig. 2.

A few interesting observations can be made at this
juncture. First, from (5.11), the condition for ferro-
electricity in the one-mode approximation, for the case
where lattice stabilization is produced by fourth-order
anharmonicity, is r)&S'/mes) 1; i.e., P/n(1. Secondly,
the phase transition for this case is always of second
order. Thirdly, the polarization curve shapes, particu-
larly for the strongly ferroelectric case (P/n«1) are very
similar to the classical Brillouin curve of magnetism

Again we compute the integrals numerically to give F
as a function of n and P. These results can be more
conveniently recast in the form (P;, ) as a function
of T for various values of P/n=&uss/(riyS'/v). Finally,
noting that
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theory. The latter, familiar from the simple eRective-
6eld theory of magnetism in insulators, describes the
shape of magnetization curves for the limit of classical
spins; it lies fractionally outside the P/rr=0. 3 curve of
Fig. 2. Finally by expanding (5.9) in powers of I' to
order I'P, it is not diKcult to show that (P;.„)varies as
(T, T)'—"when T approaches the Curie temperature.
Again, a corresponding result is familiar from the
eRective-Geld theory of magnetism. There is, however,
a very signiGcant diRerence between this result, as
deduced for magnetism, and for ferroelectricity. In
the former case it represents a relatively crude approxi-
mation, in the latter case it seems, experimentally, to
be an extremely good one. In both systems, the broken-
symmetry character of the ordered state makes con-
venient a description in terms of an order parameter.
In the present paper this is introduced by representing
long-range dipolar interactions by a Lorentz Geld; for
eRective-Geld theories of magnetism, by replacing very
short-range exchange interactions by a molecular Geld.
The existence of short-range-order correlations in the
respective systems obviously affects the latter approxi-
mation much more seriously than the former.

The ionic susceptibility for the single-mode approxi-
mation follows from Eq. (4.9), and may be written, for
E parallel to the ferroelectric axis, as

yx;..(pp) nV&' ~o'
2 2

1+yX;.„(cp) kTp pop' —pip
(5.12)

Let us consider the case T=T„ for which I'/P((1.
Transforming to dimensionless variables, we find

VX ion (oi) rp s (T )1/P 1
I

—
I

-I:(~)-(x)'] (5»)
1+pX;..(~) ~os ~'&Ti P.

We may expand (x') and (x)' in powers of I' to order
F2, to obtain

(x2) (x2) + (P/P)2((x4) (xs) 2] (5 14)

(*)'=(I'/~)'(*')", (5.15)

where (x")p denotes an average for the case I'=0, i.e.,

(xm)—
x

x" expl ——x' 1~x
2n i

x'
expl ———x4 ldx. (5.16)

2n i

Using Eqs. (5.14) and (5.15), we find values of (x )—(x)' in the paraelectric and in the ferroelectric phases
to be (x')p and (xs)p+(I'/p)pp(x')p —$(x')os], respec-
tively. We can eliminate I' from the latter expression by
making use of Eq. (5.9), which, when expanded to
second order in I', becomes

( /0)'=6(ifl —(*')o)(( )o—(x') ') ' ( 7)

i.o

0.8

0.6

0.4

0.2

0.2
I

0.4
Tc

I

0.6
f

0.8 LO

FIG. 2. Reduced polarization P/Pp, shown as a function of
reduced temperature 2'/2', for a number of values of the param-
eter P/a. The curves refer to a ferroelectric stabilized by quartic
anharmonicity, for which T,~ 0 as P/n ~ 1.

It follows that (x')—(x)' in the ferroelectric phase
3ust below T, can be written (xs)p+3(p —(x')p).

Now (x')p is a continuous function of T near T, so
that, noting that the value of (x')p at T, is just P., we
may write

(*').=~.LI+~(T-T.)/T.], (5»)
for values of temperature not too far removed from
T,. Making use of these results to expand the ionic
susceptibility about the Curie temperature, we obtain

v~'-"(~)L1+v~'-"(~)] '= L«'/(~o' —~')]
&&LI—(s —p) (T—T.)/T.] (5 19)

for the paraelectric state (superscript p denoting this
nonpolar phase), and

v&' (pp)LI+v&' (pp)3 '= L&p'/(&p' —&')]
&&II+2(s—

f ) (T—T.)/T.] (5 20)

for the ferroelectnc state.
Consider the paraelectric state. The susceptibility

diverges at T„' for which

I:»'/(~p' —~')]LI+(s—~)(T.—Tn')/T. ]=1 (5 21)

Combining (5.19) and. (5.21), we find, to first order in
(T T„')/T„(T~'—T,)/T„and 1/yx—;, "(pp), the result

V~*. "(~)= T.f(s —
J )(T—Tn')] ' (5 22)

By an analogous calculation it follows that

vx'. '(~) = T.L2(s —~)(Tr' —T)] ' (5 23)

where Tf', the temperature for which X;, f(oi) diverges,
is given by

L»'/(«' —~')]L1—2(s —
3 )(T.—Tr')/T. ]=1 (5 24)
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puted tt as a function of P, for the "positive-A" case
of the present section; it is shown in Fig. 3. The param-
eter P, is related to the more fundamental parameter
P/cr =pep'/(rtyS'/tt) through the equation P,=0.338f
where f, as a function of P/o. is shown in Fig. 1.

It is, of course, possible to compute susceptibilities
directly from (5.13), and to calculate deviations from
Curie-V/eiss behavior as one moves away from the
Curie temperature. We have done this only for the
nonpolar phase, since the computations are far easier
when (x)=0. We have

O.l

ryg, y(te) ce s (T )1/2(g2)

1+yX &(ce) pep' —(o'k TJ P,
(5.27)

0.2

FzG. 3. The parameter p of Eq. (5.18), which determines the
Curie constant and soft-mode frequency near T„plotted as a
function of tt, (which controls the Curie temperature) for the
quartic-anharmonicity case.

Near T„ the total susceptibility is related to the ionic
susceptibility by X(ce)=st'X;. (ce) Lsee Eq. (4.10) with
X;, (ce)))n]. Thus, both paraelectric and ferroelectric
susceptibility follow a Curie-Weiss law near T„and
there is a factor-two difference in the Curie constants
between the two cases. This result does not depend on
the specific form used for our potential function V„of
Eq. (4.3) so long as the nonpolar state is centro-
symmetric and the transition is of second order, and it
is a result that is familiar from the thermodynamic
theory of ferroelectricity. "

The paraelectric susceptibility diverges when T= T„',
where T„' is a function of frequency. Expanding T~'

by use of (5.21), we find that for a fixed temperature T
a little larger than T„ the susceptibility diverges at a
f'requency of applied Geld ~„, where

where (x')p/P, as a function of T/T. has been computed
for various values of P, and is shown in Fig. 4.

There is, of course, a simple relationship between
the parameter p of the present section and the param-
eter X of Sec. 4 LEq. (4.13)].The latter takes different
values in the polar and nonpolar phases, and may be
related to p, for the single-mode approximation, by
comparing (5.22) and (5.23), in turn, with the single-
mode form of (4.14), viz. , C= 1/fy(1 —X)].

One Anal observation for the quartic-anharmonicity
case can be made by coinparing Eqs. (5.8) and (5.11),
for T, and (P;, ) at T=O, respectively. We note that
a very simple relationship exists between these two
quantities, namely,

ItT.=0.45rtys(P;, „)r ps,

or, more accurately,

k T,=0 45prtys(P;, „).r ps,

(5.28)

(5.28')

where p is plotted as a function of P/cr in Fig. 5.
Note added srt proof. Relationships of the form (5.28)

are particularly interesting when considered in con-

l.8—

This is the frequency of the "Cochran mode" or
"ferroelectric mode" of the nonpolar phase. There is,
of course, an exactly equivalent result for the ferro-
electric phase, where we And a polar soft mode of
frequency co~ where

CQ.

A
OJX
V

l.2

The behavior of susceptibility and soft-mode fre-
quency near the Curie temperature can therefore be
described quantitatively as soon as p has been computed
in terms of the basic parameters of the single-mode
Hamiltonian. Using (5.16) and (5.18), we have com-

"F.Jona and G. Shirane, in Ferroetectrec Crystals (Pergamon
Press, Inc., ¹wYork, j.962).

l.4 I.8
T/ Tc

2.6
I

3.0

FIG. 4. The ratio (x )p/P„which is a direct measure of ionic
susceptibility in the nonpolar phase Lvia Eq. (5.27)), shown as a
function of reduced temperature for a ferroelectric stabilized by
quartic anharmonicity.
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which, in terms of the dimensionless parameters is

P'/n'& 1+2P'/38'. (5.34')

We say "can be" because the erst-order region calcu-
lated from the above includes metastable ferroelectrics
for which the eR'ective ion potential energy has a local,
but not absolute, minimum for a nonzero value of
E;,„at T=0. Details of the metastable-stable boundary
will be discussed in a future publication on erst-order
ferroelectrics, in which region the boundary occurs.

Curves of P/Ps versus T/T, have been computed
from (5.30) for many values of P'/n' and gP'/b. Some
typical results are shown in Figs. / —9. Again, these
curves have been computed only for systems showing
a second-order phase transition, and one readily veri-
fies that (P;, )s or T,—T as the temperature approaches
the Curie point.

A few interesting observations can be made. First,
in the limit A —+ 0, the curves of Fig. 9 are almost
identical with those of Fig. 2 for the case of quartic
anharmonicity alone. They do, however, fall oB with
T fractionally faster, the difference being most pro-
nounced for larger p'/n' ratios. Secondly, for a fixed
value of p'/n', the curves (Figs. 7 and 8) become
rapidly more steplike as the negative quartic anhar-
monicity increases, but they eventually become insensi-
tive to further increase beyond gp'/3=3. The limiting
curve shape for Qp'/B)3 is independent of p'/n'.
Finally, a rather surprising feature; the curve shapes
become less steplike as the second-order —first-order
phase boundary is approached.

T/ Tc

Fro. 7. Reduced polarization I'/Pv, plotted as a function of
reduced temperature T/1', for various values of the parameter
gp'/s, which measures the (negative) quartic-anharmonicity
contribution to a ferroelectric system stabilized by sixth-order
anharmonic terms. The curves gP'/S ~ ~ converge very rapidly
to a limit barely outside the gp'/8=3 curve of the figure. The
curves are computed for the case P'/n' revs/(=qvS'/v) =0.

0.2 0.4
T/Tc

0.6
I

0.8 I.O

Fio. 8. As Fig. 7, but for p'/n'= 1.Again, all curves gp'/S -+ e&

converge very rapidly to a limit barely outside the gP'/6=3
curve.
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FIG. 9. Reduced polarization as a function of reduced tempera-
ture for a number of values of the parameter P'/u'. The curves
are computed for a ferroelectric having only sixth-order an-
harmonicity, for which T, —+ 0 and p'/n' —+ j..

We can again write an equation of the form (5.28')
relating T, and (P;„).Writing p'=0.45p, the param-
eter p' is a function of P'/n' and gP'/iI and is shown in
Fig. 10. For a fixed value of (rfyS'/v) and of 8, both
T, and (P;, ) at T=O increase as A increases or as
coo' decreases. This is true both in the first-order and in
the second-order transition regions, so that for systems
with comparable values of r)y5'/v and 8, those exhibit-
ing second-order transitions are likely to have higher
transition temperatures and larger values of spon-
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energy F(P,T) expressed as a function of polarization
and temperature alone.

The familiar statistical mechanical relationship for
free energy, viz. , F= —kTln(p. f.) where p.f. is the
partition function, does not calculate F(P,T). It calcu-
lates rather the free energy F(Ei...T), defined as

F(Ei„,T)= U TS'—P;„—Ei„, (6.1)

where U is internal energy and S' is entropy. Using the
energy equation

where
USE/pip = pz+4qz'+6rz',

z= &Pionpip/S )

(6.10)

p = 1—(»S'/@pips)+12 (Ak T/ pi4p)

+90(Bk T /pup ), (6.11)

q= (~/pip )+15(BkT/pip ), r=B/p&pp. (6.12)

of E~„can be solved for E as a function of I';, . Ke
find

TdS =dU EiogdPjo~ y (6 2) The free energy F(P,T) now follows as fqEdP;. „and is

we find
dF (Ei„,T) = S'd T P—;,„dEi—... (6.3)

justifying the notation. Thus, from F(Ei„,T), by
differentiation, can be obtained the ionic polarization
and entropy functions of the system.

The function F(P,T) is defined by the equation

F(P,T) =F(E...T)+rIP;, (E+,'yP;.„), (-6.4)

as may be verified as follows. Using (6.1), together with
the fact that Ei.,——g(E+yP;. ), we find

F(P', T) = U TS' ;»—P P.——(6.5)

P+2qz'+2rz4= 0,
p+4qz'+6rz4= 0. (6.14)

For a positive value of B (and hence r), a solution
exists if q is negative, P is positive, and qz=2rP. The
boundary between first- and second-order transition
regions is p,= q, =0 Pp, =p(T= T,), etc.], which is

i'(P, T)= ,'Pz'+q—s4+rzP. (6.13)

The ferroelectric transition is of first order if F(P,T)
and its derivative with respect to s are simultaneously
zero for a nonzero value of 2;; that is, if

Differentiating and using (6.2), we have

dF (P,T) = S'd T+gEdP—;„, (6.6)

1—(»S'/v pip') =2A'/5Bpip2 (6.15)

or, in terms of the dimensionless parameters of Fig. 5
)compare Eq. (5.34')],

=—SkT ln
(—vX,ii)

exp~ [dn. d$, (6.7)
kT

where X,ii is given by (5.1).The f integration involved
in (6.7) can be performed analytically only in the limit
of small anharmonicity. We accept this unfortunate
restriction and proceed to calculate F(P,T) within this
limitation.

Introducing the dimensionless variable nr = cpp$/

(kT)'" we write

—i', ii/k T= —(7r'/2k T) ,'w' aw' bw'+—g—e,—(6.8—)

where

and
a= AkT/~ p4, b= Bk'T'/~ ', p

g= SEi../pip(kT)'".

We can now integrate (6.7) directly if a«1 and b((1
to obtain, to Grst order in e and b

F(Ei.„T)= —EkTLln(k T/&pi p)
—3a—15b

+-'g'(1 —12a—90b)—g'(a+15b) —bg'] (6.9)

P;, follows as —BF(Ei...T)/BEi„and may be checked
for consistency with (5.3) evaluated in the same
approximation. This equation for I';, as a function

which is the required relationship.
For the ferroelectric system in the one-mode approxi-

Ination, we may write

F(Ei.„T)

P'/n'= 1+2p'/5b' (6.15')

7. NONLINEAR PROPERTIES OP THE
PERROELEGTRIC STATE

We have described, in this paper, dielectric properties
of a ferroelectric system in terms of distortions from a

which is the boundary curve drawn in Fig. 6 to separate
first- and second-order regions. The boundary value
of P,' (and hence transition temperature) follows as

P,'= (1,5)—P»(P'/ ')'»(P'/P)'». (6,16)

The above theory is valid only in the limit of small
anharmonicity, and this condition can be reduced to
P'/n'=1, gP'/b«1, so that the boundary curve of
Fig. 5 may not be exact beyond this rather limited
domain.

The free energy F(P,T) is of particular interest
since it is the "Devonshire" free energy as used in the
thermodynamic theories of ferroelectricity (see, for
example, Jona and Shirane"). We note that the quartic
coeKcient q of the polarization series (6.13) for this
free energy is not temperature-independent, even for
a clamped system. Thus, a negative value for A does
not ensure a negative q or a first order phase transition.
Quite generally, the present theory leads totemperature-
dependent Devonshire coeQicients which are algebra-
ically related to the microscopic parameters only in the
limit of small anharmonicity.
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centrosymmetric paraelectric state. In the nonpolar
state, the effective Hamiltonian for the system contains
no odd-order terms in optical-mode variables. In the
ferroelectric state, on the other hand, the symmetry is
broken when the system distorts to one or other of the
minimum-energy positions in the familiar double-
minimum free energy. In such a distorted state, the
environment ceases to be centrosymmetric.

The effective Hamiltonian of the many-mode system
is given in (3.21). It is a sum of independent contribu-
tions from each optical-phonon mode p. We shall
expand the effective ionic potential V„of each mode
about that value of $„which minimizes it. Thus, this
value $„o is given by

~ og o+4g (p o)a+6' (p o) o

—
o1 S (E+y„(P;, ))=0. (7.1)

«t 0„=$v
—$vo be the new variable, in terms of which

we find

I'v= I'v'+PA'+QA'+Re~a'+.

where V„' is independent of 8„, and where

(7 2)

Pv= o~~'+6~v(4')'+1373v(4')' (7.3)

Qv= 4~ Av'+20&v(4')'
Rv= ~v+15&v(4')'

(7 4)

The equation of motion for 8~ follows immediately,
and is

(7 5)8v+2P„ev+3Qv8„'+4R~8v'+ =0.

It is a simple anharmonic oscillator equation of the
type very frequently taken as a model to discuss the
nonlinear optical properties of solids. ""The applica-
tion of a sinusoidal Geld E=Eoe'"'+Eo*e '"' to the
system adds a term —o1vS„(&„o+ev)E to the potential-
energy function of the pth mode. This, in turn, leads
to a term (g„S„)E on the right-hand side of the equation
of motion (7.5). The linear properties will be controlled
by the first-order term in e„and the nonlinear properties
will, in general, be dominated by the quadratic term.
We shall therefore neglect higher-order terms and write
the equation of motion for the pth mode

8 +0„'tl +3Q„0 '= (o1„S )E, (7.6)

where 0„'=2P„ is now the frequency of the optic
mode p at low temperatures (a more accurate evaluation
of Qv', when p is the soft mode, is given in Part II of
the present series).

We may now write down quite formally the linear
and nonlinear ionic susceptibilities for the system

' N. Bloembergen, in nonlinear Optics (W. A. Benjamin, Inc. ,
New York, 1965).' S. K. Kurtz and F. N. H. Robinson, Appl. Phys. Letters 10,
62 (j.967)."C. G. B.Garrett IEEEJ.Quantum Electron. QE-4, 70 l1968).

described by (7.6). For the linear susceptibilitiy
parallel to (P;. ) we find

(7 7)

The first-order nonlinear solution has Fourier compon-
ents at 2' and 0. We have

—(3Q.~.'S"'Iv)
X;,„i & (2'; to, to) =Q, (7.8)

v (Qv' —too) (0„'—4to')

X;, &o&(0; co,o~)=P
—2 (3Q„rl„'S„,'/v)

(n,'—ro')0„'
(7.9)

For ferroelectric systems, Qv is large only for those
soft modes which dominate the ferroelectric properties.
Thus, for a system with only one or two soft modes,
the above expressions simplify accordingly. Quite
generally, however, by use of Eqs. (7.1), (7.3) and(7. 4),
we can express the optical-phonon frequencies and the
various nonlinear susceptibilities of interest directly
in terms of the ionic polarization. For the one-mode

approximation, these may, in turn, be related directly
to the pertinent parameters of the effective Hamilto-
nian.

It should be noted that the above results are derived
for the ionic motion of a ferroelectric, and are therefore
of direct relevance only to infrared nonlinear properties.
Even here, as pointed out by Garrett, " an adequate
discussion of nonlinear effects requires, at the very
least, the use of an anharmonic vibronic oscillator
model, allowing simultaneously for ionic and electronic
anharmonicity. This involves the use of four anharmonic
third-order parameters in the expression for the poten-
tial energy of each vibronic oscillator, of which Q„of Eq.
(7.2) is only one. Even so, coupled with some knowledge

of optical anharmonicities, calculations along the lines

of the present section must shed some light on the
dependence of nonlinear effects on polarization in

ferroelectrics.

8. CONCLUSIONS

An effective Hamiltonian has been developed to
describe the nondissipative dielectric properties of dis-
placement ferroelectrics. It is suggested that this
displacement Hamiltonian might be used for some
dielectrics in the same spirit that a spin Hamiltonian is
used for an analysis of magnetic properties, i.e., as a
convenient stepping stone between the "tossing sea of
Cause and Theory and the firm ground of Result and
Fact."

Although some broad features of the dielectric
properties of ferroelectrics have been outlined, even for
the general "many-soft-mode" systems, it is evident
that the real value of the displacement Hamiltonian
is for ferroelectrics which have, to at least a fair
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approximation, only one strongly temperature-depen-
dent optical-phonon mode. For such a system we have
described many dielectrics properties quantitatively in
terms of the parameters of the displacement Hamilto-
nian. These properties include polarization, soft-mode
frequency, and linear and nonlinear static and dynamic
susceptibilities, all as functions of temperature both
near to and away from the Curie temperature.

A comparison of theory with experiment for some or
all of these dielectric properties is suf5cient to determine
the relevant parameters of the displacement Hamilto-
nian. These parameters are microscopic and are very
much more closely related to the fundamental forces of
the system than are the parameters of a thermody-
namic theory. In part III we actually determine them
for lithium tantalate, and proceed to show how they
can be used to elucidate less obvious features of de-
tailed microscopic behavior and to support, or to
reject, particular microscopic models.

The accuracy that can be achieved in any such under-
taking probably depends most signi6cantly on the
validity of the "one-soft-mode" approximation for the
particular ferroelectric concerned. A quantitative assess-
ment of the number and degree of softness of the various
optic modes can be made by direct measurement of the
infrared or Raman spectra as a function of temperature.

The hope is that for a number of displacement
ferroelectrics (and possibly even order-disorder ferro-
electrics; see part II) the use of the displacement
Hamiltonian and classical statistics will allow for a
fairly quantitative description of nondissipative di-
electric properties in terms of relatively few microscopic
parameters which can themselves, as a result, be esti-
mated with reasonable accuracy. In this way, less
emphasis need be placed on thermodynamic (macro-
scopic) theories and explanations of experimental data
can perhaps, more frequently, be given directly in terms
of microscopic theory.
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Statistical Theory for Displacement Ferroelectrics. II. Speci6c-Heat
and Soft-Mode-Frequency Calculations

M. E. LINEs

Bel/ Telephone Laboratories, Murray Hill, New Jersey 07974
(Received 10 June 1968)

The effective field theory for displacement ferroelectrics which was developed in part I of the present series
of papers is extended to include specific-heat, energy-of-ordering, and more detailed soft-mode-frequency
calculations. Numerical results are computed for a simple one-soft-mode system in preparation for a test
of the theory on the displacement ferroelectric LiTao& (which is presented in the following paper). Detailed
shapes of the specific-heat curves are computed and the discontinuity at the Curie temperature is dis-
played. The soft-mode-frequency calculations are extended beyond the small-anharmonicity region dis-
cussed in part I, thereby removing the last small-anharmonicity restriction from the method. Freed from
all small-anharmonicity restrictions, it is demonstrated that the present approach is no longer confined to
displacement systems, but is equally applicable for order-disorder ferroelectrics and goes over quite smoothly
from one class of ferroelectric to the other.

1. INTRODUCTIOÃ
' "N part I of the present series of papers, ' an attempt
~ - was made to construct a workhorse theory for dis-
placement ferroelectrics bearing a resemblance in spirit
to the molecular-field theory (or, more closely, the
cluster theories) of magnetism. In the theory, advantage
is taken of the relative insensitivity of optic-mode fre-
quencies to wave vector, in the absence of long-range
electrostatic forces, to write an effective Hamiltonian
for their motion in terms of a single primitive cell of the
crystal lattice. The long-range dipolar interactions are
then accommodated in an effective-6eld approximation
by replacing all the other cells of the system by their
thermal (ensemble) averages. The latter statistical ap-

'M. E. Lines, preceding paper, Phys. Rev. 177, 79/ (1969),
hereafter referred to as part I.

proximation is basically a high-temperature one (neg-
lecting short-range correlations between cells), but is
one which is likely, in view of the long range of the
dipolar forces, to give quite a good description of the
system over the entire temperature range.

The great advantage which accrues from accepting
the statistical mechanical restrictions associated with
the use of an effective-field theory is the ability to
describe at least some ferroelectric systems in terms of
comparatively few parameters associated with an eGec-
tive Hamiltonian; few enough, in particular, for these
"unknowns" to be comfortably overdetermined by a
comparison of theory with experiment for dielectric
properties alone.

In part I, quantitative statistical calculations were
performed for a particularly simple case; that of a dis-
placement ferroelectric which has only one grossly


