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Effect of a Magnetic Field on the Superparamagnetic Relaxation Time
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The relaxation time for the fluctuations in the direction of the magnetization vector is calculated for
very fine, single-domain ferromagnetic particles which have a uniaxial (shape or crystalline) anisotropy.
A magnetic field is assumed to be applied parallel to the easy magnetization axis, and the relaxation time is
computed for various magnitudes of this field. It is found that the commonly used approximation for high-
energy barriers is about as justified as in the case of zero magnetic field, down to barriers of the order of 7.

I. INTRODUCTION

N very small particles of ferromagnetic materials,

thermal agitation causes changes in the orientation
of the magnetization of each particle. An assembly of
such particles then reaches a statistical distribution of
the orientations and behaves as if it was made of
paramagnetic atoms. Therefore the phenomenon is
called “superparamagnetism.”® Obviously, this phe-
nomenon can be observed in extremely fine particles
only, because for larger particles the relaxation time
associated with the thermal agitation is very large, so
that the magnetic moments of the particles do not
change appreciably during the time of the experiment,
and these changes can be ignored.

The usual theoretical study of the relaxation time
of this thermal agitation® is based on the assumption
that the energy barrier between energy minima is so
large, compared with 2T, that it justifies a discrete-
orientation model. Thus, one considers essentially the
probability of populating the energy minima, not allow-
ing the magnetization vector any directions in between.
This leads to a relaxation time 7 which is usually
written as!

1/T=foe'"EB”°T, (1)

where Eg is the barrier energy, % is Boltzmann’s con-
stant, T is the temperature, and f, is usually set equal
to some quantity having the dimension of frequency—
for example, the natural frequency of gyromagnetic
precession. Such a simplified model should break down
where the minima are rather flat, as has been argued
by Brown,? yet this model is still the only one used for
analyzing experimental data.

Brown? has shown that the problem is not that of a
correlation time, but rather the response time of the
magnetic moments to random forces. He could, there-
fore, use the theory of stochastic processes and write
a Fokker-Planck-type differential equation. For the
particular case when the energy density of each particle
F is a function of the polar angle § only, and is inde-
pendent of ¢, this equation is?

(d/d)[ (1—12)e P8 (dD/do) H-\ePFB=0.  (2)

11. S. Jacobs and C. P. Bean, in Magnetism, edited by G. T.
R7ado and H. Suhl (Academic Press Inc., New York, 1963), pp.
271-294.

2W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).
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Here & is proportional to the probability-density dis-
tribution function, and

x=cosb, B=V/kT, 3)

where V is the volume of the particle. The eigenvalues
\ are determined by the requirement that ® should be
regular at x==1, and are related to the relaxation
time 7 of the system by

A= (V/kTy) (v *+7"M ), ©

where M, is the saturation magnetization and v, is
the gyromagnetic ratio. The dissipation constant # can
be taken? as the value which minimizes X of (4),

2y M1 )
Substituting in (4),
A= (2VM,/kTrvo). (6)

For practical purposes it is sufficient to calculate the
smallest nonvanishing eigenvalue A, because the larger
eigenvalues have very little effect on the physical
behavior of the system, except at the very early stages
of an approach to equilibrium.?

The eigenvalue of Eq. (2) has been calculated* only
for the case of uniaxial anisotropy, in zero magnetic
field. This calculation will be extended here, for the
case of a magnetic field applied along the easy axis of
the uniaxial anisotropy.

II. THEORY

When the magnetization is at an angle 6 to the easy
axis of a uniaxial anisotropy, along which a field H is
applied, the energy density of the particle is

F=—HM, cos+K sin%. @)
Using (3), and substituting into (2),
(1—22)d*®/dx?
+2[a(zx+hb)(1—22) —21d®/dx+10=0, (8)
where
a=KV/kT, h=HM,/2K. 9)

3W. F. Brown, Jr., J. Appl. Phys. 30, 130S (1959).
4 A. Aharoni, Phys. Rev. 135, A447 (1964).
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F16. 1. Eigenvalue A, which is inversely proportional to the
superparamagnetic relaxation time according to Eq. (30), plotted
as a function of the reduced energy barrier @ and reduced field %,
defined in (9), for particles with uniaxial anisotropy K in mag-
netic field H at temperature 7.

In order to solve (8), the solution is expanded in a
series of Legendre polynomials,

0

d= 3 anPa(x).

m=0

(10)

Substituting in (8), and using the differentiating and
recurrence formulas® of the Legendre polynomials, it
is seen that (10) is a solution of (8) provided for every
m>0,

(m+1)(m+2)(m+3)  (m+1)(m+2)
AAmy1
(2m—-3) (2m+-5) 2m+3 g
A—m(m—+1) m(m-+1)
+( f )am
2 m—1)(2m+3)
_’,m(m——l) m(m—1)(m—2) 0. (1)

(] Am—1—" a,
2m—1 2m—1)(2m—3)

For the case #=0, the even and odd terms were
separated,* which is also clear from (11), and the three-
term recursion formula could be replaced by a con-
tinued fraction, from which the eigenvalue could be
readily computed. This method is not practical with

§ H. Margenau and G. M. Murphy, T/e Mathematics of Physics
and Chemistry (D. Van Nostrand, Inc., Princeton, N. J., 1956),
2nd ed., p. 106.
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a five-term recursion formula (11), and the following
procedure was used. The determinant of the coefficients
of @, in (11) should vanish so that (11) will have a
nonvanishing solution for the a,’s. The determinant of
the coefficients of a., up to a certain order », was
therefore equated to zero, and the smallest nonvanish-
ing root A was computed. Then » was increased, and
the smallest root was computed again, until the in-
crease in # had a negligible effect on the eigenvalue.

It should be noted that (11) has the trivial solution
a,=0 for every m>£0, with A\=0. This is the equi-
librium solution? that is of no interest. However, it
can be readily eliminated from the numerical compu-
tations by removing the equation with m=0 from (11),
since this is the only equation in which ¢, appears.

For each order # of the determinant (and for given
k and a), two methods were tried for computing the
roots: the Newton-Raphson method® and the iteration
method® in which the eigenvalue is replaced by its
previous approximation in every place along the diago-
nal, except for the first place, which is used to compute
the next approximation. Both methods were found to
converge after a few iterations, for every order of the
determinant. The main difficulty was the necessity of
increasing the order of these determinants with in-
creasing a, especially for the larger %, until an order of
30 to 40 had to be used. This became time consuming
even for the fast computer.

The computations were carried out on the Golem,
the electronic computer of this Institute. Special care
was taken to make sure the iteration converged into
the smallest zero of the determinant. This was checked
by using the two iteration processes, and by usually
starting at too small a value. Also, for several values
of # and e, the determinant was computed for many
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FiG. 2. Parameter f~, defined in Eq. (13b), calculated from the
data of Fig. 1 and plotted as a function of the reduced energy
barrier « and the reduced field /. The commonly used approxima-
tion (1), with a constant f, is equivalent to the assumption that
f~is a constant.

¢ Reference 5, pp. 492-493 and p. 503.
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values of A between zero and the computed eigenvalue,
to see that the determinant did not change its sign in
between.

The results of the computations are plotted in Fig. 1,
for @ varying between 0.2 and 25, which is the value
usually used! as the onset of superparamagnetism, by
assuming Eq. (1) and a “measurement time” of 10?
sec. For values of a smaller than those plotted in
Fig. 1, the low-energy-barrier-approximation formula
of Brown? should hold. Values of %4 start at =0, which
has already been computed before,* and increase up to
k=1, which is the value? at which the two-minima
structure of (7) disappears.

It should be particularly noted that the determinant
contains only even powers of %, so that Fig. 1 is the
same when % is replaced by —#4.

III. RESULTS

The energy (7) has two minima, separated by a
maximum. It is readily seen by differentiating (7) that
the energy difference between the maximum and each
of the minima is

Ep=KV(1£h). (12)

Therefore, if (1) is to be used, the “constant” f, is,

according to (6) and (9),

Jo=70(K/2M,) f%, (13a)

where

fE=(Ma) exple(1£h)"]. (13b)

The dependence on the volume of the particle and on
the temperature of f, is in the a dependence of f+ or
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Fi1G. 3. Ratio of the approximation (14) to the actual eigenvalue
of Fig. 1, plotted as a function of the two parameters of Fig. 1.
In regions where the expression plotted can be approximated by
1, Eq. (14) can be used. For 2=0.4 and %#=0.5, use shifted scale
on the right-hand side.
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Fi1G. 4. Ratio of Brown’s asymptotic solution (15) to the exact
eigenvalue of Fig. 1, plotted as a function of the two parameters
of Fig. 1. The curve for #=0.1 was also computed, but it was not
plotted because it is too close to £=0.

f~- Now, f+ depends very strongly on «. The depen-
dence of f~ on a, as computed from the data of Fig. 1,
is plotted in Fig. 2. It is seen that the variation of f~
is rather slow, so that its replacement by a constant
(as is usually done) is a reasonably good approxima-
tion, if one is interested only in the order of magnitude
of the relaxation time.

A considerably better approximation can be obtained
by taking f~ proportional to !/, that is, by using in (1)

fyoKa!?/ M. (14)

This is more or less in accordance with the asymptotic
solution? for large «, if % is small. For =0, the data of
Fig. 2 yield a constant to within about 109, for f, of
Eq. (14) when o changes between 2 and 25. For other
values of 4, it is seen from Fig. 2 that f~ becomes pro-
portional to ! [which makes f, of (14) a constant],
for the larger values of a. Therefore, the use of (14),
rather than just a constant for f,, should improve the
approximation, at least for the smaller values of 4. For
h>0.5, the use of (14) becomes impractical. This is
illustrated in Fig. 3, which essentially plots o!/2/ f~ (the
factor 27712 was introduced because it appears in the
asymptotic solution,? but can certainly be taken as 1
for all practical purposes). Equations (14) and (1)
yield a good approximation to the relaxation time, as
long as the quantity plotted in Fig. 3 can be approxi-
mated by 1; and it is seen from the figure that this is
the case for % not too large, and « not too small. One
might even introduce an %-dependent factor into (14)
and thus improve the approximation.

Actually, the asymptotic formula of Brown? for the
case of energy given by (7) is

A=27"12032(1—12){ (141) exp[—a(1+A)?]
+(1—h) exp[—e(1—A)PT}. (15)
It has been noted before” that the first exponential can

?E. Kneller and E. P. Wohlfarth, J. Appl. Phys. 37, 4816
(1966).
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be omitted, for small 4. For larger %, the use of (15)
should yield a considerably better approximation than
the use of (14). This can be seen from Fig. 4, in which
the ratio between the X of (15), and the actual eigen-
value A, from Fig. 1, is plotted as a function of a with
h as a parameter. The constancy is considerably better
than in Fig. 3, but not sufficiently so to justify the
complications involved in using (15), for present day
experimental accuracy.

IV. DISCUSSION

B From the foregoing one can conclude that for the
region £250.4 and «>2, the relaxation time can be
approximated by (1) and (14), in which « is defined
in (9), K is the anisotropy, M, is the saturation mag-
netization, and <y, is the gyromagnetic ratio, of the
material under study. In principle it should be possible
to verify experimentally if this approximation is better
than the cruder one of assuming f, to be a constant.
This can be done by a series of measurements, in which
the transition from ferromagnetic to superparamag-
netic behavior is found for various values of @, by
changing either the volume or the temperature.

Generally speaking, there are two independent
methods® for measuring the critical & for which there
is a transition from ferromagnetism to superparamag-
netism (i.e., for which the relaxation time becomes
equal to the time of the experiment). In the first
method, measurement of an appropriate property of
the material are carried out at a constant temperature
“for a series of samples with known average particle
sizes which encompass the transition region between
superparamagnetic and ferromagnetic behavior.””® From
these one can find out the volume in which the transi-
tion occurs. However, in order to compare to (14),
such a measurement should be repeated at several
temperatures, whereas measurements reported so far®?
were confined to one temperature.

8 W. Kiindig, H. Bommel, G. Constabaris, and R. H. Lindquist,
Phys. Rev. 142, 327 (1966).
9T, Shinjo, J. Phys. Soc. Japan 21, 917 (1966).
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In the second method, one sample is measured at
different temperatures. For an appropriately chosen
sample, the transition temperature is within the region
of temperatures measured, and can be found from
these measurements. Again, measurements were re-
ported®? for one sample, whereas several samples, with
different average volume, have to be studied in order
to check (14). Moreover, comparing the results of the
two methods does not yield any additional information,
because in the reported experiments®? the temperature
chosen for measurements in the first method is very
near to the critical temperature of the second method.
It should be particularly noted that for any accurate
determination of fo, one has to know KV accurately.
This is rather difficult because there is always a dis-
tribution of ¥, which is not necessarily the same in
different samples of the same material. Also, there can
be a distribution in K, if it contains a contribution
from shape anisotropy, since the shape varies con-
siderably from particle to particle, and especially since
one very often' encounters a tendency of the particles
to form long chains which have a high shape anisotropy.
Finally, it seems adequate to emphasize that the
calculations reported here are for uniaxial anisotropy
only. The result does not necessarily apply to materials
with cubic anisotropy, for which some measurementst®
have recently been reported. However, because the
approximation (14) is essentially that of the asymptotic
solution, without even taking the field into account
properly, it seems very likely that the same approxi-
mation should hold for cubic anisotropy as well.
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