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The rotation group in four dimensions R4 is applied to the study of the 2s 2p" configurations
of atoms. This Lie group is used in both the mathematical sense, describing the transfor-
mation properties of the angular parts of the 2s and 2p electrons, and in the more physical
sense of an approximate symmetry group for the first-row atoms. The various states of
each configuration are classified by means of R4. By expressing the Coulomb interaction in

terms of tensors, transforming according to irreducible representations of R4, Coulomb and

exchange integrals are evaluated group theoretically, The method is extended to 3s 3P 3d
configurations. The states are classified by means of R4 and Coulomb and exchange integrals
are approximately evaluated.

The theory of groups has long played an impor-
tant role in the quantum theory of atomic struc-
ture. The indistinguishability of electrons and
the Pauli exclusion principle lead naturally to the
introduction of the permutation group. The use
of the three-dimensional rotation group in classi-
fying states of definite angular momentum is of
course well known. The group 8, is not sufficient-
ly large to explain the n'-fold degeneracy of the
nth level of hydrogen-like atoms, and in 1935 Fock'
realized that the group B4 would. He showed that,

waif the Fourier-transformed Hamiltonian is stereo-
graphically projected from three-dimensional
p-space onto a four-dimensional sphere, the
Hamiltonian exhibits four-dimensional rotation
symmetry. It is this additional symmetry beyond
9, which is responsible for the degeneracy of
orbitals of the same principal quantum number.
Each set of orbitals of a given principal quantum
number when projected onto the four-dimensional
sphere transforms according to one of the irre-
ducible representations of B4.

In his study of atomic spectra, Racah' found
that in order to classify states of cP and of f"
it is useful to introduce I.ie groups larger than
the 8, describing the orbital angular momentum,
and smaller than the SUn describing the permu-
tation symmetry and spin. These groups describe
in more detail than does B, the transformation
properties of the angular parts of the orbitals
under consideration. Consequently such groups
are able to provide the additional quantum num-
bers that can distinguish identical terms, e. g. ,
the two 'D states of d' are labeled by their senior-
ity, a quantum number arising from A, . These
groups deal with the mathematical problems of
the classification of states and will be called here
"mathematical groups" as opposed to the "physi-
cal groups" such as the B4 introduced by Fock.

In this paper we consider both descriptions of
groups in an investigation of the application of
B4 to the study of the 2s~2p configurations of
atoms. We discuss the relationship between the
two descriptions of groups. For the four 2s and
2P orbitals, the appropriate group for both the
mathematical and physical descriptions is R4,

and the representations used in the analysis of
atomic configurations are the same. The four
2s and 2p orbitals transform as the (10) repre-
sentation of B4. For any other principal quan-
tum number the groups differ. In the case of
the nine 3s, 3p, and 3d orbitals, the group used
in the mathematical description is B„whereas
the group used in the physical description re-
mains B4. The 3s, 3p, 3d orbitals transform
as the (1000) representation of 8, and according
to the (20) representation of R4.

We then investigate the 2s~2pn configurations
and determine their transformation properties
with respect to R4. By means of the use of a
model potential we are able to evaluate Coulomb
and exchange integrals for 2s and 2p electrons
by group-theoretical methods. Finally we evalu-
ate Coulomb and exchange integrals for orbitals
in the n = 3 shell by an extension of the physical
description of B4 to the 3s~3p 3d configurations.

I. THE GROUPS RELEVANT TO THE STUDY
OF 2/m gpn

SUn. If we consider any set of 2n spin orbitals,
the indistinguishability of the electrons and the
Pauli principle allow us to conclude that any m-
electron wave function taken from these 2n spin
orbitals must transform according to the [1mj
representation of SU2n. ' This representation is
usually symbolized by the Young diagram shown
in Fig. 1. We now decompose SU2n into SUn
x SU2, where x stands for the inner tensor prod-
uct. Both factors contain the same electron co-
ordinates. This decomposition is the familiar one
into the space and spin parts of the wave function.
For 28~2P configurations there are eight spin
orbitals which transform according to irreducible
representations of SU,. Since we will be dealing
exclusively with a spin- independent Hamiltonian,
we make the decomposition into orbital and spin
parts: SU,- SU4xSU, and need deal with the SU4
part only. The allowed representations and their
dimensions for an n-electron system n =0, 1, ...4
is shown in Table I. Note that the Pauli principle
excludes space diagrams of more' than two columns
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TABLE I. Classification of Configurations 2s 2p

Num-
ber of
parti-
cles S U8

g,epre s entation
and dzmenszon of

SU4x SU2 R4 Configurations

n boxes

FIG. 1. Young diagram for an m-electron system.

and spin diagrams of more than two rows.
Q3 The clas sif ication of states s~P with respect

to this group (too familiar to warrant discussion)
is also given in Table I.

P4. We now want to consider a subgroup of SU4
which contains Q as a subgroup. Such a group will
connect representations of p3 andprovide additional
classification labels for configurations of 2s~2P+.
Thus sP and P' may both be 'P; up to this point there
are no group labels to distinguish them. A4 is
chosen as the intermediary group because in certain
ways to be described below, all atoms are similar to
the hydrogen atom.

The generators of g4 commute with the Hamil-
tonian of the hydrogen atom. As we will see the six
generators of P&4 can be expressed as the three
components of the angular momentum vector and the
three components of the Runge-Lenz vector. This
latter vector is defined as

(2m) '(p xL) —(2m)-'(Lxp) —kr/x,

where m is the mass of the particle and p and L are
the linear- and angular- momentum vectors respec-
tively. It is this extra invariant vector that causes
the degeneracy of the 2s and 2p orbitals. For the
other first-row atoms, the 2s and 2p orbitals can
be considered to be nearly degenerate. In addition
for many problems the precise form of the radial
parts of the orbitals has surprisingly little effect
on the final result of a calculation. ~a We are thus
led to believe that hydrogen-like orbitals have
considerable use for problems other than hydro-
gen, andthat the group &4may in some sense
be an approximate symmetry group for atoms
other than hydrogen.

In addition to this physical motivation, the angular
parts of the basic set of orbitals of the configu-
rations s~p, namely s, p+, p, and p, trans-
form according to the basic representation of

To see this mathematically we consider
the generators of R4 treated as generalized
Racah tensors. Upon studying the commutation
relations of these tensors and the transformation
properties of the wave functions, we will see that
A'4 is the relevant group for s~p configurations.
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In fact we first obtain the generators for SU4 and
then exhibit a subset corresponding to the genera-
tors of Fil4.
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A. The Generators of R4

Foiiowing EIIiott4 and Judd, ' we define generalized one-electron Racah tensors v (/, l ') of »nk k by
means of their matrix elements

(l'"m "'Iv (l, l') l/ "m ") —[k]'~'[/] '~'(/ "k "q(/" kl"'m "') 5(/"', /)5(/', /")k
Q'

where [a] =2a+1 and (l "km/ "ql/ "kl"'ml"') is a Clebsch-Gordan coefficient. The action of vqk(l, l ')
on a single electron orbital is given by

rrr
v (l, l') [/ "m ") = Q 5(/, /"')5(/', /")(—1) l [k]

l

where (:::)is a 3-j symbol, and the commutation relations for these tensors are

1)2l'."+l"—/'- qi &(/, /„)( 1)k, +ki+ki+/+/'+/" + l'"
~ k3(/Ill I)l l".

(k, k, ki
—&(/, /'")

] /ii l ~ l
v '(/", /')

where {:.":] is a 6-j symbol.

From these relations it follows that the group Us, s = 2(l+ l'+ 1) is generated by the s' operators

v (l, l), v (l, l'), v (l', l) and v (l', l');

and that Rz is generated by the operators

v (l, l), k odd; v (l', l'), k odd; and v (l, l')+v (l', /).

Each vk is of dimension 2k+1 and k ~ max(l, l'). Moreover as shown by Feneuille, ' the tensor v k(/, l')
transforms in the same way as (- 1)l l//'kq). If we consider the configurations s p~; the sixteen opera-
tors vo(s, s), vo(p, p), v'(p, p), v'(p, p), v'(s, p), and v'(p, s) generate U4; the six operators v'(p, p)v'(s, p)
+ v'(p, s} generate R, ; and the three operators v'(p, p) generate R,. Thus the appropriate groups are U„
R4, and R3 as claimed. It is essential to note that these groups have nothing whatever to do with any
Hamiltonian; they are merely manifestations of the symmetry properties of the angular parts of the or-
bitals under consideration. Consequently they can not be expected to give any information about the energy
spectra of the atomic system. It is for this reason that we designate the description of the orthogonal
groups arising in this manner as the mathematical description, while designating the description of such
groups as R4 which commute with the Hamiltonian of the hydrogen atom as the physical description.

B. The Representations of R4 Upon introducing

Thevj' six infinitesimal rotations in four dimen-
sions Zij, i,j = 1, 2, 3, 4 (the rotation in the ij
plane) also constitute the generators of R~. These
generators obey the commutation relations

[~ ~k/]

il jk "jl ik' il kj' jk li

L =i J23+j J3, +k J,2

and A = i J~4+j J~+k J34

"k k''6'

z'&e okAkv

"k k'U

we find

[I. ,A].
[A. ,A. ]

(5b)

(6)
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The six generators I,z andAz, i =1, 2, 3 have
definite physical significance. When applied to
the Kepler problem L is the angular momentum
and A is proportional to the Runge-Lenz vector
defined above. These vectors are the invariants
of the Kepler problem, i. e. , they commute with
the Hamiltonian.

If we consider the linear combinations M = 2(L
+A) and N= —,'(L —A) we find

of another property of R, . For the case of SU2p
-R2p, p an integer, any representation of R2p
always appears in the decomposition of SU2p
with its conjugate. For example in R4 if (p, q)
appears in the decomposition of SU4 so must

(P, —q).
The decomposition R4-R, follows the rule

(p, q)-(p), (p- I), . .., (iq~),

[M, N] =0; [M., M. ] =ie .~M~,
'

[N , N ]. =i.e .. N. , ;z' j ij7z

i. e. M and N each satisfy the commutation re-
lations of angular momentum and the commutator
between them is zero. Thus R4 is isomorphic
(locally) to the direct product of two three-di-
mensional rotation groups. Setting

M' j,(j ~+ I)~ and N' -j,(j,+1),

as in the ordinary theory of angular momentum
and

p =jy+ j2& q=j ~
—j„where p ~q,

we see that the representations of R4 can be labeled
by (j, q)

For the hydrogen atom, L ~ A=O, i.e. , the Runge-
Lenz vector is orthogonal to the angular-momentum
vector. This relation implies that q =0, and that
solutions of the Laplace equationinfourdimensions,
which correspond to hydrogen eigenfunctions, be-
long to the (P, 0) representation of R,. If we use
a scheme such that the R, quantum numbers label
the rows of the R4 representations, then
(P+ 1, 0, L, M) is seen to correspond to the familiar
[NLM] notation for the hydrogen atom, where
X=p+ 1. For configurations containing more than
one electron, it is not necessarily true that q =0.
Consequently we will use the (pqlyg) notation
[often abbreviated to (pql) or even to (pq)] ex-
clusively to label representations of R4.

C. Branching Rules for SU4~R4~R3 and Labels

for Many-Electron States

In the construction of a many-electron state
classified by means of irreducible representations
of groups, it is convenient to begin with the largest
group and determine the appropriate irreducible
representations for a particular state. Then each
particular representation can be decomposed into
irreducible representations of a subgroup by re-
stricting the original group to this subgroup. This
process, the determination of the branching rules,
enables us to make the desired classification. For
the configuration s~p+ the branching rules SU~-R4 and R4 -R3 are needed. The rules as stated in
Littlewood' and described by Judd' can be applied
to the SU~ -R4 decomposition. In addition to these
rules and dimensionality considerations, i.e. ,
the sum of the dimensions of irreducible repre-
sentations of the subgroup must equal the dimen-
sion of the parent representation, we make use

where (pi) denotes the 2pi+ 1 dimensional repre-
sentation of R,. This rule follows from the fact
that R, is a semi- simple Lie group, not a simple
group. A simple Lie group has no invariant sub-
groups; a semi-simple Lie group has no abelian
(commutative) subgroups. In fact as seen pre-
viously R, = R, ~R,. By expressing the character
of R, in terms of products of characters of R„
the desired branching rules can be derived. Table
I gives the classification of all configurations
s~p" and incidentally the branching rules.

D. Mathematical versus Physical Description of
the Lie Group

An examination of the branching rule R4 R3
makes very clear the relationship between R4
labels and the principal quantum number ¹ The
representation (p, 0) can be labeled by [N=p
+ 1, LM], because all L ~ N appear in that repre-
sentation. Thus when we use the (10) in (pq) nota-
tion or [2IM] in [NLM] notation, representation
of R4, we have placed the s and p electrons on an
equal footing in the same representation, and we
will be able to find relations between functions
and integrals involving these types of orbitals.

The connection between the physical and mathe-
matical descriptions of R4 is also clarified. The
mathematical description (Racah) depends solely
on the angular parts of the orbitals and of course
on the permutation properties. The generators,
expressed as tensor operators, have no dynami-
cal significance. Thus R4 would be a useful group
for any set of s and p electrons. Each of these
sets is characterized by the basic representation
(10).

The generators in the physical description, on
the other hand, are functions of the basic dynami-
cal variables, position and momentum. Here the
fact that we are dealing with 2s, 2p rather than
say 3s, 3p is essential. The 2s and 2p electrons
completely fill the (10) representation of R~, i. e.
the representation corresponding to n = 2. If for
example n = 3, there would not be enough orbitals,
using s and p orbitals alone, to fill the represen-
tation (20), since the dimension of the (20) repre-
sentation is nine. It is necessary in this case to
consider all n = 3 orbitals 3s, 3p, and 3d. Since
for both the physical and the mathematical descrip-
tions the same representation of R4 is used for the
2s and 2p electrons and since in both cases the rows
of the representations are labeled by the R, quan-
tum numbers, the classification of configurations
will yield the same results irrespective of the
model of the group used. It is clear that it is
only for the 2s~2p& configurations that the group
used as well as the relevant representations co-
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incide.

II. CONSTRUCTION OF WAVE FUNCTIONS
OF 2 2p" TRANSFORMING ACCORDING TO R„

We will show the construction of the wave func-
tions using both the mathematical and physical
descriptions of R4 ~ These wave functions are
needed in the discussion of the Coulomb interac-
tion which is given in the following section and
also in the evaluation of energy. -level separations
and near degeneracy correlation energies. These
properties will be discussed in a subsequent paper.
For the sake of clarity, in the remainder of this
paper we will denote the mathematical and physi-
cal versions of R, as R4~ and R4P respectively.

A. Mathematical

We have seen that v&'(p, p) and v&'(s, p) + v&'(p, s);
q = 0, + 1, —1, are the six generators of R4 ~ The
essential property of these generators is that ma-
trix elements of any generator between two states
transforming according to different representations
of R4 vanish. Upon examination of the branching
rules for two- electron states we see that s' S and
P'S have components in both the (00) and the (20)
representations of R4~. The D state is unique.
It is p'D and therefore must be the ( 202) state
The three P states, p' P, sp P, and ps P trans-
form like linear combinations of (111), (1 —1 1)
and (201). The (111)and (1 —1 1) states have zero
coupling with the (202) state for the reason men-
tioned above, and thus we may determine the (111)
a.nd (1 —1 1) states by means of the equations

((ap'+ b sp+ cps)(111)I

x [V '(s, p) + V '(p, s) ] l p'(202) ) = 0 (9)

((a'p'+ b ' sp+ c'ps)(1 —1 1) l

x[V '(s, P) + V '(P, s)] (P'(202)) = 0, (I P)

where Vp' =Xi(V0')i; i is summed over the number
of particles. The (201) state is easily found using
the fact that it must be orthogonal to (111)and
(1 —1 1). Finally we determine the linear combina-
tion of s' S and p' S transf o rming according to
(00) by means of the relation

((a" s'+ b" p )(000) I [V '(s, p) + V '(p, s) ]

x 1 (a p' + b sp + cps) (111)) = 0,

and the linear combination of s2 and p2 S trans-
forming according to (20) follows by orthogonality.
The linear combinations for each of these states
is shown in Table II.

The R4~ symmetric wave functions for states
with more than two electrons are found in the
same manner. These cases are somewhat more
complicated, and either coefficients of fractional
parentage or expansions in Slater determinants
must be used. The one- electron operators, of
course, remain the same. For these cases
Racah' s formulas" for matrix elements of one-

TABLE II. Two-electron wave functions transforming
according to irreducible representations of R4 for 2s, 2P.

(00)S = —' l2s S) — (~2/2) lzp S)
(20)S = (v 3/2) ) 2s &) + 2 (2p' S)
(11)P = s(%2l2P P) - lzs2PP)
(1 —1)P = s (%2 l2p P) + l2s2pP)
(20)P = (1/H2) l2s2pP)+ (1/v2) l2p2sP)
(20)D = l2P D)

+ l2p2s P))
l2p2s P))

electron operators making use of the coefficients
of fractional parentage are invaluable.

B. Physical

g(p) = (2m) '~'f exp(ip . r)g(r) d'r . (12)

Then making the stereographic transformation
from p- space to a four- sphere, we have

)s~r)2~$2+)(2 I

$ = 2ppp /(pp'+p') = sinn sin8 cosy0

1) = 2ppp /(pp'+p') = sino! sin8 sing
0 y

f = 2ppp /(pp'+p') = sinn cos8

)(= (p. '- p')/(p. '+p') = cosa

It can be shown that

y(o, , 8, q ) = (~/&&)p "(p, '+p') j(p),

Z/P, =n, (14)

and that this g(o. , 8, P) is Precisely gnfm(n, 8, 0),
the four- dimensional spherical harmonic and the
representation (n —1, Olm) of R,. Thus in the
transformed space, the hydrogen orbitals can be
identified with the representation of R, ~ One note
of caution: the four-sphere (in terms of p) is of
radius P, = (- 2E)'~'. Thus in order to remain on
the same four- sphere we must restrict attention
to hydrogen functions with the same principal
quantum number.

Now we are able to determine the linear corn-
binations of, for example, 2s' S and 2p' S, that
transf or m according to irreducible repre senta-
tions of R4. If

(PP}S = a2s'S +b 2P'S,

then since 2s = (1000) and 2pm = (101m),

a = ((0000)l(1000)(1000))

We have seen that, the correspondence between
the orbital s with principal quantum numbe r two
and the (10IM ) representation of R4P is very
close. Let us now investigate this correspondence
in more detail. Following Fock and Shibuya-
Wulf man, "let us take the Fourier transform of the
position-space wave function:
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and b =((0000) I Ã3[(1'011)(101—1)

—(1010)(1010)+ (101—1)(1011)] ),
where the matrix elements are the Clebsch-Gordan
coefficients for the group R~. Biedenharn' has de-
rived a formula for these coefficients making use
of the fact that R, =R, xR,.

(P'q't'm', Pqtm I P'q'Pq; PQLM)

= (- 1) [(P+ Q+ 1)(P—Q+ 1)(2/+ 1)

x (2/'+ 1)(/'m'/ml//'LM) ]

t-,'(p+ q) —.'(p'+ q') —,'(P+ Q)
xX ' (p —q) (p —q' ) (P- Q)

'

where (t'm'/m I //'LM) is the ordinary 8, Clebsch-
Gordan coefficient and y(!::]is the Wigner 9 —j
coefficient. " Tables of y coefficients for half-

integral values of the parameters are given by
Smith and Stevenson. " In addition for the great
majority of cases we consider, the 9 —j symbol
has at least one zero and it can be immediately
reduced to the more familiar 6- j symbol by
means of the formula

(
a b eII ( 1)b +c+e +f

~

1/2 d p egg g

Using Biedenharn's formula we obtain a= —,', b =
—W3/2 exactly as we did using the generalized
Racah tensors. The coefficients obtained by means
of R4~ are identical to those obtained by means of
R~m. The result is a consequence of the discus-
sion at the end of the previous section dealing with
the relationship between R,~ and R~p. As for the
case of the Racah tensors, this method can be ex-
tended to obtain the R4 symmetric wave functions
with more than two electrons.

III. THE MODEL POTENTIAL FOR THE COULOMB INTERACTION

Our next concern is the determination of Coulomb and exchange integrals for the 2s and 2P orbitals group
theoretically. To attain this end we write the G =Q& y& 1/r" potential in the form Qt a&D, where the at
are real constants, and where each Dz is a linear combination of products of two one-electron tensors.
These one-electron tensors are in the form of four-dimensional spherical harmonics. Each product con-
tributing to the same Dz transforms according to the same irreducible representation of R4. For elec-
trons of principal quantum number two there are five independent parameters which determine all the
possible Coulomb and exchange integrals. These are the E and G parameters" E,(2s, 2s), F,(2p, 2p),
F,(2p, 2p), F,(2s, 2p), and G, (2s, 2p). All the Coulomb and exchange integrals are linear combinations of
these parameters with coefficients determined by R,. We will show that for n =2 there are three different
aj and that the contributions to the integra ls from the D

z
are determined complete ly by R4 ~ Thus we can

obtain all five necessary F and G parameters from a knowledge of three constants.
The number of different az necessary is simply the number of different irreducible representations of

R4 that contribute to the Coulomb interaction. We use the Wigner-Eckart theorem applied to R4 to deter-
mine which representations of R4 contribute to G. In R4 the Wigner-Eckart theorem states that

(y "p"q"t"m"IALM lypqtm) =(y"p "q"IIA IIypq) (pqtm; PQLMI pqPQ; p "q"t"m"), .

where the second factor on the right-hand side is the R~ Clebsch-Gordan coefficient and where y, y" are
any additional quantum numbers needed to specify the states. '

We first note that since G is spherically symmetric, I.=0. Since a 9-j symbol is zero if any column
does not obey the triangle inequalities

a+b &c, a+c& b, b+c& a,

any possible nonzero 8, contribution to G must have ,(P+ Q) =-,'(P- Q—), that is, Q=0. By considering
all possible R4 representations on each side of the matrix element, making use of Table II, and by employ-
ing the well-known symmetry properties of the 9-j symbol, we can determine the possible R4 represen-
tations contributing to G. Some of the possible matrix elements are

((20) I A1I(20)), ((20) I A2I (00)), ((00)IABI(00) ), ((111)I A4 I (201)) .
We find that A, is (000) or (200) or (400); A., must be (200); A, is (000) and A~ must be (200). Consequently
the Coulomb operator is of the form

G =a, (000)+a,(200)+ a, (400). (is)

We must now determine the proper combination of products of four-dimensional spherical harmonics
that contribute to each of these three irreducible representations of R4. To accomplish this end we begin
by expressing the Coulomb interaction in terms of equivalent operators in the form of tensors. Making
use of the transformation properties of these tensors, we translate the expression into the representations
of the physical description of the group f/, . We drop the parameters involving the radial parameters,
since these are already included in the transformation properties of the four-dimensional spherical



GROUP B~ IN ATOMIC-STRUCTURE THEORY

harmonics.
We now express G in terms of the equivalent

operator

g.).F0(2s, 2s)v. '(s, s) ' v. '(s, s)+3F0(&p, 2p)v. '(p, p) ~ v '(p, p)

+ 6F2(2 p, 2p) v. '(p, p) ~ v. '(p, p) + v 3F0 (2s, 2p) [v. '(s, s) ~ v. '(p, p)

+v. o(p, p) ' v. '(s, s)] +Gl(2s, 2p)&[v. '(s p)- v. '(p, s)] [v. ~(s p)- v. '(p, s)]] (19)

I e) us now determine the transformation properties of the v~ tensors. We have already noted that
vq (II, l2) transforms like (- 1) 2I I,l,kq&. We can find the transformation properties of I f,l, kq& in terms
of B4 irreducible representations in one of two ways. We can solve the set of simultaneous equations ex-
pressing the irreducible representations of R, in terms of the smp+ configurations (Table II), for the
s~P" configurations themselves. Or we can use methods analogous to those outlined in the preceding sec-
tion. Explicitly the Clebsch- Gordan coeff icient

&(p"'q"') I &,(pq), &,(p'q') &

is the coefficient of the representation (P'"q'" ) for the configuration ll, l, kq& .
The Coulomb interaction is now in the form of linear combinations of products of four-dimensional

spherical harmonics. For example vo(s, s) v'(s, s) becomes

—,'(00)(00) + &3/4[(00)(20) + (20)(00)] + —,'(20)(20) . (20)

Analogous expressions are derived for each of the other terms of Eq. (19). This expression (20) has com-
ponents in the (000), (200), and (400) representations. Using the Clebsch-Gordan coefficients again we
determine the fraction of v'(s, s) ~ v'(s, s) in each of the (000), (200), and (400} representations. Thus the
(200) (200) part of v'(s, s) ~ v'(s, s) is decomposed into

-,'(00) + (v3/3)(20) + (WS/3)(40) . (21)

This procedure is carried out for the other terms contributing to v'(s, s) v'(s, s) as well as for the other
terms constituting the Coulomb interaction. All such products transforming as (000) have coefficient a„
those transforming as (200) have coefficient a, and similarly for (400). We have thus been able to cast
the Coulomb interaction into the desired form. For example the term derived from v'(s, s) vo(s, s) and
thus the value of 1/r» for the integral (2s2st 1/r» ) 2s2s) is

a,[—'(00) (00) + —,'(20)(20)]

+ a, [(v3/4)(00)(20) + (v 3/4)(20)(00) + (v3/4)(20}(20)]+ a,(8/4)(20)(20) . (22)

Matrix elements for various configurations can now be evaluated. We must deal with linear combina-
tions of matrix elements of the form

a.((Pqlm)(P'q'I'm') l(PQLM) ' (P'Q'L'M'} l(P "q"I"m")(P'"q"'I"'m"'}
&

= a.((pqlm) l(PQLM} l(p "q"I"m")
& ((P'q'I'm') }(P'Q'L'M') l(p"'q"'I'"m"') ), (23)

where i = 1, 2, or 3 depending on whether we are dealing with the (000), (200), or (400) component of
(PQLM) ~ (P'Q'L'M'). These expressions can be evaluated by means of the Shibuya-Wulfman expression
for the decomposition of the product of two four-dimensional spherical harmonics having the same argu-
ments.

l l'- Z 1

~(&)g I (II) = 2 (i)
+ [n'nN(2l'+1)(2I+ I)]'

Pl S2 R PB

—', (n' —1) ', (n —1) '(N 1)—— —
X(l'Im'ml'I'lLM&y. ~(n' —1) 2(n —1) 2(N- 1) g L (0).

l
(24)

The coefficients a„a„a,are determined by using three calculated integrals over hydrogen orbitals.
Hydrogen orbitals are used in order to test the accuracy of the A4 model in yielding the Coulomb integrals
between two hydrogen orbitals. This calculation of course does not refer to any actual system, not even
the H ion. But it is used here only fora mathematicaltestinreproducing the fictitious Eand 6 integrals
with hydrogen orbitals. We compare the values of the I' and G parameters calculated by means of R4
with those calculated by actual integration over hydrogen orbitals. By solving three simultaneous linear
equations a„a„and a, are found and from these the values of F,(2s, 2p) and G, (2s, 2p) can be determined.



84 J. S. AL PER AND O. SINANOGLU 177

TABLE III. Coulomb and exchange integrals
(principal quantum number = 2) .

Hydrogen
Orbitalsa

Exact A4 R4

Hartree-rock
orbitals for

boron
Exact

F (2s, 2s)
Fo(2p, 2p)
F~(2p, 2p)
F'(2s, 2P)
G'(2s, 2p)

0.15039
0.18164
0.087 90
0,162 11
0.087 90

fitted
fitted
fitted
0.173
0.075

0,460 26
0.417 71
0.18975
0.437 36
0.273 29

fitted
fitted
fitted
0.461
0.277

aSee text.
K. Clementi, IBM J. Res. Develop. 9, 2 (1965).

This type of calculation of Coulomb integrals has also been done for the Hartree-Fock self-consistent-
field orbitals of boron to show the applicability of the method to an actual atom. Table III gives the re-
sults of these calculations. In each case we note the good agreement for the F,(2s, 2p) and G, (2s, 2p). All
other Coulomb and exchange integrals are easily obtained by using the cy and a~ coefficients as tabulated
in, for example, Ref. 14.

This method for calculating Coulomb and exchange integrals using R4 is based on the fact that, although
hydrogen and Hartree-Fock orbitals are quite different from each other, orbitals of each type transform
among themselves in approximately the same manner. That is, if the values of a particular property using
one set of orbitals is known, then given a proper "scale, "the values of that property using the other set
can be determined. In our calculation, the evaluation of the parameters a, b, and c determine the scale.
It is for this reason that we can expect R,.P to give good values for Coulomb and exchange integrals of Har-
tree-Fock orbitals even though the theory is based on hydrogenic ones. The R4 calculations using hydrogen
orbitals do not agree exactly with hydrogen Coulomb and exchange integrals, because the R4 calculation
assumes that L ~ A =0, i.e. q =0. For many-electron wave functions, q is not necessarily equal to zero
as we see from Table II.

IV. EXTENSION TO 3s, 3p, 3d ORBITALS

For the n= 3 level of orbitals the groups used
in the mathematical and physical descriptions no
longer coincide. As previously mentioned the
group used in the mathematical description is R„
whereas the one used in the physical description
.remains R4. We apply exactly the same methods
here as we did for the n =2 case. The two-elec-
tron R4-symmetric wave functions are determined

and are given in Table IV. The Coulomb inter-
action is written in terms of equivalent operators
and since the group is still R4, we use exactly the
same method to derive the model. potential in
terms of four-dimensional spherical harmonics.
Let us note that for the n = 3 case there are five
parameters corresponding to the (000), (200),
(400), (600), and (800) representations of R, that
contribute to G. Since there are fourteen I" and
G parameters, the n=3 case, in which the number

TABLE IV. Two electron wave functions transforming according to irreducible representations of R4 for ss, sp, 3d.

(000)S = 3 lss )- (~3/3) lSp')+
(2oo) s = (W3/3) l3s') — s I3P')—
(400)S = (~5/3) I3s )+ (~15/6) I3P )+
(201)P = (W3/6) I3s3p)+ (~3/6) I3p3s)—
(401)P = (@15/6) )ssSh&+ (@15/6) )3p3s)+
(111)P = — —,

'
) ssSp)+ —,

'
) spss)+

(1 —1 l)P = + 3 lss3p) — 3 )3p3s)—
(311)P =-(W5/6) lsssp)+ (v 5/6) lspss)—
(3 —1 1)P = (W5/6) I3s3p) —(v 5/6) I3p3s)+
(2o2)D = —,

'
) sp') - gzz/6) ) sd')-

(402)D = (&21/6) l3P~)+ |I-I3d2)+
(222)D = —(v 3/6) jsp )- (v 7/6) lsd )+
(2 2 2)D = (~3/6) )sp ) (y 7/6) lsd )+
(312)D = 2 lsssd) — —,

' )SdSs)+
(3 -1 2)D = — 2 ) sssd)+ 2 )3d3s)+
(313)F = (1/v 2) )sd )+ g lspsd)—
(3 —1 3)E = (1/~2 I3d ) — s I3p3d)+
(403)F = (1/v 2) ) spsd)+ (1/~2 ) sdsp)
(4o4)G )Sd'&

(W5/3) ) sd2&

(v15/6) j3d2)

gl3d )
(v15/6) I3PM)—
(vY/6) ) spsd&+
(v 5/6) )3p3d)-
(W5/6) )spsd)+

—,
' lspsd&+
—.
' I3p3d)—

(V 3/6) I3s3d)-
(W7/6) lsssd)+

3 )ss3d)+
—' l3s3d)+
—,') spsd&+
g lspsd&+
—,', lsdsp&
2lsdsp&

—jspsd)—
—

j spsd) +

(~15/6) I 3d3p)
(W/6) jsdsp)
(v 5/6) I3d3p)+ (v 3/6) I3p )+ (&15/6) I3d )
(v 5/6) )sdsp)+ (v 3/6) )sp )+ (v15/6) )sd )

s I3d3P)+ (%15/6) I3P )- (ilr/6) I3d )
—' I3d3p)+ (~15/6) 13p )—(vY/6) I3d )

(Ws/6) jsds )
(W7/6) ) sdSs)

dss&+
—' lsdss)—
—,
' lsdsp&
—') sdsp)
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of para, meters is reduced to five provides a more
stringent test of the model potential. These cal-
culations for the n =3 case were carried out in
the same manner as those for the n =2 case. The
results of the calculation for both hydrogen (Z = l)
orbitals and for the Hartree-Fock orbitals of
magnesium are given in Table V. The Hartree-
Fock orbitals of magnesium were obtained from
the work of McKoy and Sinanoglu. " They used the
actual 3s orbital and virtual 3p and 3d orbitals in
the study of near-degeneracy correlation effects
in second-row atoms.

V. CONCLUSION

A discussion of and the relationship between
the physical and mathematical description of Lie
groups for atomic systems has been given. %e
determined the transformation properties for
states having 2s~2p~ configurations using both
descriptions. Using a model potential for the
Coulomb interaction we obtained Coulomb and
exchange integrals group theoretically. The
method was extended to 3s 3pn3d~ configurations.
The states were classified according to R4 and
Coulomb and exchange integrals were evaluated.
The good agreement with the actual value of these
integrals indicates that R4 does have relevance
as an approximate symmetry for atoms having a
greater number of electrons than hydrogen.
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