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Vortex Fluctuations in Superconducting Thin-Film Bridges*
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The convection of the self-field vortices into the interior of a superconducting thin-film bridge is shown
«generate a shot-noise voltage as well as a steady-state voltage. A basic relation is developed between the
time correlation function for fluctuations in bridge voltage and the space correlation functions for the
vortex number densities. Vortex motion is treated by a rudimentary plasma-dynamic model, and the results
are used to derive a practical expression for the spectral intensity of the noise voltage.

I. INTRODUCTION is, the very mechanism which transports Qux into and
out of the interferometer loop generates voltage Quctua-
tions. These Quctuations are in the nature of shot noise
due to the quantized character of the moving vortices.

There are also voltage Quctuations from the ther-
mal motion of the normal electrons, but at the
low frequencies of present interest this noise is ef-
fectively shorted out by the inertial reactance of the
sup erelectrons.

The following is a heuristic treatment of voltage Quc-
tuations due to vortex motion across a thin-film bridge
in the absence of an applied field. The approach is
essentially that used in initial-value treatments of noise. '
Effects having to do with the detailed structure of the
vortex are not considered. The vortices are tacitly
assumed to be adequately described by Boltzmann
statistics, although presumably these excitations are
Bosons.

In Sec. II a basic relation is developed between the
time autocorrelation function for the voltage Quctua-
tions and the vortex number densities. The notion of a
vortex propagator is introduced as a mathematical
convenience.

Next, consideration is given to the dynamics of
viscous vortex motion. Inertial, Hall, and Magnus
effects are neglected. ' Section III is concluded with an
expression for the autocorrelation function.

Section IV considers the spectral intensity of the
voltage Quctuations. Finally, the relevance of the ana-
lytical results to the meager experimental evidence is
discussed.

HEN a thin-him superconductor enters the mixed
state' between the pure superconducting state

and the pure normal state, it is an experimental fact
that a voltage drop develops in the direction of trans-
port current Qow. ' This behavior is quite different from
ohmic resistance. It is now generally attributed to the
following mechanism: Magnetic Qux enters the film in
the form of quantized vortices of superelectrons. The
circulating supercurrent of a vortex produces a mag-
netic field along the vortex axis. In the lowest energy
state each vortex has a circulation corresponding to a
fiux quantum po

——Jtj2e. Th: vortex is believed to have a
normal core on the order of the coherence length in
extent, surrounded by a much larger whirl of super-
current extending radially out a distance on the order of
the penetration depth. '

If the vortices are pinned by lattice imperfections so
they are unable to move, the transport current will
encounter virtually no resistance. As the transport cur-
rent exceeds a certain threshold the vortices move over
the pinning sites and develop a motional electric field.
The motion is subject to viscous drag and is therefore
dissipative.

According to Hunt, it is likely that the initial break-
down of the superconducting state with increasing
current occurs as the result of this dissipative motion of
the vortices. Moreover, Anderson' has suggested that
vortex pinning is not completely rigid even for currents
below' the threshold. Because of thermal activation the
vortices move slowly over the pinning sites at finite
temperatures.

The rationale behind the present investigation of
noise is this: If the weak link of a thin-film quantum
interferometer is wide enough to contain a number of
vortices, then its operation is intrinsically noisy; that

II. BASIC RELATIONS

The geometrical model of the thin-film bridge to be
considered is shove in Fig. 1.A narrow bridge of length
1, width ze, and thickness d connects two much more ex-
tensive portions of the film. A Cartesian coordinate sys-
tem with unit vectors e„e„,e, is centered in the bridge
as indicated.

The bridge is supposed to carry a transport current I
in the e„direction. As the current is increased to a super-
critical value, pairs of vortices of opposite circulation
are created by the self-field at the edges of the bridge.
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R. D. Parks, in Low Temperature Physics LT9, edited by J. G.
Daunt, D. 0. Edwards, F. J. Milford, and M. Yaqub (Plenum
Press, Inc. , New York, 1965), Part A, p. 34.

2 I. Giaever, Phys. Rev. Letters 16, 50 (1966); P. R. Solomon,
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FxG. 1. Thin-61m bridge.
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SECTION A A

The appearance of the vortices tends to produce a more
uniform current distribution and to lower the free
energy of the bridge. Under the inRuence of Lorentz
forces' the vortices are driven inward. Somewhere in
the interior these counter-circulating vortices eventually
annihilate one another.

For an observer in the frame of the film lattice, the
motion of the magnetic field associated with the un-
pinned vortices gives rise to a motional electric Geld
given by

E=—V+y B+—V-&& B-.

The drift velocities are v+ for the vortices with cir-
culation up (+e, direction) and v for those with cir-
culation down (—e,), as indicated in Fig. 1. The cor-
responding magnetic Aux densities, the averages of the
microscopic fields, are B+=n+goe, and B = —22 foe.,
where e+ and e are the areal number densities of vor-
tices of each circulation.

At the low frequencies of present interest the total
electric field virtually vanishes everywhere in the film
except within the penetration depth and within the
vortices. That is, as a result of the motional electric
field a charge distribution appears, the irrotational
electric field of which tends to cancel the motional field
given by expression (1).

The over-all consequence of vortex Qow is then to
establish a potential drop along the bridge in the direc-
tion of the current. Averaged over the time Tp it takes a
vortex to drift across the bridge, the potential difference
is

Result (3) is, then, the basic relation between the bridge
voltage drop and the number densities of the vortices.
It will be used to obtain the autocorrelation function~
for fluctuations in the voltage drop along the bridge.

Consider now fluctuations 222+(r, t) and ni-(r, t) in the
number densities of the unpinned vortices; that is,
let n+(r, t)=NO+(r)+ni+(r, t) and 22 (r, t)=no (r)
+n& (r, t), where 220+(r) and 220 (r) are the steady-state
values and r—= (x,y).

Similar resolution of the voltage drop into a steady-
state value Vo and fluctuation Vi(t) leads, according to
expression (3), to the autocorrelation function

drdr'(L22, +(r,t)+0i-(r, &)$

X L'222+(r', 0)+222—(r',0)$). (4)

The integrals are over the bridge area.
The fiuctuations in the vortex number densities are

assumed to be describable by linearized phenomeno-
logical transport equations of the form

8 8
I.+ —,—222+(r, t) = 0

Br Bt

for the vortices with circulation up and

(5)

+~/2 d~ +i/2

U= —— — - Eddy.

Recognizing that the magnitude of the drift velocity
is independent of the direction of vortex circulation, one
finds upon substitution of (1) into expression (2)

+w/2 +l/2

U=— (22++22 )dxdy.
-

TO -m/2 -l/2
(3) A. van der Ziel, Poise (Prentice-Hall, Inc., Englewood Clips,

¹ J., 1954), p. 311.

for those of opposite circulation. The linear differential
operators I.+ and I. are discussed later.

Equations (5) are not, of course, the most general
linear forms one might assume. Coupling terms could
be added as well as a pair of equations for the pinned
vortices, to mention only a few possible refinements.

As they stand, Eqs. (5) can be implicitly solvedfor the
number densities by Laplace transformation with re-
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be adequately given by

Ice
L STATE

(nt+(r",0)nt+(r', 0))=ns+(r") 3(r"—r')

(nt+(r",0)nt (r',0))=0.
(9)

Insertion of correlations (9) into expression (8) for
the voltage autocorrelation yieMs

SUPERCONDUCTI N 6 STATE
y 2

(v, (t) v, (0))=-
7Q

bridge

drdr'LG+(r —r', t)ns+(r')

V

+IG. 2. Schematic I-V characteristic of thin-61m bridge.

nt~(r, t) = G+(r—r', t)nt+(r', 0)dr', (6)

spect to time and Fourier transformation with respect
to space coordinates. The results are

+G (r r', t)—ns
—(r')j. (10)

This section is concluded by noting that the functions
G+(r—r', t) are very similar to the so-called wave-
function propagator sometimes found convenient in
quantum-mechanical discussions. Here the functions
G+(r—r', t) characterize the dynamical behavior of the
vortex system.

in which the functions

G+(r—r', t)=
(2s.)'

+oo
&
—ia (r—r')dk

1.~(k,s)

are introduced for mathematical convenience. For
brevity, the notation e+ is used to indicate that the ex-
pressions apply to both vortex species.

Employing expression (6), one can rewrite the auto-
correlation function (4) as

(v (t) v (0))

70
bridge

dr" (LG+(r—r", t)nr+(r", 0)

+G (r r",—t)n—t—(r",0)jLnt+(r', 0)+nt (r',0)g). (8)

In considering the correlations for the vortex number
densities one should take account of the long-range in-
teractions of the vortices. ' For suKciently dilute vortex
systems the Debye-Huckel theory of Coulomb correla-
tions may be employed to estimate vortex pair correla-
tions. The results are not very diferent from the 8-
function autocorrelation that applies in the absence of
interactions. Moreover, in the self-Geld case of interest
here, where vortices of both circulation appear, the auto-
correlations and crosscorrelations due to pair interac-
tions tend to cancel. As a Grst approximation, then, the
vortex number-density correlations will be assumed to

8 J. Pearl, in I.om Temperature Physics I.T9, edited by J. D.
Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub (Plenum
Press, inc. , New York, 1965), Part A, p. 566.

9 G. L. McCone and P. G. Thiene, Ofhce of Naval Research
Report No. ASTIA 816213, 1967 (unpublished). Copies available
from Department of Defense ComInqnica, talons.

ID. VORTEX PROPAGATORS AND
AUTO CORRELATION

To determine the average number densities ns+(r)
and the transform operators 1.+(k,s) the dynamics of
vortex motion must be considered. The simplest model
which accounts for the gross features of vortex dynamics
in the self-field case is one having only two components,
that is, unpinned up-circulation vortices and unpinned
down-circulation vortices. The frequencies of practical
interest are sufhciently low that inertial eGects are
negligible, so the motion is assumed to be dominated
by the viscosity. "Vortex pinning and annihilation are
considered to be adequately described by two param-
eters: a vortex lifetime and a vortex pinning fraction.

The description appropriate to such a model is essen-
tially a two-dimensional plasma-dynamic approxima-
tion. In this approximation the spread in velocities due
to thermal motion is largely ignored. The vortex
"plasma" is described by the usual Eulerian variables:
number densities n+(r, t), n (r, t) and mass average
velocities v+(r, t), v (r,t), all assumed to be single-
valued functions of space, r=—(x,y), and time. For the
unpinned vortices the equations of continuity are then

8 8 1~++—nv++-n~=0
ar ar

where 7 is an eGective lifetime for moving vortices and
is determined by pinning and pair annihilation. "

"M. J. Stephen and J. Bardeen, Phys. Rev. Letters 14, 112
(1965); M. Tinkman, i'. 13, 804 (1964); R. Deltour, M. Tink-
ham, Phys. Letters 23, 183 (1966);Y. H. Kim, C. F. Hempstead,
and A. R. Strnad, Phys. Rev. 139,A1163 (1965);J.Bardeen, Phys.
Rev. Letters 13, 14'I (1964)."J.R. Clem, Phys. Letters 22, 123 (1966),
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Since the vortex flow is considered to be viscosity-
limited, the equations of motion are'

The vortex propagators defined by expressions (7)
are now readily evaluated. The results are

t .e+Mov+ —(j—j.i) Xe,rt+Pod = 0

/, rt Mov-+(j —j,i)Xe,rt-p/ed=0.

G+(1'—r, t}=8 / U(t/rp)t/(x —x +'vpr)tt(y —y')
(12)

and (19)

Here, v, is an eGective rate for relaxation of vortex mo-
tion against the film lattice. The effective mass of a
vortex is Mp. The 6rst terms in each equation are the
viscous drag force per unit area. The second terms are
simply the Lorentz force per unit area due to the trans-
port current of density j.The critical current j,~ marks
the onset of the vortex state, as indicated schematically
in Fig. 2 by I,~, the corresponding total current through
the bridge. The current I,2 is the beginning of the nor-
mal state.

If it is assumed that the steady-state current density
is spatially constant, Eqs. (12) give

vp+= vp:18o= i(tttp/Mpvtw) (I Iti) . —(13)

The magnetic Qux density at the edge of the thin-film
bridge is readily estimated to be

B.= W (/tpI/27/w) ln(w/2d}, x= W-,'w.

G (r—r', t)=e t/'U(t/rp)8(x —x' —ttpr)ll(y —y'),

where U(t/7 p) is a unitary function defined as

U(t/rp)= 1, 0(t/rp(1
=0, t/rp&0, t/rp)1.

The bridge transit time Tp is determined from expression
(13) to be

rp= w/t/p= M pit, w /tttp(I I i) . — (20)

Finally, the desired autocorrelation function for the
voltage Quctuations is obtained by inserting the average
number densities (16) and the vortex propagators (19)
into expression (10).The result of the integration over
the bridge area is

f//tolltttpr lil(w/2d)
(& (t)& (0))= [e t/ r —

e rp/ rg—
The corresponding average values of the number den-
sities of the free vortices are

rtp+=np ———f(/tpI/2irypw) ln(w/2d), (x( =-',w, (15)

ÃTp

(tl
Xe "'Ui —i. (21)

where f is the fraction of vortices which are unpinned.
Equations (11) are easily integrated to obtain the spa-
tial distribution of the average number densities. The
results are

Result (21) may be rewritten in terms of the average
voltage drop along the bridge. From expression (3)
the average voltage corresponding to the number
density distributions given by (16) is

l//, pI ln(w/2d)
no+(r) = ~

—(x+tt//2) /tt/

2 tl tt/tow

ftt pIlr ln(w/2d)
e ro/rj—

X'7'p
(22)

and
ftt oI ln(w/2d)

pop
—(r) = &(x—tt//2) /m

(16) Eliminating the bridge current from expression (21)
by means of (22), one finds

when account is taken of boundary values (15).
Linearized about the steady-state values np+, np and

vp+ = —vp:—Zap Laplace-transformed in time and
Fourier-transformed in space, the equations of con-
tinuity (11) appear as

(ik,vp+s+1/r)Ni+(k, s) =n&+(k, 0)

(—ik,op+ s+ 1/r) Ni
—

(k,s) =n,—(k,0) .
(17)

Comparing Eqs. (17) with Eqs. (5), itisapparentthat
for the simpli6ed vortex model assumed here, the trans-
form operators are

I+(k,s) =ik,t/p+s+ 1/r

L (k,s) = ik, +tsto+ 1/—r

pg e t/r e / rp(r

«(t) 1' (0))= — Ul —I. (23)
1—e "/' Er I

In Sec. IV the spectral intensity corresponding to the
voltage autocorrelation function will be considered.

IV. DISCUSSION

The spectral intensity of the voltage Quctuations
follows readily from the autocorrelation function (23).
The spectral intensity W(t ) is defined such that W(t )dt
is the mean-square voltage Quctuation in the frequency
interval dv at the frequency v.

According to the Wiener-Khintchine theorem~ the
spectral intensity is the Fourier cosine transform of 4

"A. van der Ziel, tVotse (Prentice-Hall, Inc. , Englewood Cliffs,
N. J., 1954), p. 316.
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times the autocorrelation function; that is,

W(v) =4 ('Ut(t) Vi(0)) cos2m vtdk. (24)

The spectral intensity corresponding to autocorrelation
(23) is then

4V&e
W(v) =

( o/ )(1—"') 4[1+(xvr)']

e '"/' sin2~pv'p—
1+(2~vr)' ~ 2)1+(avr)s]

e '"~' cos2~vrs+
1+ (2m.vr)' 2(1+ (m vr)'j

e—70/r

~ (25)
1+(2~vr)'

In the low-frequency limit v ~ 0 and with no annihi-
lation or pinning (r ~~ ), (25) reduces to W(v)
=2Vppo, which is formally the same as the expression
for current fluctuations in an emission-limited vacuum
tube. However, the limit r —+~ leads to B-+0 and
hence no transport current, which is inconsistent with
the assumed model. Not only must w be finite, but in

fact 7- must be of the order of or less than go. Owing to
the finite value of r, W(v) is less than 2Usys at all fre-

quencies, provided of course that Aux Qow takes place
in units of magnitude q 0 rather than in bundles.

There is very little experimental data with which to
compare the theoretical model. Van Gurp has made
extensive studies on Aux Row in thin metal foils under
the inhuence of applied 6elds, so vortices of only one
species were present. " The closest approach to self-

field induced Aux Row was the earlier experiment of
Van Ooijen on a long thin-61m cylinder of tin under the
inhuence of a steadily increasing axial field. ' Measure-
ments of the spectral intensity at about 4 kHz gave the
result 2 Voq 0, which is the low-frequency limiting value
of expression (25) for vortices of a single species (or

"G. J. Van Gurp, Phys. Rev. 166, 436 (1968).
"D.J. Van Ooijen, Phys Lett.ers 14, 95 (1965).

for both species with no annihila, tion). Although the
experimental result has an appealing simphcity, the
implication of no annihilation is somewhat surprising;
and, furthermore, a remarkably short transit time over
the length of the pickup coil is indicated. Measurements
of the whole frequency spectrum would be of interest.

The above experiment demonstrated the incoherent
Aow of Aux into a metal thin-film loop. The opposite
extreme of highly coherent Aux Row is represented by
the Josephson linewidth measurements of Silver,
Zimmerman, and Kamper, ' in which the Auctuation
spectrum shows no shot-noise contribution at all. The
question arises as to why the spectrum is all shot noise
in the one case and devoid of shot noise in the other,
particularly since the energy ', pcs//I. of o—ne flux unit ps
in the loop of inductance I. is rather large compared to
thermal energy in either case. The increased shot-noise
contribution in the case of multiple vortex Row can be
made plausible by considering a simple example. Sup-
pose a thin-61m bridge is wide enough to contain ap-
proximately two vortices at a time, which move across
the bridge under the inhuence of appropriate boundary
conditions of current and voltage. %e will not concern
ourselves with the exact nature of the boundary con-

ditions, but will suppose that each vortex has a transit
time 70, and that the voltage pulse accompanying the
transit of each vortex is rectangular (with area &ps). The
postulate that the bridge contains approximately two
vortices at a time means that the voltage pulses of
successive vortices overlap by about half their length.
As a result of this overlap, the amplitude of the voltage
at the Josephson frequency f, is greatly reduced, even

in the absence of fluctuations, below the value 2psf,
appropriate to the case of vanishingly small transit time.
Also, the variation of the magnetic contribution to the
free energy, as a function of vortex position, is likewise

reduced, so that thermal Quctuations are more effec-

tive in destroying coherence. Thus we would not expect
to observe interference effects in thin-film quantum in-

terferometers unless the bridge width is comparable to
or smaller than the size of a vortex. Qualitatively, this
expectation seems to be borne out by experiment, but
no quantitative study has been made.

"A. H. Silver, J. E. Zimmerman, and R. A. Kamper, Appl
Phys. Letters 11, 209 (1967).


