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Conduction-Electron-Spin-Impurity-Electron-Spin Correlation Function Using
the t-Matrix Formalism for the Exchange Interaction*

B.N. GANorrLvt
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(Received 17 June 1968)

The conduction-electron-spin —impurity-electron-spin correlation function (S"(r) ~ S~&) in a dilute mag-
netic alloy arising from the contact exchange interaction is computed using the t-matrix method. Non-
perturbational as well as perturbational expressions are formulated. The nonperturbational expression for
the correlation function can only be expressed in terms of certain integrals involving the t matrix. A general
expression for the computation of the perturbation terms in powers of the exchange coupling parameter J
has been found. Under specific approximations, a second-order expression along with the Ruderman-Kittel-
Kasuya-Yosida term is found to be in agreement with the direct perturbational results.

I. INTRODUCTION obtained in the Appendix D of Ref. 4. We conclude
with a few remarks on our 6nal result for the correlation
function (S"(r) S' ").HERE have already appeared several contro-

versial papers concerning how the conduc-
tion-electron spin polarization Lhenceforth referred to
as p(r)g around a magnetic impurity is modified by
the Kondo eGect. This polarization, strictly speaking,
consists of two contributions: 6rstly, that due to con-
duction-electron-spin —conduction-electron-spin correla-
tion in the presence of exchange interaction, (S"(r) S"),
and secondly, that due to conduction-electron-spin—
impurity-electron-spin correlation (S"(r) .S' &). In
some papers ' (S"(r) S™)was erroneously identi6ed
as the total conduction-electron spin polarization
around the impurity spin. Recently, we have computed
the quantity (S"(r).(S"+S' o)) using perturbation
theory. 4 In order to 6x the direction of the impurity
spin we have applied a 6nite magnetic 6eld. Assuming
that the magnetic energy is small compared to the
thermal energy, a linear response theory was adopted in
calculating P (r).

The purpose of the present paper is to formulate a
nonperturbational expression for the conduction-elec-
tron-spin-impurity-electron-spin correlation function in
terms of the t matrix for the s-d exchange interaction,
and to investigate the approximations under which the
nonperturbative expression for (S"(r) S' o) gives the
perturbational result. In Sec. II we give a general out-
line of the t-matrix formulation of the exchange inter-
action. In Sec. IIIwe obtain an exact, nonperturbational
expression for the correlation function in terms of the
non-spin-Rip t matrix. We then perform a perturbational
expansion of the resulting expression for temperature
region T&TI„where TI, is the "Kondo temperature"
dehned elsewhere in the text. We found that under
certain approximations one can derive the perturba-
tional result for (S"(r) S' &), which we have already

II. t'-MATRIX FORMULATION OF THE
EXCHANGE INTERACTION

The contact s-d exchange interaction between a con-
duction-electron system and a localized magnetic mo-
ment is described by the Hamiltonian

H =+ Skeke Ckr Q i (Ckt ik't —Ckt Ckit)Ss
2g z, l

+ekttek P'-+ekttek t~+), (2 ~)

where ck, (ck.) is the creation (annihilation) operator
for an electron in state iko.) and S~ and 5, are the
components of the spin operator S associated with the
impurity atom. J is the exchange coupling constant.
Following Nagaoka, 2 the Green's functions are de-
Gned as

Gkk (~)= (ekt iektt), (2 2)

I'kk (~)= (ek t&*+ek P iektt), (2 3)

where (. . .) indicates the thermal average. These
Green's functions satisfy the following equations of
motion in the "total spin conservation" decoupling
approximation:

J
(to —e„,)G,„,(to)+- g rkt (~) =—8kk. , (2.4)

l 2x

J
+ LS(5+1.)—tnk. $ p Gk. t(to)=0, (2.5)

2g

(2.6)rtk =P (ctttck t),

tnk. ——3g (ctttckts ).
l

(2.7)
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' J. Kondo, Progr. Theoret. Phys (Kyoto) 32, 3. 7 (1964).' Y. Nagaoka, Phys. Rev. 138, A1112 (1965).' H. Suhl, Solid State Commun. 4, 487 (1966).
4 H. U. Everts and B.N. Ganguly, Phys. Rev. 174, 594 (1968).
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The coupled equations (2.4) and (2.5) can be solved in a self-consistent manner and the solutions for Gt, t,. and
I' t, t, are given by

1 /' 8»~ J 1 lI'(»)

G» (»)=—
I

27I k» eg& 4X (» ey) (»—sg~) 1+JG(»)+-' j'F(»)I (»)j
[mg. —S(S+I)j[1+JG(»)j—(1st, —-', )JI'(»)

I' .(»)= (2m.)
—'(J/2N)[(» —s )(»—s )j '

1+JG(»)+-',J'F (»)I'(»)

(2.8)

(2.9)

where given by the equation

F(»)=—Z
X & co—Ek

(2.10) ttt(») =—J2 I'(»)
(2.13)

41V 1+JG(»)+-'„J'F(»)1'(»)

1 nsg —S(S+1)
I'(») =—ZE j co—eg

can be identified as the one-particle "t matrix" for non-
spin-flip scattering for the present problem. Now one

g & CO
—6k

can express G~~ (») in terms of the t matrix. A considera-
tion of the analytic property of Gt, z (») suggests that
the discontinuity of ttt (») across the real axis is purely

2.12
imaginary, i.e., ttt(»)=tz*(»), where ttt(»)—= t(») for
Im»)0 and t&(»)=—t(») for Im»(0. The decoupled.
equations of motion [Eqs. (2.8) and (2.9)j can be
reduced to the following nonlinear, singular integral

In analogy with one-particle scattering theory, ttt(») equation for the t matrix':

Ptt(») =1 2n-ipttt(—»)

= 1—S(S+1)(km~)'+v
f(»') —

s
dG)

»—»+$5
1+S(S+1)(km~)'+v , f(»')

4'&(» )
» »'+—s5

(2.14)

where y—=Jp/X« I, p is the density of states at the
Fermi surface, 2D is the width of the conduction band,
and It tt(») (It~(»)) is the analytic continuation of the
function It (») in the upper (lower)» half-plane. hatt (f~)
can be obtained in the lower (upper)» half-plane by
analytically continuing

|butts

Q&) through the real-axis
cut of It (»). From the properties of tJt,~(») it is clear
that Ptt*(»)=P~(»*) for all points on the» plane.
Equation (2.14) is an exact equation for the t matrix
if we assume the validity of Nagaoka's decoupling
scheme.

Hannnann' found the following approximate solution
for Ptt(»):

where

It ~(») =
[Xs+S(S+1)msjUs

X=ln[(»+iT)/iT, j,

(2.15)

(2.16)

Ts Dexp([1 —S(S+1)n'——Py)'jy —'}. (2.17)

From Eq. (2.15) it is clear that tts(») is analytic in the
upper co half-plane. On the unphysical sheet of the
lower» half-plane ttt(») has three branch points at
»=i' exp&i~[S(S+I)j'/s —iT; iT. It should be-
noted that for S&-', , these branch points do not cross
the real axis for temperatures T&g TI,. Recently Bloom-

»!&(»)!=A(T)tt(T.—!»!).
0 is a unit step function and

A(T)=1 for T=O

=0 for T& TI, .

(2.19)

(2.20)

As can be seen from Eq. (2.20), the solution (2.18)
differs from the approximate solution of Hamann only
in the temperature range TI,& T&0. For temperatures
T&TI„Hamann's approximate solution provides us
with fairly accurate solution. More recently, Zittartz
et ut. ~ have obtained an exact solution for ttt(»). It
should be noted that the Bloom6eld-Hamann solution
gives a negative susceptibility contribution at T=O.
This seems to raise a question of the accuracy of the
decoupling approximation.

' D. R. Hatnann, Phys. Rev. 158, 570 (1967).
P. E. Bloom6eld and D. R. Hamann, Phys. Rev. 164, 856

(196/).
J. Zittartz and E. Miiller-Hartmann, Z. Physik 212, 380

(1968).

field and Hamann' have obtained an improved solution
for It tt(»), given by

1n!H (»')!
hatt(»)=It ttH~~s»(») exp d»', (2.18)

-2' s ~ »—» +'2
where
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In writing the above equation we have exploited the
rotational invariance of the impurity spin. I'»k (co),
occurring in the above expression, can be expressed in
terms of the t matrix as

III. CALCULATION OP THE CONDUCTION-
ELECTRON-SPIN-IMPURITY-ELECTRON-

SPIN CORRELATION FUNCTION

J
I'k» (~)=- (mk. —S(S+1))

(3.1) 2'lr (Q7 f») (id t»I) 2E-(Sel(r) .Simp) —Q (~ it~,~S )~i(k k')-~ r

The conduction-electron-spin —impurity-electron-spin
correlation function can be expressed as

Making use of the relation

(—2Im(a ~a))y( )a, (3.2)

where f(co)=(s"~r 1) ', w—e can write

—-', J (mk. —S(S+1))F ((o)tg (a))

+2 (m». ——,') t g ((o) . (3.4)

In the following calculations we approximate Ii(~) by
the purely imaginary constant —iirpiE. Furthermore,
we put

el y . imP da) f((d)
l~(~)

I'»(~) = ——
lr M —t»+15

(3.5)

XL
—2 Iml'»k (~)je'&k k') '. (3.3) These simplifications yield

1 1 —J p 1 1 ~ 2sJ
I'»'(~) =— (~» —S(S+1))I,— . I

— (~' —k)(l'»(~) —I'» (~))
2x eg—eg 2S kQ) —6»+ l5 M —'E»~+'L8l E

is'Jp)
+ (m» —S(S+1)) ~(l'»(co) —I'» (a))) . (3.6)

2Ã iv i

~e have replaced co by co+i8 in the above energy denominator so as to ensure the retarded character of the
Green s functions. The imaginary part of I'»k (cv) is given by

Imr, k( )=L2 (k—6' )$ (m —S(S+1))(8( — .)—8( —„))
2E

Jx'y 2%7+ (m» —S(S+1))Re(l'»(a)) —I' ((u)) — (e» ——,') Im(i'k(a)) —I'» ((u)) . (3.7)
2g P

ln a similar way ej, and m& occurring in the above
expression can be expressed in terms of the t matrix as

nk. ——f(e» )+ps f(e» ) Imtz(ek )

+" Ref p (co)
+pI' d~o f(~d), (3.8)

the correct solution for the t matrix and perform the
relevant integrations in order to get the conduction-
electron-spin —impurity-electron-spin correlation func-
tion. Unfortunately, the integrations involved are too
complicated to carry out analytically.

In order to compute (3.7), let us define the following
functions of complex argument:

Ep
tN». ———4 —-f(e».) Rets(ek )J

+" Imiii (co)
f(~) (3.9)

f(~') —
2

G(s) =— d(u' (3.10)

(3.11)

E in front of the integration sign indicates the principle
part of the integration. Equation (3.3) in conjunction
with Eqs. (3.7)-(3.9) gives us an exact, nonperturba-
tional expression for (Sei(r) S'~&). Now one can use

,
f(~') —

2
d(u'- P~ ((u') . (3.12)
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We note that
GII(co)—=G(~), if Ims) 0 GA(~) =—G(~), if Ims(0

g&1 2(&d) gl 2 (~) jf Ims) Q QAI 2
(&g) pl 2 (~) jf Ims ('Q

In terms of the above functions, ek and ask are given by

22k= 2Lf(ek) —2)+ (22r&) ' 1m&A'(2k),

212k= (2/~'V') ReLJGA(&k) 4A (&k)).

Making use of the properties of fz(01) and fA(co), one can easily show that

eI2,A'(s) = L4 A, I22(s))*

Using Eqs. (3.3), (3.7), (3.13), (3.14) and carrying out the co integration, we obtain

(3.13)

(3.14)

(3.15)

(S"(r) S' I')= —-', g e'&" ""$22r(ek—2k )) ' —(Ilk ——',) Re/JGA(ek) —gA'(2k) —JGA(ek )+&A'(ek ))
kk' 7i pp

Jm J
+ (212k S—(S+1))$(f(ek ) .2—) (—f(ek) ——',))+ (221k —S(S+1))

2g 4gy

XImLJGA(kk) —4A'(2k) —JGA(kk )+4A'(2k )) (3 16)

The real and the imaginary parts of GA (&o) are given by

JReGA(~) — y jnL(~2+ ~)/D2)I/2 (3 17)

J ImG, (~)=~pLf(~) —2). (3.18)

The above relations are consistent with Hamann's
approximation':

f(~', &)—2 f(~ 0)—2

CO M +25 M M +ZT
(3.19)

In the Appendix we discuss, in some detail, how one
can avoid this approximation in doing the relevant
integrals. Making use of the identity (3.15) in the
integral equation (2.14) we derive

4 A'(~) = —(1+S(S+1)(2m~)'

+y(X'+S(S+1)lr2)1~2)*. (3.20)

Equation (3.20) is valid for all temperatures. For
T) Tk, &AI(~) can be expanded in powers of X. In the
lowest order, the real and the imaginary parts of pA'(ar)
are given by

ReyAI((o) = —(1+S(S+1)(-Iylr)2

+y ln/(co'+ T')/D')'~2} (3.21)

I ~"()= ~Lf()—-'). (3.22)

It is now trivial to verify that

Rel JGA (ek) —pA'(~k) —JGA (ek.)+/A'(~k. ))=0, (3.23)

Im(JGA(fk) —QA (2k) —JGA(2k )+/A (Ck ))=0, (3.24)

ReLJGA (ek) —yA'(ck))
=1+y ln(D/T2)+S(S+1) (-21y2r)2. (3.25)

PI2(co)—exp(22ri)
—IA (7')

r„co o&'+i8—

and valid for all temperatures, also shows that /II(Id)
tends to unity for T))T&.

In what follows, we shall calculate the next higher-
order contribution to (S"(r) S' I'). The relevant quan-
tities are given by

ReLJGA (ek) —pA'(~k) —JGA (~k )+&A'(~k ))
S(S+1)LQ~ (~k) —Q~ (~k )), (3.27)

ImLJGA(2k) —4A'(~k) —JGA(~k )+PA'(~k ))
= —2ylr2S (S+1)$4 (2k) —c (2k )), (3.28)

Direct substitution of Eqs. (3.23)—(3.25) in Eq. (3.16)
results in

(S"(r) S' ~)=0. (3.26)

The expression (3.26) indicates an entire lack of cor-
relation between the conduction-electron spins and the
impurity-electron spins. To get an insight into the
above result let us examine how the scattering matrix
/II(co) behaves in this lowest-order limit. We can easily
verify that t&(cv) =0 in this limit. From Eq. (2.14) we
find that for the temperature T&)Tg„which is true in the
lowest-order limit, the scattering matrix /II(~) ap-
proaches unity. This result indicates that at tempera-
tures well above T„electrons do not see the magnetic
impurity potential and that the conduction-electron-
spin —impurity-electron-spin interaction is completely
smeared out by the thermal Quctuation in the system.
It is instructive to note that the improved Hamann-
Bloomfield solution' for QI2(~), which is given by
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Uslllg Eqs. (3.27)—(3.30) 111 Eq. (3.16), we ge't
22k. ——', =-,' «. ——,

' +—S S+12r'4 «), (3.29)
S(S+1) ei(k k—') r

el &, imp

6p &j r ek —ekr

where

2/2k. ——S(S+1)— S(S+ 1)2r20~ («.),
2~'7

ReX(a))
0~ (io) =

l ReX(/o)]'+LImX(co)]'

ImX(co)
c'(~) =

l ReX(~)]'+LImX(~)]'

(3.20)

(3.21)

(3.32)

x(Lf(., )--;]o(;)-Lf(.,)--,]o(., )

+S(S+1)LO~(«)4 («.)—0(«.)C («)]) . (3.33)

With the idea of simplifying the above equation we
make the assumption that ReX))ImX. This assumption
is quite justified in the energy range Tk« leo l

(D. This
gives 0" (co)=(ReX) ' and allows us to neglect terms
of the order of ImX(ReX) 2 compared to those of
order (ReX) '. Subjected to the above approximations,
Eq. (3.33) becomes

S(S+1)
el & . imp

6p

~i(k—k') -r 2+ T2i 1/2- —1

Lf(«) —2]»l
T„2 i

(e 2+ T21 1/2 ——1

&T2i
Assuming an antiferromagnetic interaction between spin systems, for T) Tz we can rewrite the Eq. (3.34) ln

powers of J as

S(S+1) III p
el &, imp ~

6p kk'

S(S+1) II I p)' e"" "')'
6k' &k lZ

12p 1V ) kk «

(«2+ T2) 1/2 (e,2+ T2l 1/2

X Lf(«) ——,']lnl
l

—Lf(kk) —2]»l l
(335)

D2 )

The spatial character of the above expression for the con-
duction-electron-spin —impurity-spin correlation func-
tion is the same as that obtained by the direct second-
order perturbation theory. The 6rst term of the Eq.
(3.35) shows precisely the oscillations of the Ruderrnan-
Kittel-Kasuya-Yosida (RKKY) type. The second term
has been evaluated explicitly in the Appendix D of
Ref. 4.

IV. CONCLUDING REMARKS

The calculations in the preceding sections give us
a perturbational and a nonperturbational expression
for the conduction-electron-spin —impurity-electron-spin
correlation function. The nonperturbational expression,
which is an exact one, could only be expressed in terms
of certain integrals involving the t matrix. These in-

tegrals are, to the author's knowledge, too involved
to carry out analytically. However, these integrals
can be carried out numerically since a numerical
plot of t/2(io) versus io is presently known. So far
as the perturbational approach is concerned, we have
developed a fairly straightforward method of evaluating
(Se)(r) S' 1') to all orders in J. To get an explicit ex-
pression for this correlation function beyond second
order, one encounters complicated integrals which can
be done numerically.

In the lowest-order expansion in X, which is im-

portant at very high temperatures (T))Tz), we have

found that there exists no correlation between the con-
duction-electron spin and the impurity-electron spin.
Physically this result is plausible because at very high
temperature the eGect of exchange interaction is
destroyed by the thermal fluctuations in the sys-
tem. The next-higher-order term in X contributes
to the conduction-electron-spin —impurity-electron-spin
correlation function, giving an RKKY term to 6rst
order in J. In the second order in J, apart from some
oscillatory terms involving Si and Ci functions, we

get a noeoscillutory term which, in turn, is respon-
sible for the Kondo type loga-rithmic singularity in the
susceptibility. '
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APPENDIX

The purpose of this Appendix is to illustrate the pro-
cedure for evaluating the integral

+"
t/2 (CO')I=I' f(o)')do)',

M —(d +$8

occurring in the course of our calculation without re-
stricting ourselves to the approximation (3.17). The
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integrand in Eq. (A1) has the following analytical
properties: (a) fry(oi'), although regular in the upper
co' half-plane at all temperatures, has three branch
points on unphysical sheet of the lower co' half-plane at
o~ =iTq exp&imt S(S+1)Ji' —iT; iT—; (b) the Fermi
function f(oi') has a series of first-order poles at to'=ioi„;
c0„=(2n+1)7rT with n=O, +1, &2, ; (c) pole due
to energy denominator at &o'=oi+i5; (d) fbi(te') behaves
as ln 'Ice /Ti, I

in the asymptotic limit. ' Now since the
integrand vanishes fast enough at &~, we can close
the integration contour in the upper M half-plane. The
use of dispersion relation gives

tir (tru„)I= T Q —iztg(oi) f(te) .
n&0 ~&—6)

It is very dificult to estimate the contributions from
the poles of f(oi') because of the complex analytic struc-
ture of the summand. For low enough temperature one
can show in the following way that for asymptotic
values of fir(o~') the contribution from these poles is
negligible. Using the asymptotic form of tz(&v ) in (A2),
we get (for estimation purpose we put &v=0)

i IE

IN op

~ J
I

r &i~
I&&l

ICIIIIL
~'= etp(-i ~gi~S+ I))-iT I

I I4&i

l4)l 'C

I CIA
I

I II II

j

I

I I

Rgb

~'= exp(i«gs(s+f) )-jT

iCp
III

II

Fro. l. Integration contour for the integral in (A6). The full
line of the contour is on the physical sheet, and the dashed line
on the unphysical sheet.

fii(io~„) 1
T Q Tg —ln —' From (A5) it is clear that for very low temperature the

contribution from the poles of f(oi') function in the
large co' region is negligible.

In order to compute the contribution from the poles
of f(oi') function in arbitrary ro' region, we make use of
Poisson summation formula:

(A3)
n&0 2~n co=0 n&0 ZGDri,

Making a change of variable and converting summation
into intergration we can write (A3) as

~ t'ai(iro„) 1 " do)„ ioi„—ln-'
»0 ZCO„—CO „0 2Z ~T uO„TI,

(A4) + tg(in'„)
T P

1 tg(a&')
f(o~')do)', (A6)

2' l c GO 0)n=—oo ZQ)z —CO

Let us make another change of variable by substituting
z for ln tioi„/Tq

I
in (A4). We get

f it (ice„) i

»0 te„—CV „0 2W

dss 2

n(ixT/TIz)
iver T

ln '
2' $ TQ

where the contour C encircles the imaginary co' axis.
Now we can stretch the contour to infinity as shown
in Fig. 1, picking up the contributions from the singu-
larities of ter (co')/(oi oi'). Assumin—g that tg (oi') vanishes
on the infinite circle, the f(&a') pole contribution will

(A5) be given by the values of the integrals along the branch
cuts and the residue of the pole at oi'=oi+i8


