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A Green’s-function method is used to derive a superconducting energy-gap equation without the assump-
tion that the Fermi energy is much larger than phonon energies. This equation is then approximated using
two separate methods. The first method applies when the screened electron-phonon interaction is almost
independent of wave vector and the Fermi energy is of the order of, or larger than, phonon energies. The
gap equation obtained in this way takes account of the variation in the density of electron states with
energy. The second approximation method applies when the screened electron-phonon interaction depends
strongly on wavelength or when the Fermi energy is small compared to phonon energies. In this case, the
gap equation takes account of the wave-vector dependence of the interaction, the wave-vector and frequency
dependence of the electronic screening, the energy dependence of the density of states, and the wave-vector
dependence of the superconducting energy gap. In addition, the effects of the retardation of the electron-

electron interaction are included.

I. INTRODUCTION

OST known superconductors are metallic, and
have Fermi energies and plasma frequencies
much larger than phonon frequencies in the material.
However, the prediction' and verification that GeTe,’
SrTiO;,° and SnTe? all degenerate semiconductors,
were superconductors has led to a study of supercon-
ductivity in systems in which the phonon energies %wpn
are of the same order of magnitude or even larger than
the Fermi energy er and the plasma energy #wp.

One of the first considerations of the possibility of
superconductivity in semiconductors was made by
Gurevich, Larkin, and Firsov,® who began with the
superconducting gap equation derived by Eliashberg.®
Although these authors did not use the integration
procedure of Eliashberg which is valid only in the limit
of ex>>%wyn, they did make approximations such as the
neglect of the variation in the density of electron states
times the electron-phonon coupling over energies of the
order of the phonon frequency, and the use of frequency-
independent electronic screening. These approximations
are valid only when Zw,nKer and wpLwp.

The next investigation of superconducting semi-
conductors was made by one of the authors' who in-
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cluded the intervalley interaction for the first time. The
equation used in Ref. 1 to determine the transition
temperature is essentially that of Bardeen, Cooper, and
Schrieffer” generalized to the case of many valleys and
taking account of the density of states variation. This
equation may be derived using the Nambu-Gor’kov
formulation®? extended to finite temperatures® if the
interaction is taken to be nonretarded, that is, in-
dependent of frequency.! The use of a nonretarded
interaction is a good approximation only if Zwn>er
and 7w, >>er. ‘

While the use of a nonretarded interaction has led
to a good agreement between theory and experiment
for SrTiO;,124 where, in fact, the Fermi energy is small
compared to important phonon energies, the application
of the theory to SnTe and GeTe, which have er>%wpn,
may cause discrepancies in quantitative comparisons
of theoretical predictions with experiment.

The equations necessary to determine the super-
conducting energy gap as a function of temperature
have been obtained for the case er>>%wpn and fw>wph,
and good agreement with tunneling experiments has
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been obtained.!’® In the case 7w, >hwpn and ex >
the interaction through phonons may be greatly
simplified, but the Coulomb interaction still poses a
problem since 7wy, is greater than ep, and additional
approximations must be made.!® These approximations
are not critical for most metals, however, since the
importance of the Coulomb interaction decreases as
the ratio wp/w, decreases.

This paper will attempt to fill the gap between the
theories valid in the limit eZ>%wpn and wpy>>wy and
those valid when Zwyn>er and wpp>w,. We will first
derive general equations using the Nambu-Gor’kov
formulation which will be valid over the range from
er>hwpy t0 em>hwyy. These equations are quite difficult
to solve in practice and two separate sets of approxi-
mations will be made in order to solve them.

First, we will consider the case er>7wpn and the
electron-phonon coupling independent of wave vector,
and obtain an energy-gap equation which includes the
variation in the density of states over the energy range
of interest. These equations should always be more
accurate than the corresponding equations derived in
the limit ex>%w,n, but for most metals the difference
is negligible.

Next we will consider the case erS#wpn, and derive
equations which should be more accurate for all
materials than equations derived using an instantaneous
interaction.

II. DERIVATION OF THE SUPERCONDUCTING-
GAP EQUATION

We will use the Nambu-Gor’kov formalism to
calculate the equation for the superconducting energy
gap at zero temperature A(e,po), the renormalization
Z(e,po), and the Hartree-Fock energy X(e,po). The
energy e is the quasiparticle energy for electrons in the
normal state in the absence of renormalization arising
from phonons or other electrons in the conduction band
measured from ey and po is the energy variable conju-
gate to time. Our development will follow that of
Schreiffer.™*

We may write the zero-order Hamiltonian

Ho=Y &(Cit'Cra+C_ii'C_p1) 1

k
using the spinor fields introduced by Nambu, namely,

C
¢k=( “ ) as Ho=2 ¥ilasit+2 e, (2)
C_uif k k

—kd

where Cy' is the creation operator for electrons in the
conduction band, ez=¢, and

01 0 —1 10 10
11=( ); ‘VZ=( ): ‘53:( )7 I=( ) .
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The Green’s function for the system described by
H 0 is
Go(p,po) = €075/ [ pol— e(p)rs+-in], 3)

where p=(p,po) and 7>0. Gy is now a matrix with
off-diagonal elements equal to zero.

We will proceed by using self-consistent perturbation
theory and allowing the off-diagonal elements of
G(p,po) to be nonzero. The most general form for the
self-energy is

2(p)=[1—=Z(p)1pd+-X(p)rs+ e1(p)rs+ 02 (p)z2, (4)

where X(p) is the exchange contribution to the Hartree-
Fock energy, o(p)=Z(p)A(p), and A(p) is the super-
conducting energy-gap function. The exact Green’s
function then has the form

ei1poT3

G(p) ©®)

_Z(P)POI_ é(P)rs— er(p)ei— oo (p)ratin
where &(p) = e(p)+X(p). Equation (5) may be written as

_ LZ (p)pol+e(p)es+ o1(p)1t 2(p)rs Jeinrors
[Z(p)po—e(p)*— o1(p)— @a(p)4-in

We will next calculate the lowest-order dressed phonon
and dressed Coulomb contributions to X(p). These
are given by the diagram shown in Fig. 1, where double
dashed lines indicate the total dressed interaction,
including both Coulomb and phonon parts.

We then obtain

iQ
7 (2m)*

where V(p—p’) is the total interaction, and Q is the
crystal volume.

In many cases it is a good approximation to divide
the total dressed interaction into a dressed Coulomb
interaction and a sum over dressed phonon interactions.
The most important case in which such a division is a
good approximation is when the plasma frequency is
large compared to phonon frequencies. Another im-
portant case is the case of only one phonon mode. The
conditions for this separation are discussed in the
Appendix. When such a separation is possible we have

V(p—1)= Vc(P—P')+§l{{£x<p—p'>}}2Dx(P— ). (8

G(p)

=()= / GV (=), ()

Here V.(p—p’) is the screened Coulomb interaction,
D\ (p—p') is the exact phonon propagator, and

(=2} =0—2)0(—p+1),

Fic. 1. Self-energy diagram
used to compute Z(p). The
double dashed lines indicate
thatthe total dressed inter-

v AN
action (Coulomb and phonon)

[/ / XA\ is used.
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where gy(p—p’) is the screened electron-phonon
coupling for phonon mode \. The sum over X is a sum
over phonon modes allowed by symmetry, which we
assume to be independent.

We note that in calculating the self-energy, we have
included no “crossing diagrams,” that is, we have set
the vertex function I' equal to one. For the case e7~>%wpn
this is a good approximation even for strong coupling®
in the interaction through the phonon field. Since the
condition e>>%w;, is never valid, the neglect of “crossing
diagrams” is never justified for the Coulomb inter-
action and this approximation corresponds to a calcu-
lation using 7,&<1, that is, weak coupling. When the
condition er>#wyy is not satisfied, the phonon inter-
action calculated with no ‘“crossing diagrams” is
strictly valid only to lowest order in the electron
phonon coupling, so that in this case our equations will
be good only for the case of weak electron-phonon
coupling. For completeness, the functions Z(e,po) and
X(e,po) are retained in the case er <#wpy, although they
represent corrections to the gap equation of higher
order in the electron-phonon coupling than is consistent
with the condition I'=1.

Substituting Eq. (6) into Eq. (7) we have

II:Q wd I/d/
78 (2m)t /_m B ) cp

LZ (") poTHe(p")ms— o (p")ri e’
LZ(p")po P—e(p' P — o (p'V+in

=(p)=

V(p—2). (9

Qm b
@ )*h[2mos(e+er) V2

= (G)PO) =
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In writing Eq. (9) we have fixed the phase of ¢(p) by
setting ¢1(p)= ¢(p) and ¢2(p)=0.

We next take e720'3=1 cosnpy’+ix; singpo’ and write
the integral over p’ as an integral over azimuthal angle,
over wave vector ¢= |p—p’| /% and over €(p):

dniitmy [roser @
/ ap’ — / de(p’) f qdg,
l P l —eF a

where g1= (1/%)||p| — | p’||, g2= (1/%)| | p|+ | 9’|, and
myp is the “band mass.” We call this the band mass
because it would be the result of a band structure
calculation that considered an electron moving in the
potentials of the fixed ion screened by the electrons in
the valence band only. This mass is also the experi-
mental density-of-states effective mass in the absence
of renormalization effects arising from phonons and
from other electrons in the conduction band.

We also use rotational symmetry about the vector p.
This is an approximation for intravelley process since
it assumes a spherical Fermi surface. It is also approxi-
mate for intervalley processes because it assumes
go>kr where ¢o is the wave vector difference between
valleys. The energy 7w, is the width of the conduction
band.

We will proceed to calculate all quantities assuming
one minimum in the conduction band. The results will
also apply directly to intervalley interactions between
two equivalent minima since generalizations to many
valleys are straightforward.! Equation (9) becomes

fiwob—eF [(2mb)1/2/#] | (e+eF)1/2+(e'+er)1/2|
f de / qdq
[

@mp) 2 15]| (eterp) 12— (e’+ep) /|

X / dpo' ({[Z(¢,p0")pd’ cosnpo’+ie(e,po’) sinnpy’ I

+Le(€,p0") cosnpo’+iZ (€,po') po’ sinnpo’ Jes— (€, p0) cosnpo'=s}/

{LZ(¢,p)po’ P—e(€,po’)*— (€, )2 +in})V (g, po— p0o’).

By equating coefficients of the linearly independent
matrices I, 71, and =3 in Egs. (4) and (10), one can
obtain three coupled equations for the quantities
Z(e,p0), ¢(epo), and X(e,po). In Eq. (10) all primed
quantities refer to the intermediate state in the self-
energy calculation and are summed over.

We note that Z, X, and ¢ all depend on both pg and e.
The po dependence arises from retardation effects and
enters through the dependence of the interaction
V (g, po—pd’) on po and po’. An instantaneous inter-
action such as the unscreened Coulomb interaction has
no po or po’ dependence. The interaction V (g, po— po’)
is roughly constant as long as po and p¢’ are much less

7 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
[English transl.: Soviet Phys.—JETP 7, 996 (1958)].

(10)

than the energy of the mode involved in the interaction,
i.e., the phonon frequency for the phonon interaction,
and the plasma frequency for the screened Coulomb
interaction.

Since e is the unrenormalized quasiparticle energy in
the normal state, the dependence of Z, X, and ¢ on e
arises from changes in the product of the interaction
times the unrenormalized density of states. The density
of states varies on a scale of the order of the Fermi
energy es.

If the crystal has inversion symmetry, the functions
Z(€,po"), X(¢,pd), and ¢(€,po”) are evenin py’. Variation
of these quantities with p,’ is expected to be appreciable
over energies of the order of the phonon energies
appearing in Dy(g, po— po’). The variation of Z(¢,pd'),
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X(e,po), and o(€,p’) with € is expected to be ap-
preciable over energies of the order of ep.

Therefore, when the condition %w,,<Ker does not
hold, it is not permissible to approximate Eq. (10)
by setting e=¢’=0 in the limits of the integration over
g and in Z(€,po"), X(¢/,po"), and ¢(¢,po’). This is the
approximation commonly used for metals where the
condition Zw,p<Ker holds.!

It would, however, be quite difficult to solve Eq. (10)
self-consistently over the entire ¢,po plane, and some
approximation is necessary.

III. APPROXIMATION METHOD FOR
EFZhwph

When the condition ez~>%w,, holds, the limits of the
integral over ¢ in Eq. (10) becomes independent of
energy, and the integral of ¢ times the interaction
V (g, po—po’) may be performed. Also, when ex>>fwpn
it is a good approximation to take ¢, Z, and X to be
independent of ¢. The integral over ¢, which in the
limit ex>>%wpn may be taken to be between — o and
~+ o, may also be performed, leaving a single integral
over po’ in the equations for ¢, Z, and X. Because these
equations are already in the literature,®!! and because
our equations reduce to these in the limit em>7wyn,
we will not repeat them here.

We will consider the case er2>7%w,n. Our equations
will be most appropriate when the screened electron-
phonon coupling 7 is nearly independent of wave vector
g, and the phonon modes of interest have little dis-
persion over the range of integration over ¢. This is
not an unusual circumstance, and should be the case for
intervalley interactions in doped semiconductors, as
well as for some metals. The equations derived in this
section should be applicable to intervalley interactions
in GeTe and SnTe, for example, where the Fermi energy
is larger than phonon energies, but not orders of
magnitude larger. However, for these materials the
modification of T, or of A(0) should be small.

It has been noted that the self-energy of an electron
arising from the electron-phonon interaction in the
normal state is independent of e and depends only
on po when the electron-phonon coupling is independent
of the wave vector and the electron is coupled to a
phonon which has little dispersion.’® This is also the
case for a superconductor, because the integral over ¢
then yields %¢?, which, when evaluated between the
indicated limits yields (4ms/7%2)[ (e+er)(¢'+€r) ]2
When the term outside the integral is considered, we
see that the integral equations for Z, X, and ¢ are
independent of ¢, and we may, therefore, take Z, X,
and ¢ to be independent of ¢, as was done in the limit
em>hiwph.

We are, however, left with a density of states factor

185, Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993
(1963).
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proportional to (¢'4er)'?, which is approximated by
Vep in the limit ez>>%hw,, and the integral over ¢
may be performed with no further approximations.
After integration over ¢, Eq. (10) becomes

im b3/ 2Q

Eph(?ﬂ)=m

/ de (ep+€)12
e

% /’ * ’ ,< Z(p0)poT—= o (po’)rs )
—e [Z(p)po' I— (eX)2— o (po')?
XU} D (po—po), (1)

where we have taken the limit »— 0, because the
functions Z(po'), X(po’), and ¢(py’) are complex. It
will be important to keep 4 finite when we consider the
limit ep<<#wpn. We have assumed that g, is independent
of po and po’, and that X is a constant, as in the case
er>Nwpn. As a result of the frequency dependence of
the dielectric screening, this approximation is more
serious in the case e > fiwpn.

We will not explicitly calculate the Coulomb contri-
bution to X when er>7%wn; the equations valid in
the!! limit ez>>7%wyn are also valid here. We have also
made the approximation that the width of the conduc-
tion band is large compared to the Fermi energy and
phonon energies.

Equation (11) may be simplified by using the inte-
gration procedure of Eliashberg.® The phonon propa-
gator D is written as a sum D%+ D!, where D* is analytic
in the upper half-plane and D! is analytic in the lower
half-plane. We may then deform the contour of inte-
gration over D* around the branch cut above the
negative real axis, and deform the contour of integration
over D! around the branch cut below the positive real
axis. We then use the relation

Go(p, potid)=Go*(p, po—16), (12)

and the fact that ¢, Z, and X are even functions of po,

e + X — [z - ¢ \/EF + X+ Mzp) - ¢

——

F16. 2. Qualitative movement of the functions

fertx—[Zpt— @127 and {ertx-+T(Zpo— P11

in the complex plane. Arrows indicate direction of increasing po.
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to obtain where the minus sign should be used with the I com-
Qmplz o o ponent, and the plus sign with the =; component.

%on(po)= / de (¢—4ep)2 / dpy’ The integral over ¢ may be evaluated by using the
V2138 ) _ep 0 transformation #= (er+¢’)'/?, and noting the resulting

integral is even in # so that its value is § the value of
the integral from — o to o. If we adopt the convention
that the positive square root of a complex number lies

% Im( Z(p ) po'T4 o (po")e1
[Z(po")po’ P—L€—X(p") P~ o (po')?

Juceay:

XD\ (pot+po) £ D\ (po— po’)], (13) in the upper half-plane, we obtain
QN (0) [ Z(po)po'T+ ¢ (po')e
Zn(pd=——— [ dni e[ )
Ver Jo {ertXAL(2p0)— TP+ {ertX—[(Zpy)— T2

XLDIPLON(pot-p0)EDN (po— pd) ],

where N (0)=mk r/ 272 is the unrenormalized density of states for electrons of a single-spin orientation.

If we require Im{(Zpo)?— ¢?} >0, then Re({er+X—[ (Zpo')2— £*]M2}12)< 0. Figure 2 shows the movement of
{ert+X+[(Zpo)2— &212}2 and {er+X—[(Zpo')?— ¢*]42}12 in the complex plane as a function of py using the
condition Im[ (Zp¢’)?— ¢*]>0. Since X is much smaller than ez when Zw,n S e, we may set X=0 in Eq. (14) with
little error.

To obtain the equation for Epu(po) in the limit ez>>%wyn, we may expand the square roots in Eq. (14) for small
[(Zpo')2— ¢*]V2. Noting that Re{er+X—[(Zpo')?— ¢*]/2}}2<0, we obtain

Zpd' T+ or1
L(Zpo ) — ]

plus terms of order (po'/er)?, which are roughly of order (fiwyn/er)?. Equation (15) is the usual equation obtained
in the limit e7Z>%wpn.

Equation (14) differs from Eq. (15) because of a different effective density of states, and the integral over the
imaginary part of the Green’s function evaluated to obtain Eq. (14) is, except for the =3 component, similar to
the integral necessary to obtain the tunneling density of states, which is proportional to the derivative of the
runneling current with respect to the applied voltage. This difference may be observable in a normal-superconductor
tunneling experiment, where a plot of the second derivative of the current with respect to the voltage as a function
of voltage could give structure near [ex?~A(er)?]2. As a result of the large imaginary part introduced into A (po)
and Z(po) when po>7%wyn (and real phonons can be emitted), the structure discussed above may not be observable
unless #wpn> €p.

The generalization of Eq. (14) to finite temperature is straightforward, and can be accomplished using the same
methods used in the limit es>>7wpn,'® since only the integral over e was changed, and this integral is the same in the
zero-temperature and finite temperature developments. We obtain

(14)

2o (P1) = —ON 0) f dpy Re{ }{{zx}}2[Dx"(Po+Po’)ibx’(Po—ﬁo')] (15)

QN (0) =
n{Po)= dpd’ R
Zon(po) v /0 P e{

€F

Zpo'I— omy ‘l
(er X+ L (29— T et X— (20 Y T2}

X f e T BE)sl]

1 1
Do p'— v-Fid e po— po/-vtid 1+e+/31’°’:|
P0sZ (pos)I— 0 (pos)=1

QN (0) 1
-+ / dy
er Jo

where po,= po+ (—1)°»+148. Equation (16) is a generali-
zation of Eq. (2.20a) of Ref. (15) for the case fiwpn S €r,
and Bi(g,v) is defined in that reference.

IV. APPROXIMATION METHOD FOR
erShwpn

When the Fermi energy is much less than important
phonon energies, and when the Fermi energy is of the

>
¥ 5 (et Xt L(Zpu)— I (ert X [(Zpofi— T 1o

lg)\lz ’

same order of magnitude as the phonon energies and
the screened electron-phonon coupling g(%) has a strong
k dependence, we cannot approximate the functions
Z(e,p0), X(e,p0), and ¢(e,po) by functions of po alone.
For sufficiently small Fermi energy, the e¢ dependence
of these functions will be more important than the po
dependence. The results derived in this section should
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apply to doped SrTiOj3, where the Fermi energy is much
less than important phonon frequencies.

In the evaluation of the integrals over p¢’ and € in
Eq. (10), knowledge of Z(¢’,p0), X(¢,p0"), and ¢(¢’,p0)
is most important when the remainder of the integrand
is large. This occurs when po'==E(¢,p,), where

E(,pd)={Le+X(¢,00) P4 o(¢,00 )}/ Z(€ ,p0") -

We will therefore approximate Z(¢,po") by Z(¢)
=Z(¢, pi'==%E"), X(¢,p) by X()=X(¢, po'==£E’),
and ¢(¢,po’) by o(¢)= (¢, p’==xE’), in order to
calculate Z(e,po), X(¢,p0), and ¢(e,po) from Eq. (10).

Because we evaluate Z, X, and ¢ on the branch cut of
G(¢,p0), Eq. (12) indicates that Z, X, and ¢ must be
real. We must therefore keep n in Eq. (10) finite
until the po integration has been completed. The
functions Z(e,po), X(€,p0), and ¢(e,po) calculated using
this approximation for Z(€',p0"), X(€',p0"), and ¢(€,po")
will depend on po and are complex. The important
variation in po and the imaginary part of these functions
is important for po>7%wyn, and these values of po are
of little importance when epSiwpn. An iterative solution
to these equations may be obtained by evaluating the
functions Z, X, and ¢ at po==F and inserting into the
integral equation.

This method of solving the integral equation should
be compared with the alternate procedure of assuming a
nonretarded interaction, that is, assuming V (g, po— po’)
to be independent of po and po’. The assumption of a
nonretarded interaction is also best when 7w, >>€r, and
leads to a real energy gap. The best nonretarded
approximation to V(g, po—po’) is not determined
by this method however. It is logical to evaluate
V(q, po—po’) at po==xE and p=-LE’, but the inter-
action depends on the choice of plus or minus signs.
If both plus signs or both minus signs are taken, an
interaction of the Bardeen-Pines form results. If in-
stead, both p and p¢’ are taken to be zero, the phonon
contribution to V (g, po—po’) has infinite range leading
to an infinite transition temperature. We will avoid
the ambiguity in the choice of a nonretarded interaction
by making no approximations on V (g, po—po’), only
approximating ¢, X, and Z inside the integral.

We will now consider the integral over po’ in Eq. (10)
where ¢, Z, and X are independent of p¢’. For very large
po’ the total interaction V (g, po—po’) must approach
the bare Coulomb interaction V,2(g). Also, the de-
nominator of the Green’s function is proportional to
(pd)? as po’ — 0. For the terms in the numerator that
are constant as po’—>o, we may close either in the
upper or lower half-plane. For these terms we may
then take the limit of n — O before integration.

To integrate the terms in the numerator linear in
b0, we must keep 7 finite until after integration. It is
convenient in this case to divide the interaction into
two parts:

V(g, po—pd)=V*(q, po—p)+V.E(), (@17)
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and
VeB(q)=4re? /g, (18)

where V*(q, po—po’) — 0 as py’ —. In all integrals

over V*(g, po—po’) we may take =0, and integrals

over V.B(q) are easily evaluated. ‘
The term in Eqg. (10) proportional to I gives

#wob—eF de

Z(e,po)=1+ Ka(ed,po),  (19)
—eF €)
where
’l:me
Kz(e, el7p0) =—
PO(ZT)shEZMb(e—{— eF)]IIZ
B(e,e’) =~ ,
X qdq / dpof____@__._
s (B Hin
XV3(g, po—po), (20)

A(e,)= 2mp)"2/n| (e+er)2— (¢'+ep)?| ,
and
B(e,€')= 2ms)"2/11| (et ep)24 (€+er)2| .

We see that instantaneous interactions do not con-
tribute to Z(e,po), and their effects are completely
accounted for in the normal state by X(epo). This
indicates that as the ratio Zw,y/er increases, the relative
importance of X increases.

The term in Eq. (10) proportional to =3 gives

#iweh—eF de'

Z(¢)

X(G,po) =Xp (€)+ Kx (G;EI’PO)
é(¢)

X,
Z()E(¢)

—€F

(21)
where Xp(¢) is the contribution of the bare Coulomb
interaction to X(e,po).
e2mb
whko[ 2my(et+ep) T2
Hwch—er de é(él)
*[, zelzosa)

—er Z(e) Z()E(e)
(et er) 24 (e ex)t
(e en)i— (¢ ep)

XB(€)=—

n

(22)
and
1Qmy
Q)3 2ms(e+ep) JU2
B(e,e’) 00 E(é')
X / 9dq | dp)———
A(e,e’) —0 (P P—E(¢)*+in

XV*(g, po—po').

KX(G,G’,?O) =

(23)



177
From the =; component of Eq. (10) we obtain

1 hosb—er  de' A(€')

A(e,po)=— K :’a , (24
e ) Z@E@ Y
where
1Qmey
KA(57517PO)=
(2m)*h[2my(e+er) ]2

B(e,e’) d ) d E(el)
X/ q ‘1/ P '—_—_,—
Ay e (po—E(€)Fin
X V(Q: po_—POI)'

If V(g, po—po’) is taken to be independent of po
and p¢, the integral over po’ in Eq. (25) may be
accomplished, leading to a kernel Ka(e,e’) of the form
given in Ref. (1). The correct form of the nonretarded
interaction V(g) is not obtained, however.

To obtain the superconducting energy gap, we must
solve Egs. (19), (21), and (24) simultaneously for Z,
X, and A. When A<Xler, as is usually the case, we may
approximate Egs. (20) and (23) by taking A=0 inside
the integrals. The kernels Kz and K, then become
independent of A, and Z(epo) and X(e,po) can be
determined independent of A. Equation (23) is then a
single integral equation for A(e,po).

When A<er the term {1—[e&(¢)/Z()E(¢)]} in
Eq. (22) for Xg becomes [1—sgn(&(¢’))] and Eq. (22)
becomes

(25)

262mb
XB (E)g—
Thio[ 2my(e+ep) JU2
o de (et er)2+ (¢4-€r)'?
X / In , (26)
—er Z(€¢) | (eter)— (€ +ep)'?

where en is the solution to the equation ¢'+X(¢')=0.
In the weak-coupling limit, X(er)<<er and e,=0, and
Xp becomes the Hartree-Fock energy of the electron

gas.
). en

If the total interaction is weak, we may approximate
Z and X by their weak-coupling limit, obtained by
taking Z(¢’)=1 and X(¢')=0 in the equations for Kz,
K,, Z(e,po), and X(e,po). If the total interaction is very
weak, we may set Z(¢)=1 and X(¢')=0 in the equa-
tions for A(e,po) and Egs. (24) and (25).

We will next simplify the kernels K,(eé€,p0),
Ka(e,€,p0), and Kz(e,,po). We will consider two
methods for this simplification, one of which will be
more accurate than the other. Which method, is more

Xp()=Xp%(¢)
& / Er—k?
== 2k1¢+ ln
21I'K°°\ k

k+kr
k—kr
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accurate will depend on which normal state properties
are known to a higher degree of accuracy.

The first method is to expand the total interaction
V (g, po—po’) in a spectral weight function and then
perform the p¢’ integration in the equations for the
kernels. This will be appropriate when the total
interaction, or equivalently, the total dielectric function
including phonon contributions is known.

The second method is to divide the interactions into
screened Coulomb and screened phonon parts. This
method is useful when the total dielectric function is not
known but the phonon spectral weight function is
known or can be approximated.

A. Kernels Using Total Interaction

We will begin by considering the kernels when the
total dielectric function is known. We then have

V (g, po—po)=4mwe?/Qg*r(q, po—po’),  (28)
where
xz(g, po— 1) =kpn (g, po—p0")+ke(q, po—po’) —xw(q)
(29)

isthe total dielectric function. The function x,n(g, po— po”)
is the dielectric function of the crystal with no elec-
trons in the conduction band, and it may be measured
in the undoped crystal; xpn(g, po—po’) arises from the
motion of the ions and the polarizability of the ion
cores, which include electrons in the valence band.
The electronic function ke(g, po—po’) is the dielectric
function of the crystal when the ions are rigid, that is,
the dielectric function arising from electrons in the
conduction band plus those in the valence band, while
k»(g) is the dielectric function of electrons in the valence
band only. The approximations involved in Egs. (28)
and (29) are discussed in the Appendix.

The function «./kr(g, po— po’) may be expanded in
terms of a spectral weight function,

” © 1
et B / F (q,w)(———,
kr (g, po—po’) 0 po— po’ —w+-1d

1
——"‘*‘_“—.‘)dw ,» (30)
Po"— Po'+w- 0
where F(q,w) is given by
Faw=—(/) s ——], @D
kr (g,

since we only need F(q,w) for w>0. We note that a
special case of Eq. (30) is

» «“ F(q,»
ko o [ (g )2 "
KT(%O) 0 w

(32)
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Fi1c. 3. Spectral weight function F(g,w) for a degenerate polar
material having one optically-active phonon mode. Parameters
used were kg=20, ko=235, mp=2.5m., v=3, wr=0.1 eV, electron
concentration #=10% cm™3, transverse optic phonon frequency
w:=0.05 eV, damping y= 0.03 eV. The plasma frequency Zwp

(41mez/mbx )12=0.105 eV. Only intravalley interactions are
shown. Note that using these parameters for small wave vector ¢
the high-frequency branch of the coupled phonon plasmon modes
is important, while for large ¢ the phonon mode screened by single-
particle excitations is important. All modes are damped in the
region 7 (g2 — 2gkr) < 2myw <#(g®+2qkr). The maximum of ¢ shown
is 5.127kF, kp=0.996X 107 cm™L. The maximum value of w shown
is 0.4149 eV. The viewing angles are 60° from the perpendicular
to the plane and 255° from the ¢ axis.

and we may rewrite Eq. (30) as

Ko 1
O
xkr (g, po—pd') KT((I,O) / po'— w18

1 2
— + )dw (33)
—po’—l—w—i5 [}
We also note from Eqgs. (17), (28), and (30) that
i 1
Ve b= )= V2@ [ Pl
0 po— po’' — w10
—————————)dw. (34)
PO—PO,—]—Q)—"M

Equation (34) may be used in Egs. (20) and (23)
to simplify Kz, K, and Ka. After performing the po’
integration, we obtain

X Qmyr B(e,e’) I ol B( )
z=— 9V g
poQu 3k 2my(e+er) ]2 /A(e,e’)

® 1
X dwF(q,ao(——————,—
,/0 po— E(e)—wtin

+ , ) (35)
ot E(e)+amin
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Qmer B(e,¢’) o oV B( )
= q4qVe g
@) h2my (et er) ]2 /:4(5,:')
o 1
x| do P(ge)(—————
0 po—E(¢)—w+1n
— ), @
potE()+w—in
and
© OQmym B(e,e’) 4 V5@
- (21(')3h[2'm:b(6+5F)]1/2/:4(5,5') e

X {1+ /0 " o F@,@(W

sy M)

Or we may use Eq. (33) to obtain

Qmyr B(e e’)d VB( )
= 7qve"g
QrYh2my(e+ GF)]UZ ./A (e,

+[ dor <,w>(~—————
[KT@, o N () —atin

_po+E(e'1)+w—in+w)]' ¢

Equation (38) is included not only because it may
provide a more accurate method for calculating Ka,
but also because the integral over F(gw) gives an
estimate of the importance of the frequency dependence
of the interaction.

We have obtained equations for A, Z, and X in
terms of a spectral weight function F(gw) which is
obtained directly from the total dielectric function
k7(g,w). If the phonon contribution to the total dielectric
constant can be measured in the absence of carriers,
kr(g,w) can be obtained by adding to this the electronic
polarizability calculated in the random-phase approxi-
mation, which is equivalent to the self-consistent-field
approach.’® If, in addition, the electronic wave func-
tions are taken to be plane waves, the polarizability
has the form given by Lindhard.*® An example of a
case in which 1 (0,0) has been measured is SrTiOg.2

A study of F(gw) is informative, because it reveals
the frequency and strength of the coupled phonon and
plasma modes with which the electron interacts as a
function of wave vector (see Fig. 3).

l”H Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
20 J. Lindhard, Kgl. Danske Videnskab. Selskab Mat. Fys.
Medd. 28, 8 (1954)
A, S, Ba.rker, Jr., Phys. Rev. 145, 391 (19606).
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B. Kernels Using Coulomb Interaction
Plus Phonon Interaction

For cases in which the total dielectric function is not
known, but for which the electron-phonon coupling
can be estimated, we must divide the interaction into a
Coulomb interaction and a phonon interaction. We
must, however, keep these interactions on the same
footing since the condition w,>>w,n does not hold.

We therefore divide the total interaction into
Coulomb and phonon parts, using Eq. (8). The corre-
sponding kernels Kz, K, and Kx may also be divided
into Coulomb and phonon parts. We note that the
Coulomb contribution to the kernel is easily obtained
from previous results for the total kernels using the
total interaction, if we replace F(gw), as defined in

Eq. (31), by
Fo(gw)=—(1/m) Im[keo/ke(g:) ]

and replace kr(g,w) by xe(¢w) everywhere. Equation
(33) is then especially interesting because it separates
the electronic screening into the appropriate screening
for the case w,nKw, and a correction term arising from
the frequency dependence of the screening. The
Coulomb contribution to the kernels K z¢, K¢, and K¢
are then given by Eqgs. (35)-(38) when the replacement
of F by F. and «kr by . is made. Xp, which is caused by
Coulomb effects, is left unchanged.

Having obtained the Coulomb contributions to the
kernels, we will next obtain the phonon contributions.
For the phonon contributions we see that in order to
perform the po’ integrations we must expand both the
phonon propagator Dy(g, po—po’) and the screened
interaction {{g\(g, po—po’)}}? In terms of spectral
weight functions. Even after the po integration has
been done, we will still have three integrals to perform
to obtain the kernels. We will find, however, that in
many cases we may approximate the phonon spectral
weight function in order to reduce the number of
integrals to two.

(39)

Kx (6,6',Po)ph= Ka (6; G'yPO)ph=
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We expand the phonon propagator as

D)\(q; PO—_POI)':/ B)\(Q)w)(

PO— Pol—w—i— 16
Y w
170— Po"‘l“o)— 7:5
and
Bx(g,w)=—(1/m) ImDx(g,») sgnw. (41)
The screened phonon coupling is

HUan(g, po—pd)})?

a@a(—9) @)

(g, po— ) kol — 0, — (po— o) 5}

Since we have inversion symmetry, g(q)g(—q)= | g2 (q) |2
and «e(g, po—po’) =k —q, — (po—po)]. We use the
spectral weight function for x.,2/ke(g,90)%, i.€.,

1
_1+[ p, (q,w>(
Ke (q 0)* 0 go— w16

1
———-———)a’w, 43)
90+OJ— 10

or we may write

Kooz Kao2 0 1
et [ rege(——
Ke (97q0)2 Ke (9,0)2 0 Go— w106

1 2
e
qotw—1d w
where
Im[«.2/ke(g,90)*]= —mF ' (g,q0) sgngo.  (45)

Using Egs. (40) and (43), we obtain

dqq%i / dw'Bx(g,»")
0

X / dPo'(
—0o0 POIZ

E(¢) )( 1
— E(¢)in/ \po—po'—a'+id  po—

4 °/:"°'—i6) @] 2[<xe:;0)>2

® 1 1 2
+ f Fc’(q,w)< - —+ >dw]. (46)
0 Po— Po'—'w-i—ia Po— Po’—f-w‘— 0

We may again evaluate the po” integral by closing either above or below. Since poles now arise from the phonon
propagator as well as from the Green’s function and the screening, the integrals are slightly more tedious than in
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the Coulomb case, but they are straightforward. We obtain

(¢, 0= (6,¢,0) o " S0 @ [ By
K, (e¢, =Ka(e,€, = g / 'B(gq,w’
x Po)pn=Ka Do)oh (27[’)3%[2”%(6'*‘51')]”2/:1(5'6;) 99 . Mg , Y
[
Ke Q,O)
X

>2+ /: Fer] (w+w’2)cE,1Ef—ojEl(i€)e,i]w+m'de]

Cpo— E&)—a'+in] o o
[(xe(;,m) +/o Fc,(q’w)w(w+w?)[?|;j+_;fe(')fw—in’]dw] L@

[oot+E(e)+w'—in]

The form of Eq. (47) is quite interesting. As mentioned previously, the integrals over F./(¢,») give the frequency
dependence of the screening, and for the case of the low-electron-density systems considered here (er<#wpn),
represent a large modification of the first term (k.,/x.(g,0)? which is the dominant term in the high-electron-density
system. We see also, however, that the Eliashberg form for the kernel still appears in the denominator of the
two terms. In addition, o’ (which for sharp modes becomes the phonon frequency) appears in the integrand of the
integral over w, so that the frequency of the phonon modes determines the importance of the inclusion of the
frequency dependence of the dielectric function. We see that as w’ approaches zero, the high-density limit is reached.

We may write Eq. (47) in a more symmetric form by including the zero frequency screening in the integral
over w. We then have

1( (6 € ’1 ) ( 1% ) d q ZI (Q)I dw E (Q:"*' )
) P q g
X 0/ph 1<A €,€ 0/ph ( ) [ ( )] / / ) A / A

{1+/: d“’F(qw)[<wjip)[;]i(E)(_;——:jm]]] {1+f0°° dwF°'(q’°’)[(wii');;ii:;:wﬂnﬁ]}
[po—E(¢)—w'+in] [pot+E(¢)+w'—in]

(48)

We note that if screening is neglected, and the weak-coupling limit is used (Z=1,X=0), and the Coulomb
interaction is omitted, the gap equation obtained from Egs. (48) and (24) is equivalent to that obtained by Liu,?2
when A(e,po) is evaluated at po=E(e).

The phonon contribution to Kz(e,¢’,po) may be calculated in the same way:

Ka(ed.p0) 1Qmy B(E,E’)d 5| Y
z2(&€spo)on= P /A o M2 g

0 ] ’ 1 1
X/ dw’B)\(q,w')/ d?o'( b 5 )( . ; )
0 - (p'2>—E()2+in/ \po—po'— w418 po— po’'+w’'—14d

Ko \2 ® 1 1 2
><|:< )—!— / Fc’(q,w)( —— i )dw] (49)
ke(q,w) 0 po—po—w+id  po—po’+w—ib

After integration over po’ one obtains

Qmyr

B(e,€’) 0
Kz(e¢',po)on= — d 2| do'By(g’
D R AU / Tl [ @B
Ke %0)
X

> 2+ _/Ow re (q’w)w (w+w2';vf’zi—Elz€('e),)_]‘° +i’7]dw:l

[po—E(¢)—w'+in] . o Tob-E(e
[(Ke(;O)) +/; Fcl(q’w)w(w—l-wz')[Z:Zz:’)Ew—in]dw] . (50)

[otE(e)+w—in]

2 S, H. Liu, Phys. Rev. 125, 1244 (1962).
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Again Kz(e,€,po) is not singular as po approaches
zero since the two terms in the integral approach zero
as po approaches zero so that the complete term is finite
as po approaches zero.

We also note the similarity between Egs. (50) and
(47). Just as in the high—electron-density case, the
only difference is the sign of one of the two terms in the
phonon kernel. The modifications of the screening are
the same for all kernels.

When er<<hwyn and erlhuw,, all equations derived
in this section may be evaluated at po==E(e), leading
to a nonretarded gap equation. The correct nonretarded
“interaction” has therefore been obtained. See Egs.
(37) and (48).

For a many-valley semiconductor (see Ref. 1) all
integrals over wave vector ¢ are separated into different
regions of momentum space: the large-wave-vector
intervalley processes and the smaller—-wave-vector
intravalley processes. The procedures for obtaining the
intervalley and intervalley parts outlined earlier! for the
case of the modified Bardeen-Cooper-Schrieffer equa-
tion hold also in the present case.

In particular, all equations derived in this section
hold for a many-valley degenerate semiconductor if the
following modifications are made. First, all kernels are
the sum of intervalley and intravalley contributions.
The intravalley contributions have the form derived
above if it is understood that kr= (3722/v)® when # is
the total carrier concentration and » is the number of
valleys. For the intervalley contribution, an over-all
factor of (»—1) multiplies all kernels. Also, the bare
Coulomb interaction is given by

VB(g)or=4dme’/ QoK (1)

where gy is the wave-vector separation between valleys.

For practical calculations we will want to express
the electron-phonon coupling for intravalley processes
in terms of the polaron coupling an, and express the
electron-phonon coupling for intervalley processes in
terms of the deformation potential £. For intravalley
modes we have

|gx (@) |2 =4 (hen)?/Qg?* 2m¥eorn/B) ¥ e, (52)

where wy, is the bare phonon frequency of the Ath mode.

For intervalley modes, the deformation potential £
as defined in Ref. 1 can also be obtained in terms of
n(¢), where X refers to the intervalley phonon mode.
In the notation of Ref. 1, the electron-phonon coupling
was expressed in terms of the matrix element M,.

We have
[ Mo|2=|g.r(9)]? (53)
and
o (54)
F=—|ger .
oy ger(g

Here, « is the degeneracy of the phonon mode and w.-
is the frequency of the intervalley mode. The phonon
spectrum for intervalley modes is well approximated by
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an Einstein spectrum, and Bj(gw)*=8(w—w)). We
also note that the contribution of intervalley inter-
actions to Xz are obtained using Eq. (51) rather than
Eq. (18) for VB(g) so that Eq. (22) must be modified
for intervalley contributions to Xp. It can then be seen
that the intervalley contribution to Xz is a constant
independent of wave vector or energy:

Xp®=— (v—1)4e% r*/ 3Tk 90 (55)

Xger will be much less than Xz since & r<qo.

It is instructive to consider the phonon contributions
to X(e,po) and Z(e,po) in the low-density limit ex — 0.
We consider a normal material [A(e,po)=0] in the
weak-coupling limit ax1. We consider only intravalley
coupling to longitudinal optic phonons and neglect
Coulomb interactions between electrons, and therefore
screening. Using Egs. (48) and (21) with Ba(gw’)
=8(w'—wy), hwp —, and F'(q,0) =0, we obtain

X(epo)=— %a)\hu)\(_hf:l)uz {W_ tan—l[ (hwx;l- pn)lﬂ]
~ur ()]}

when po<#uw,. Also, using Egs. (50) and (19), we obtain

azhion fhr\M? Tort po\ /2
g1+ 27 (57 ]
2p0 \ € €

()

when po<7wr. The renormalized quasiparticle energy
Eyx=(e+X)/Z can then be obtained from Egs. (56)
and (57).

If we expand Eq. (56) for small ¢ and po and keep
only linear terms, we obtain3?

X (€)= —anhr+3anre. (58)
Expanding Eq. (57) we obtain
Z(&)~143arn—jar(¢/hwn) (59
and keeping only linear terms in a) we obtain®
Eyx— e~ —antuor—tane, (60)

which is the usual weak-coupling polaron result ob-
tained by consideration of a single electron interacting
with longitudinal optic phonons to first order in
perturbation theory. Equation (60) yields

1/m*= (1/mp) (1—3ar),

where m* is the renormalized effective mass.
We can now compare the relative contributions of
X(e) and Z(e) to the renormalization of the mass. From

(61)

2 Note that anawy™1'8 and oy — 0 as wx — », so that z(e)=1
for instantaneous interactions (wx — ). Also, x(¢) — 0, because
we have taken er=0.
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Egs. (58) and (59) we see that X(e) has contributed a
term +3an and Z(e) has contributed a term — Zay. The
contributions from X and Z therefore tend to cancel,
and in the low-density limit the cancellation is two-
thirds complete. The partial cancellation of effects from
X and Z occurs for all values of the Fermi energy, but
as the Fermi energy increases the relative contribution
from X becomes less important.

We also note that no linear terms in po appear in
Eqgs. (58) and (59) since X and Z are even in po. This
result confirms our original approximation, that for
er<hwyy the variation of X, Z, and A with e is more
important than their variation with po.

APPENDIX

The electron-electron interaction in a degenerate
polar material with any number of optically active
phonon modes may be calculated using a random-phase
approximation, that is, excluding vertex corrections.
We will show that this interaction is exactly the same as
that obtained by dividing the bare Coulomb interaction
by one plus the sum of polarizabilities from electrons
in the valence band plus those in the conduction band
plus the polarizability of the lattice.

We will find that the total electron-electron inter-
action may be separated into an electron-electron
interaction plus an electron-electron interaction through
the phonon field for a system having only one optically
active phonon mode. The interaction through the
phonon field is different from the interaction given in a
recent paper? and we therefore believe the interaction
given in Ref. 23 to be incorrect.

For a material with more than one optically active
phonon mode, the presence of electrons in the conduc-
tion band couples the modes so that the total inter-
action cannot be separated into an electron-electron
interaction plus a sum of independent interactions
through the separate phonon branches.

We will consider all frequencies involved, bare
phonon frequencies wy, and plasma frequencies wp, to
be much less than the band gap between the valence

e O OO

DUV VS SR Vg Sl ey RN

F16. 4. Diagrams included in the random-phase approximation
when only one phonon mode interacts with electrons.

% J. Appel, Phys. Rev. Letters 17, 1045 (1966).
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PG

F1c. 5. Dyson equation for random-phase approximation
when only one phonon mode interacts with electrons.

band and the conduction band. Therefore, the polari-
zability of the electrons in the valence band is included
in the bare electron—electron interaction V.%(g) given
in Eq. (18) and in the bare electron-phonon coupling
&x(¢) and in the bare phonon frequency wy(g). The
bare phonon propagator

Dy,=2w)/ (0 —w)2) (A1)

is the propagator of phonons in the system with no
electrons in the conduction band. The bare frequencies
o) are then measured in the undoped crystal.

We will consider the set of all diagrams connecting
electron propagators which have no crossed diagrams
and no modifications of the electronic polarizability.
If there is one longitudinal phonon mode to which the
electron may couple, we have the set of diagrams shown
in Fig. 4. These diagrams are equivalent to the diagrams
included in the Dyson equation shown in Fig. 5, used
by Pines.?

For two phonon modes interacting with the electrons
in the conduction band, we have the Dyson equation
shown in Fig. 6. The generalization to more phonon
modes is straightforward.

By defining

VTB: VcB+Z g>\2D)\o ) (AZ)
Iy
we obtain from the Dyson equation of Fig. 5
V=Vz8/(14PV?), (A3)

where P is the polarizability of electrons in the conduc-

F16. 6. Dyson equation when two phonon modes interact with
electrons. The longer-wavelength wiggle indicates a longer-
wavelength phonon.

% D. Pines, The Many-Body Problem (W. A. Benjamin, Inc.,
New York, 1962), p. 86.
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tion band. We will now show that this equation is the
same as that obtained by dividing the bare Coulomb
interaction by the total dielectric function.

In the rigid lattice ga=0 and the Coulomb inter-
action is

Ve=V.2B/(14+PV E)=VB/[ke(q,0)/ks(q)]-

When no electrons are in the conduction band the
interaction is

(A4)

B

Cion(950) /e ()]

where «,1(q,w) is the dielectric function of the crystal
with no electrons in the conduction band. We therefore
have

Von=V. 2+ 032Dy, = (AS)
A
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and

kon(9,0)/ K=V B/ (VB +Z); £2Dy,). (A7)

Using Eq. (A2) in Eq. (A3) we obtain

V=( VcB+§I gDry)/ (14+PV B+ P }; eDy) (A8)
or
V=V.2/(1+PVB+[V B/ (VCB+2;, §2Dh)]—1) (A9)

and

V=VE/{ke(g0)/ ko I+ kon (g,0) /K] —1} . (A10)

And we see that the total interaction may be obtained
by dividing the bare Coulomb interaction by the total
dielectric constant.

ke(q,w)/ko(q)=14+PV B (A6) We may separate Eq. (A8) into two terms:
VE(g) LN
- D> : (A1D)
[ke(g@)/ka(@] N 14+{1—[ku(g)/ke(q.0) I} 2n (1 Do/ V )
or
VeE(9) gr"2en
AL S (A1)
[ru(0)/kel@)] % =it (=)= s/ k) T (&0 VP 2w/ (ah—n)]
where Zx=g)/(ke/xs). The renormalized phonon fre- tion so that
quency is
_ V. B
Sy 2 2 2 2) 1 * > &’ 2oy V=__._._c—
=t (e < _Ke(Q>w)) M V_CB (w?—wr?) ’ Lre(gw)/xa(9)]

(A13) T O
and, in general, the frequency of a given renormalized ‘ [ke(g,0) /o (q) PLe*— r (q,0)?] (
phonon mode depends on all other phonon modes and  and
their coupling to the electrons. When the bare phonon _
frequencies are widely separated, or when the plasma G (g:0) = [/ Kot Ko/ Ke(q,0) = K/ koke(g,0) ]. - (A7)

frequency is very large, the modes are approximately
independent.

When the electron interacts with only one longi-
tudinal optic phonon, one obtains

= — (20083 V B)[1—kw/ko(g,0)].  (A14)
Also, for a system with one optic mode, we have
=3V P (ko (1/k—1/k0)0r, (A15)

where ko is the zero-frequency phonon dielectric func-

Because of the frequency dependence of &, (g,w), the
longitudinal modes of the system occur at frequencies
that satisfy the equation

(:J)\ (g,w 2= w?.

(A18)

For small ¢, there will be two solutions corresponding
to the coupled phonons and plasmons. For large g there
will be only one solution corresponding to phonons
screened by single-particle excitations. These modes
can be seen in Fig. 3.
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Fi16. 3. Spectral weight function F(g,w) for a degenerate polar
material having one optically-active phonon mode. Parameters
used were ko=20, k=3, my=2.5me, v=3, wr=0.1 eV, electron
concentration n#=10® cm™, transverse optic phonon frequency
w:=0.05 ¢V, damping ¥=0.03 eV. The plasma frequency /wp
= (dmne?/m.)!2=0.105 eV. Only intravalley interactions are
shown. Note that using these parameters for small wave vector ¢
the high-frequency branch of tEe coupled phonon plasmon modes
is important, while for large ¢ the phonon mode screened by single-
particle excitations is important. All modes are damped in the
region k(g*— 2qkr) <2mw <h(g*+2¢kr). The maximum of ¢ shown
is 5.127kp, kp=0.996<10" cm™%. The maximum value of w shown
is 0.4149 eV. The viewing angles are 60° from the perpendicular
to the plane and 255° from the ¢ axis.



