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A Green's-function method is used to derive a superconducting energy-gap equation without the assump-
tion that the Fermi energy is much larger than phonon energies. This equation is then approximated using
two separate methods. The 6rst method applies when the screened electron-phonon interaction is almost
independent of wave vector and the Fermi energy is of the order of, or larger than, phonon energies. The
gap equation obtained in this way takes account of the variation in the density of electron states with

energy. The second approximation method applies when the screened electron-phonon interaction depends

strongly on wavelength or when the Fermi energy is small compared to phonon energies. In this case, the

gap equation takes account of the wave-vector dependence of the interaction, the wave-vector and frequency
dependence of the electronic screening, the energy dependence of the density of states, and the wave-vector
dependence of the superconducting energy gap. In addition, the effects of the retardation of the electron-
electron interaction are included.

I. INTRODUCTION

'OST known superconductors are metallic, and
~ ~ have Fermi energies and plasma frequencies

much larger than phonon frequencies in the material.
However, the prediction' and verification that GeTe, '
SrTi03,' and SnTe, 4 all degenerate semiconductors,
were superconductors has led to a study of supercon-
ductivity in systems in which the phonon energies Itcoph

are of the same order of magnitude or even larger than
the Fermi energy ep and the plasma energy Atop.

One of the first considerations of the possibility of
superconductivity in semiconductors was made by
Gurevich, Larkin, and Firsov, ' who began with the
superconducting gap equation derived by Kliashberg. '
Although these authors did not use the integration
procedure of Kliashberg which is valid only in the limit

of ep»k~ph, they did make approximations such as the
neglect of the variation in the density of electron states
times the electron-phonon coupling over energies of the
order of the phonon frequency, and the use of frequency-
independent electronic screening. These approximations
are valid only when A~ph(&6 p and ~ph(&~p.

The next investigation of superconducting semi-

conductors was made by one of the authors' who in-
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eluded the intervalley interaction for the first time. The
equation used in Ref. 1 to determine the transition
temperature is essentially that of jBardeen, Cooper, and
SchrieGer7 generalized to the case of many valleys and

taking account of the density of states variation. This
equation may be derived using the Nambu-Gor'kov
ormulations, e extended to finite temperaturesio if the

interaction is taken to be nonretarded, that is, in-

dependent of frequency. " The use of a nonretarded
interaction is a good approximation only if Acth»6g
and Pgop»e I .

VVhile the use of a nonretarded interaction has led

to a good agreement between theory and experiment

for SrTi03 " '4 where, in fact, the Fermi energy is small

compared to important phonon energies, the application

of the theory to SnTe and GeTe, which have 6p+ANph,

may cause discrepancies in quantitative comparisons

of theoretical predictions with experiment.

The equations necessary to determine the super-

conducting energy gap as a function of temperature

have been obtained for the case ~p&&~ph and ~p&&&diphy

and good agreement with tunneling experiments has
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been obtained. " In the case ANp)&ANph and 6»)PAJDp1,
the interaction through phonons may be greatly
simplified, but the Coulomb interaction still poses a
problem since Atop is greater than eJ, and additional
approximations must be made. "These approximations
are not critical for most metals, however, since the
importance of the Coulomb interaction decreases as
the ratio re,h/re, decreases.

This paper will attempt to fill the gap between the
theories valid in the limit eg&)A~ph and cop))Mph and
those valid when Aorp~)&ep and coph&)~p. We will first
derive general equations using the Nambu-Gor'kov
formulation which will be valid over the range from
cp&)Amph to 6p&)Acoph These equations are quite diKcult
to solve in practice and two separate sets of approxi-
mations will be made in order to solve them.

First, we will consider the case eg&A~ph and the
electron-phonon coupling independent of wave vector,
and obtain an energy-gap equation which includes the
variation in the density of states over the energy range
of interest. These equations should always be more
accurate than the corresponding equations derived in
the limit ep»Aorp1„but for most metals the difference
is negligible.

Next we mill consider the case ep(Acth, and derive
equations which should be more accurate for all
materials than equations derived using an instantaneous
interaction.

II. DERIVATION OF THE SUPERCONDUCTING-
GAP EQUATION

We will use the Nambu-Gor'kov formalism to
calculate the equation for the superconducting energy
gap at zero temperature h(e, ps), the renormalization
Z(e Pp), and the Hartree-Fock energy X(e,ps). The
energy e is the quasiparticle energy for electrons in the
normal state in the absence of renormalization arising
from phonons or other electrons in the conduction band
measured from es and ps is the energy variable conju-
gate to time. Our development will follow that of
SchreiGer "

We may write the zero-order Hamiltonian

IIo=p eI, (cat'Cst+C a~'C s~) (1)

using the spinor fields introduced by Nambu, namely,

t' Cst )
&C,&t) k k

(2)

where C~~ is the creation operator for electrons in the
conduction band, e~——e, and

g7 71007'I

G(P) = . , (5)
Z(P)PQI e(P)Vs —pl(P)%1 ps(P)e2+ir)

where «(P) = e(p)+X(P). Equation (5) maybe written as

LZ(P)PsI+e(P)~s+ pr(P)~1+ ps(P)~sje'" '"
G(P)= . . . , . (6)

(Z(P)Po]'—(P)'—q (P)' q(—P)'+ i'
We will next calculate the lowest-order dressed phonon

and dressed Coulomb contributions to X(p). These
are given by the diagram shown in Fig. 1, where double
dashed lines indicate the total dressed interaction,
including both Coulomb and phonon parts.

We then obtain

iQ
~(P) = ~sG(P')~sV(P P')d'P', —

h'(2rr)4
(7)

where V(P —p') is the total interaction, and 0 is the
crystal volume.

In many cases it is a good approximation to divide
the total dressed interaction into a dressed Coulomb
interaction and a sum over dressed phonon interactions.
The most important case in which such a division is a
good approximation is when the plasma frequency is
large compared to phonon frequencies. Another im-
portant case is the case of only one phonon mode. The
conditions for this separation are discussed in the
Appendix. When such a separation is possible we have

V(P P')= V, (P—P')+—P{{g~ „&})'D(P—P'). (8)

Here V, (p —p') is the screened Coulomb interaction,
Dq(P —P') is the exact phonon propagator, and

{{g.(P-P')))'=g~(P-P')g~(-P+P')

The Green's function for the system described by
gp ls

Ge(p Po) =e'"""/LPoI—e(p)~s+i~j (3)

where P= (p,Ps) and ri)0. Gs is now a matrix with
oG-diagonal elements equal to zero.

We will proceed by using self-consistent perturbation
theory and allowing the off-diagonal elements of
G(p Pp) to be nonzero. The most general form for the
self-energy is

X(P)= L1—Z(P)]P,I+X(P)vs+ q, (P)&,+ q s(P)~„(4)
where X(P) is the exchange contribution to the Hartree-
Fock energy, q (P) =Z(P)A(P), and h(P) is the super-
conducting energy-gap function. The exact Green's
function then has the form

(0 1) /0 i) —iri 0 (1 0)
, I=i

&1 0) Ei 0) Eo —1 to 1)
» D. J. Scalapino, J. R. Schrie8er, and J. W. Wilkins, Phys.

Rev. 148, 263 (1966)."J.W. Garland, Phys. Rev. 153, 460 (1967).

Fxo. 1. Self-energy diagram
used to compute &(P}. The
double dashed lines indicate
that@the total dressed inter-
action (Coulomb and phonon}
is used.
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&(P)=, , dPo'
is'(2s.)'

I z(p') p, 'I+.-(p'),— (p'),g '- "
EZ(p')Po'3' «(P')' o—(p')'+—in

V(P P') (9)—

where gq(p —p') is the screened electron-phonon
coupling for phonon mode ).The sum over X is a sum
over phonon modes allowed by symmetry, which we
assume to be independent.

We note that in calculating the self-energy, we have
included no "crossing diagrams, " that is, we have set
the vertex function I' equal to one. For the case eg&&Aco~h

this is a good approximation even for strong coupling'~
in the interaction through the phonon field. Since the
condition e~&&Aau~ is never valid, the neglect of "crossing
diagrams" is never justified for the Coulomb inter-
action and this approximation corresponds to a calcu-
lation using r,((1, that is, weak coupling. When the
condition e~&&Ace~~ is not satis6ed, the phonon inter-
action calculated with no "crossing diagrams" is
strictly valid only to lowest order in the electron
phonon coupling, so that in this case our equations will
be good only for the case of weak electron-phonon
coupling. For completeness, the functions Z(«,po) and
x(«,po) are retained in the case «r(hro, h, although they
represent corrections to the gap equation of higher
order in the electron-phonon coupling than is consistent
with the condition F=1.

Substituting Eq. (6) into Eq. ('7) we have

In writing Eq. (9) we have 6xed the phase of oo(p) by
setting qr(P)= 9 (P) and qs(P) =0.

We next take «'»"'o= I cosripo'+amos sinr)po' and write
the integral over p' as an integral over azimuthal angle,
over wave vector g=

I y —y'I/O and over «(y):

2~Its g @~ob

d«(y') qdc,

~h~~~ or=(1/@)Ilyl —Ix'll vs=(1/@)Ilyl+ly'll and
m~ is the "band mass. " We call this the band mass
because it would be the result of a band structure
calculation that considered an electron moving in the
potentials of the fixed ion screened by the electrons in
the valence band only. This mass is also the experi-
mental density-of-states effective mass in the absence
of renormalization effects arising from phonons and
from other electrons in the conduction band.

We also use rotational symmetry about the vector p.
This is an approximation for intravelley process since
it assumes a spherical Fermi surface. It is also approxi-
mate for intervalley processes because it assumes
qo»kg where qo is the wave vector difference between
valleys. The energy Ace,b is the width of the conduction
band.

We will proceed to calculate all quantities assuming
one minimum in the conduction band. The results will
also apply directly to intervalley interactions between
two equivalent minima since generalizations to many
valleys are straightforward. ' Equation (9) becomes

X(«,po) =
(2z)shL2ms(«+ «p) )"'

Acoob—eQ t (2'~) 1/2ty]
I (z+6y) 1/2+(e~+~ J ) 1/2j

[(2~v)' 'l~) I (~+~Z)' '-(~'+~a')' '1

dpo'((I Z(«', po') po' cosr)po'+i«(", po') sinrlpo'jI

+L«(«', Po') cosr)Po'+iZ(«', Po')Po' sinriPo']es —y(«', Po') cosr)Po'er}/

(LZ(«'Po')po'j' —«(«'Po')' —~("P )'o+ n)i)V(V, Po Po') (1o)—

Sy equating coefficients of the linearly independent
matrices I, ~r, and es in Eqs. (4) and (10), one can
obtain three coupled equations for the quantities
Z(«, Po), q(«,Po), and X(«,Po). In Eq. (10) all primed
quantities refer to the intermediate state in the self-
energy calculation and are summed over.

We note that Z, X, and y all depend on both po and «.
The po dependence arises from retardation effects and
enters through the dependence of the interaction
V(q, po —po') on po and po'. An instantaneous inter-
action such as the unscreened Coulomb interaction has
no po or po' dependence. The interaction V(g, po—po')
is roughly constant as long as po and po' are much less

'r A. B. Migdai, Zh. Eksperirn. i Teer. Fiz. 34, 1438 (1938)
/English transl. :Soviet Phys. —JETP 7, 996 (1958)g.

than the energy of the mode involved in the interaction,
i.e., the phonon frequency for the phonon interaction,
and the plasma frequency for the screened Coulomb
interaction.

Since e is the unrenormalized quasiparticle energy in
the normal state, the dependence of Z, X, and q on e

arises from changes in the product of the interaction
times the unrenormalized density of states. The density
of states varies on a scale of the order of the Fermi
energy eg.

If the crystal has inversion symmetry, the functions
Z(«', p, '), x(«', p, '), and q (.',p,') are eveninpo'. Variation
of these quantities with po' is expected to be appreciable
over energies of the order of the phonon energies
appearing in Dq(q, po —po'). The variation of Z(«', po'),



C. S. KOONCE AND M. L. COHEN

X(e',Po'), and y(e', Po') with e' is expected to be ap-
preciable over energies of the order of ep.

Therefore, when the condition Acoph«Ep does not
hold, it is not permissible to approximate Eq. (10)
by setting e= ~ =0 in the limits of the integration over

q and in Z(e', Po'), X(e',Po'), and q&(e', Po'). This is the
approximation corrnnonly used for metals where the
condition Aleph«6 p hoMs. "

It would, however, be quite dificult to solve Eq. (10)
self-consistently over the entire e,po plane, and some
approximation is necessary.

III. APPROXIMATION METHOD FOR
6P) IE Mph

When the condition ep))A~p~ holds, the limits of the
integral over q in Eq. (10) becomes independent of
energy, and the integral of q times the interaction
t/'(q, po—po') may be performed. Also, when es))Aco»
it is a good approximation to take q, Z, and X to be
independent of e'. The integral over e', which in the
limit ep))AM» may be taken to be between —~ and
+co, may also be performed, leaving a single integral
over Po' in the equations for p, Z, and X. Because these
equations are already in the literature, ' " and because
our equations reduce to these in the limit 6p'))Amph,

we will not repeat them here.
We will consider the case ep&Aorph. Our equations

will be most appropriate when the screened electron-
phonon coupling g, is nearly independent of wave vector

q, and the phonon modes of interest have little dis-
persion over the range of integration over q. This is
not an unusual circumstance, and should be the case for
intervalley interactions in doped semiconductors, as
well as for some metals. The equations derived in this
section should be applicable to intervalley interactions
in GeTe and SnTe, for example, where the Fermi energy
is larger than phonon energies, but not orders of
magnitude larger. However, for these materials the
modification of T, or of A(0) should be small.

It has been noted that the self-energy of an electron
arising from the electron-phonon interaction in the
normal state is independent of e and depends only
on po when the electron-phonon coupling is independent
of the wave vector and the electron is coupled to a
phonon which has little dispersion. ' This is also the
case for a superconductor, because the integral over q
then yields -', q', which, when evaluated between the
indicated limits yields (ass o/hs) t (e+ez) (e'+ ez) J/s.
When the term outside the integral is considered, we
see that the integral equations for Z, X, and y are
independent of e, and we may, therefore, take Z, X,
and y to be independent of ~, as was done in the limit
cg))Aco».

We are, however, left with a density of states factor

»S. Engelsberg and J. R. Schrie8er, Phys. Rev. 131, 993
(1963).

Go(P Po+ ~)=Go*(P Po ~), (»)
and the fact that q, Z, and X are even functions of Po,

eF + x —Q(z e, +x+gizp, ) —y

Fio. 2. Qualitative movement of the functions

I s~+x —t:(~Po)'—H1'")'" and le~+x+L(~Ps)' —Hj'")'"
in the complex plane. Arrows indicate direction of increasing po.

proportional to (e'+e/)'/', which is approximated by
Qes in the limit e/))boo, i„and the integral over e'

may be performed with no further approximations.
After integration over g, Eq. (10) becomes

i~&3~&n

&»(Po)= de (e~+e)"
(2)s/s~sps

Z (po)po'I —
v (Po')~i

dpo'
LZ(po')Po'j' —(e+X)'—V (Po')'&

X{{g}}'D(Po—Po'), (11)

where we have taken the limit g —+0, because the
functions Z(po'), X(po'), and q(po') are complex. It
will be important to keep q finite when we consider the
limit ~p&&Aorph. We have assumed that g) is independent
of Po and Po', and that X is a constant, as in the case
e&))Ace». As a result of the frequency dependence of
the dielectric screening, this approximation is more
serious in the case eg&Acoph.

We will not explicitly calculate the Coulomb contri-
bution to X when ep)Ace», the equations valid in
the" limit e~))Acth are also valid here. We have also
made the approximation that the width of the conduc-
tion band is large compared to the Fermi energy and
phonon energies.

Equation (11) may be simplified by using the inte-
gration procedure of Eliashberg. ' The phonon propa-
gator D is written as a sum D"+D', where D is analytic
in the upper half-plane and D' is analytic in the lower
half-plane. We may then deform the contour of inte-
gration over D" around the branch cut above the
negative real axis, and deform the contour of integration
over D' around the branch cut below the positive real
axis. We then use the relation
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to obtain

Om, 3~2

y.,~(p,)= de'(e' jev)'/' dpo'
v2ir'f/' 0

Z(Po')Po'I+ (P ')
XIml ((ai) )'

&EZ(p ')P ']'—E"—X(Po')]'—~(po')'

xL»"(p,jp.')~D"(po—p')], (»)

where the minus sign should be used with the I com-

ponent, and the plus sign with the ~I component.
The integral over c' may be evaluated by using the

transformation I= (ev je')'/', and noting the resulting
integral is even in I so that its value is —, the value of
the integral from —~ to ~ . If we adopt the convention
that the positive square root of a complex number lies
in the upper half-plane, we obtain

~..(po) =—QX(0) z(p, ')p, 'Ijp(p, ')~,
dp, ' Rel

t+y+ Lg/p ) w ] l2/ll2+/EP+g L'(gp )2 w ] /2) t )
x {fa ))'L»"(Pojpo')~D '(P —Po')], (14)

where E(0)=m&k v/27r'Ae is the unrenormalized density of states for electrons of a single-spin orientation.
If we require Iinf (Zpo') —y ))0, then Re({ev+X—L(Zpo')' —y']'/ )'/') &0. Figure 2 shows the movement of

f ev jXjp(zpo')' —qP]'/')'/' and (ev +X—L(ZPO')' —p ]'/')"' in the coinplex plane as a function of po' using the
condition ImL(zpo')2 —q&']) 0. Since X is much smaller than ev when Acevi, & ev, we may set X=0 in Eq. (14) with
little error.

To obtain the equation for Xvh(po) in the limit ev))h~vi„we inay expand the square roots in Eq. (14) for small

L(ZP ')' —y']'/' Noting that Re(ev+X —L(zpo')' —p]'/'}'/2&0, we obtain

Xvh(pp) = —QX(0) dpo' Re
Zpp I+ %&1

((a.)}'ED."(pojpo') ~DR'(po —po')]
(Zp, ')2—P]i/2

(15)

plus terms of order (po'/ev)', which are roughly of order (Acovh/ev)'. Equation (15) is the usual equation obtained
in the limit ~g))~ph. "

Fquation (14) differs from Eq. (15) because of a diferent e8ective density of states, and the integral over the
imaginary part of the Green's function evaluated to obtain Eq. (14) is, except for the g3 component, similar to
the integral necessary to obtain the tunneling density of states, which is proportional to the derivative of the

runnel jng current with respect to the applied voltage. This diGerence may be observable in a normal-superconductor
tunneling experiment, where a plot of the second derivative of the current with respect to the voltage as a function
of voltage could give structure near pev' jh(ev)']i/2. As a result of the large imaginary part introduced into A(po)
and Z(p, ) when po) QQ)vh (and real phonons can be emitted), the structure discussed above may not be observable
unless A~ph& ~p.

The generalization of Eq. (14) to finite temperature is straightforward, and can be accomplished using the same
methods used in the limit fy))A'mph ' since only the integral over e was changed, and this integral is the same in the
zero-temperature and finite temperature developments. We obtain

Qiv(0) "
y, h(po)= — dpo' Re

V'ev 0

Zpo I—y&i

{e jXjL(ZP &)2 ~2]1/2}l/2 j(e +X L(ZP &)2 y2]1/2)1/2

X dv Z &~(q, v) la~i' . ,+
po po vji8—1+e—//va po —po'jv j91je+e»''

i~mr(0) po,Z(po, )I—q (p„)~i 8/, (g, v)
dv P P lail', (16)

o (e jxjL(ZP )2 y2]1/2}1/2 j{e+x L(ZP )2 ~2]1 2)1 2 1 ee~

where po, =pa+ (—1)'vjK Equation (16) is a generali-
zation of Eq. (2.20a) of Ref. (15) for the case Acovh& ev,
and Bq(q, v) is defined in that reference.

IV. APPROKIMATION METHOD FOR
6@+AQ)ph

When the Fermi energy is much less than important
phonon energies, and when the Fermi energy is of the

same order of magnitude as the phonon energies and
the screened electron-phonon coupling a(k) has a strong
k dependence, we cannot approximate the functions

Z(e Po), X(e,PO), and y(e,PO) by functions of Po alone.

For sufficiently small Fermi energy, the e dependence

of these functions will be more important than the po

dependence. The results derived in this section should
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apply to doped SrTi03, where the Fermi energy is much
less than important phonon frequencies.

In the evaluation of the integrals over pp' and e' in
Eq. (10), knowledge of Z(c',pp'), X(e',pp'), and p(e', pp')
is most important when the remainder of the integrand
is large. This occurs when pp =ME(e pp) wllel'e

E(",Po') = fl 2+X( ',P ')j'+~(', P ')9»'/Z(", Pp')

We will therefore approximate Z(e', pe') by Z(e')
=Z(e pp =&E ), X(",po') by X(")=X('', po'= ~E'),
and 22(e', pp') by 22(e')=22(e', po' ——+E'), in order to
calculate Z(e,pp), X(e,po), and q (e,pp) from Eq. (10).

Because we evaluate Z, X, and q on the branch cut of
G(e',Pp'), Eq. (12) indicates that Z, X, and y must be
real W.e must therefore keep 2/ in Eq. (10) finite
until the pp' integration has been completed. The
functions Z(e,pp), X(e,pp), and q (e,pp) calculated using
this approximation for Z(e', Pp'), X(e',Pp'), and p(e', Pp')
will depend on pp and are complex. The important
variation in pp and the imaginary part of these functions
is important for pp&///oo, 1„and these values of pp are
of little importance when ep Aleph An iterative solution
to these equations may be obtained by evaluating the
functions Z, X, and p at pp &E and inse——rting into the
integral equation.

This method of solving the integral equation should
be compared with the alternate procedure of assuming a
nonretarded interaction, that is, assuming V(q, pp —pp')
to be independent of pp and pp'. The assumption of a
nonretarded interaction is also best when Atop/))E p and
leads to a real energy gap. The best nonretarded
approximation to V(q, pp

—pp') is not determined
by this method however. It is logical to evaluate
V(q, pp —pp') at pp= &E and pp'= &E', but the inter-
action depends on the choice of plus or minus signs.
If both plus signs or both minus signs are taken, an
interaction of the Bardeen-Pines form results. If in-
stead, both pp and pp' are taken to be zero, the phonon
contribution to V(q, pp —pp') has infinite range leading
to an in6nite transition temperature. We will avoid
the ambiguity in the choice of a nonretarded interaction
by making no approximations on V(q, pp

—pp'), only
approximating y, X, and Z inside the integral.

We will now consider the integral over pp' in Eq. (10)
where o2, Z, and X are independent of pp'. For very large
pp' the total interaction V(q, pp —pp') must approach
the bare Coulomb interaction V,B(q). Also, the de-
nominator of the Green's function is proportional to
(pp')' as pp'-+ op. For the terms in the numerator that
are constant as pp'~op, we may close either in the
upper or lower half-plane. For these terms we may
then take the limit of g ~ 0 before integration.

To integrate the terms in the numerator linear in
pp', we must keep 2/ finite until after integration. It is
convenient in this case to divide the interaction into
two parts:

V(q, p. p:)=V «, p. p:)—+V..«), «7-)

where

Z(e, pp) = 1+ Ez(e, e,pe),
Z(c')

Zz(e, e',pp) =-
Pp (22r) 2AE22/2 p(e+ ep)3'"

B(e,s')

A (e,e')

pp
dpp

(Po')' —E(e')'+pe

X V'(q, Po—Po'), (2o)

A (e e') = (22/22)»2/h
f (2+ ed)'/2 (e'+—e2)»2f

B(e,e') = (22222)1/'/I'2f (e+ep)'/2+ (e'+e )»2(

We see that instantaneous interactions do not con-
tribute to Z(e,po), and their effects are completely
accounted for in the normal state by X(e,pp). This
indicates that as the ratio Ace,h/e2 increases, the relative
importance of X increases.

The term in Eq. (10) proportional to ~2 gives

Q(feb $g dc
X(e,Pp) =XB(e)+ IC (e e pp)

Z(")
c(e')

(21)
Z(e')E(e')

where XB(e') is the contribution of the bare Coulomb
interaction to X(e,pp).

XB(e)=-
2rl2K„f22/2 p(e+ e2) j1/2

~4lcb—~g dE e(e')

and

Z(c') Z(c')E(e')

(e+ eF)1/2+ (el+ e2,)1/2

X» (22)
(e+ e/ )'/' —(e'+ e p)'/'

+x(e~e )Po) =
(22r) /2/E22N &(e+e2)j

B(e,e')

X qdq
A (e,c')

E(e')
dpo

(Po')' E(")'+2n—
X V'(q, po —po'). (23)

V B(q) 42re2/Qq2K

where V'(q, pp —pp') —&0 as pp' —&op. In all integrals
over V'(q, pp —pp') we may take 2/=0, and integrals
over V.B(q) are easily evaluated.

The term in Eq. (10) proportional to I gives

b- g
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From the ~~ component of Eq. (10) we obtain

~(p,po) =—

where

Z(p, pp)

p&oab-ez gp& Q(p&)
Eg(p, p', pp), (24)

Z(o') E(p')

If V(q, pp —pp') is taken to be independent of pp
and pp', the integral over pp' in Eq. (25) may be
accomplished, leading to a kernel Ee(p,o') of the form
given in Ref. (1).The correct form of the nonretarded
interaction V(q) is not obtained, however.

To obtain the superconducting energy gap, we must
solve Eqs. (19), (21), and (24) simultaneously for Z,
X, and h. When A(&ep, as is usually the case, we may
approximate Eqs. (20) and (23) by taking 6=0 inside
the integrals. The kernels Ez and E„then become
independent of 6, and Z(o,pp) and x(p,pp) can be
determined independent of h. Equation (23) is then a
single integral equation for 6(o,pp).

When h«pp the term {1—Lo(o')/Z(p')E(o')1) in
Eq. (22) for xz becomes L1—sgn(p(p'))$ and Eq. (22)
becomes

28 5$y
Xz (o)——

prkz„)2mb (p+ p p)g'~'

—.z Z(")

(p+ o&)lip+ (o + oF)~~p

ln (26)
(p+ pp)'" —(o'+ og)'"

where p is the solution to the equation o'+x(o')=0.
In the weak-coupling limit, x(pp)«pz and p =0, and
X~ becomes the Hartree-Pock energy of the electron
gas.

Eo(o,o',pp) =
(2z)'hg2mo(p+ op)5'I'

B{e,e')

dpp
(Po')' E(—')'+ on

X«q, p.-p. ). (25)

accurate will depend, on which normal state properties
are known to a higher degree of accuracy.

The 6rst method is to expand the total interaction
V(q, pp

—p, ') in a spectral weight function and then
perform the pp' integration in the equations for the
kernels. This will be appropriate when the total
interaction, or equivalently, the total dielectric function
including phonon contributions is known.

The second method is to divide the interactions into
screened Coulomb and screened phonon parts. This
method is useful when the total dielectric function is not
known but the phonon spectral weight function is
known or can be approximated.

~ (q, Po Po') =—" (q Po—Po')+" (q Po—Po') —-(q)
(29)

is the total dielectric function. The function Koh(q pp
—

pp )
is the dielectric function of the crystal with no elec-
trons in the conduction band, and it may be measured
in the undoped crystal; z,b(q, pp

—pp') arises from the
motion of the ions and the polarizability of the ion
cores, which include electrons in the valence band.
The electronic function a, (q, pp —pp') is the dielectric
function of the crystal when the ions are rigid, that is,
the dielectric function arising from electrons in the
conduction band plus those in the valence band, while

z„(q)is the dielectric function of electrons in the valence
band only. The approximations involved in Eqs. (28)
and (29) are discussed in the Appendix.

The function a„/ar(q, pp —pp') may be expanded in
terms of a spectral weight function,

~

=1+
zr(q, po—po') o

1
F(q ~)l

kpo pp M+18

A. Kernels Using Total Interaction

We will begin by considering the kernels when the
total dielectric function is known. We then have

V(q, pp —po') =in-e'/Qq'zr(q, pp —pp'), (28)
where

xz(p') =xzo(p')
e' / kp' —k' k+k& ~

l
2k'+ ln l. (27)2zz„k k—kg ]

1
(30)

pp pp +(0 15)

If the total interaction is weak, we may approximate
Z and X by their weak-coupling limit, obtained by
taking Z(o') = 1 and x(p') =0 in the equations for Ez,
E~, Z(p, pp), and x(p,pp). If the total interaction is very
weak, we may set Z(o') =1 and x(p') =0 in the equa-
tions for d, (o,po) and Eqs. (24) and (25).

We will next simplify the kernels E„(p,p', pp),
Eo(p, p', pp), and Ez(p, p',pp). We will consider two
methods for this simplidcation, one of which will be
more accurate than the other. Which method is more

where F(q,oo) is given by

F(q,oo) = —(1/or) Im
~&(q,(o)

(31)

zp(q, 0)

"F(q,oo)
240 (32)

since we only need F(q,oo) for oo)0. We note that a
special case of Eq. (30) is
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B(e,e')

Ex-
(2zr)zhf2zzzo(e+ez)g'lz ~i, ...i

dqqV, (q)

Pj8WW.z,

1
doo F(q,cv)l

kpo —E(e' )—co+zr)

1
(36)

po+ E(e')+ oo—irll

Omar
EQ-

(2zr)zhL2zzzo(e+ ez)]''z ~(... l

dq qV.z(q)

X 1+ ( 1
des F(q,co)l

k po—E(e') —co+it)

Fro. 3. Spectral weight function F (g,co) for a degenerate polar
material having one optically-active phonon mode. Parameters
used were sc0=20, Ic =5, my=2. 5me, ~=3, co),=0.1 eV, electron
concentration n=10M cm 3, transverse optic phonon frequency
co&=0.05 eV, damping y=0.03 eV. The plasma frequency Ace~
= (4xne'/mzx )'"=0.105 eV. Only intravalley interactions are
shown. Note that using these parameters for small wave vector q
the high-frequency branch of the coupled phonon plasmon modes
is important, while for large q the phonon mode screened by single-
particle excitations is important. All modes are damped in the
region k (q' 2qkz) —(2mqco (k (q'+ 2gkz) The m.aximum of g shown
is 5.127k', kJ =0.996X10' cm '. The maximum value of co shown
is 0.4149 eV. The viewing angles are 60' from the perpendicular
to the plane and 255' from the q axis.

and we may rewrite Eq. (30) as

xr(q, Po Po') xr(q, 0—)

( 1
F (q,~)l

~po —po —cio+zb

1 2
+—dco. (33)

po —po +~—z~

We also note from Eqs. (17), (28), and (30) that

V'(q, Po Po') = V'(q)— ( 1
F(q,~)l

~ po—po' —zo+z5

0mb' B(e,e')

Ez=-
po(2zr)zhL2zzzo(elez) j'" ~l... )

dq qV.z(q)

1
dko F (qp))I

Epo E(e ) Go+kg

.-I, (»)
po+E(e')+co —iz))

Idoo. (34)
po po +co z83

Equation (34) may be used in Eqs. (20) and (23)
to simplify Ez, Ex, and En. After pe'rfor'ming the po'
integration, we obtain

(37)
1

po+E(e )+M—zz))

Or we may use Eq. (33) to obtain

EQ-
(2zr)'h$2zzz (c+e ))"' dq qV.z(q)

X +
x, (q, o)

1
dry F(q,co)l

(Po—E(e') —co+zzl

1 2)
. +-

I
(38)

po+E(e )+co—zzi Go)

'9 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 {1959).
~ J. Iindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 2&, 8 (1954).
"A. S.Barker, Jr., Phys. Rev. 145, 391 (1966).

Equation (38) is included not only because it may
provide a more accurate method for calculating E~,
but also because the integral over F(q,&o) gives an
estimate of the importance of the frequency dependence
of the interaction.

We have obtained equations for 6, Z, and X in
terms of a spectral weight function F(q,~) which is
obtained directly from the total dielectric function
Ized (q,zo). If the phonon contribution to the total dielectric
constant can be measured in the absence of carriers,
xr(q, to) can be obtained by adding to this the electronic
polarizability calculated in the random-phase approxi-
mation, which is equivalent to the self-consistent-6eld
approach. " If, in addition, the electronic wave func-
tions are taken to be plane waves, the polarizability
has the form given by Lindhard. 2 An example of a
case in which x,s(0,co) has been measured is SrTiOz."

A study of F(q,zo) is informative, because it reveals
the frequency and strength of the coupled phonon and
plasma modes with which the electron interacts as a
function of wave vector (see Fig. 3).
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B. Kernels Using Coulomb Interaction
Plus Phonon Interaction

We expand the phonon propagator as

B«(q,(0)
po po' —(d+—i a

1
(4o)

po —pp +6&—z5)

B&,(q,cu) = —(1/m) ImD&(q, &u) sgn&u.

The screened phonon couphng is

g«(q)g. (—q)

L& (q Po Po')/(( ]—{& f q (Po—Po')]/& I

(42)

For cases in which the total dielectric function is not
known, but for which the electron-phonon coupling
can be estimated, we must divide the interaction into a
Coulomb interaction and a phonon interaction. We
must, however, keep these interactions on the same
footing since the condition cop))Mph does not hold.

YVe therefore divide the total interaction into
Coulomb and phonon parts, using Eq. (8). The corre-
sponding kernels Ez, E~, and Ez may also be divided
into Coulomb and phonon parts. We note that the
Coulomb contribution to the kernel is easily obtained
from previous results for the total kernels using the {{g&,(q, Po Po')))'
total interaction, if we replace F(q,&u), as defined in
Eq. (31), by

F,(q,a)) = —(1/n) Im[«„/((.(q,cv)] (39)

and replace zr(q, co) by «, (q,ao) everywhere. Equation
(33) is then especially interesting because it separates
the electronic screening into the appropriate screening
for the case coph(&cop and a correction term arising from
the frequency dependence of the screening. The
Coulomb contribution to the kernels Ez', E ' and E~'
are then given by Eqs. (35)—(38) when the replacement
of Ii by Il, and Kz by K, is made. XB, which is caused by
Coulomb sects, is left unchanged.

Having obtained the Coulomb contributions to the
kernels, we will next obtain the phonon contributions.
For the phonon contributions we see that in order to
perform the po' integrations we must expand both the
phonon propagator Dz(q, po —po') and the screened
interaction {{g«(q, po —po') ) )' in terms of spectral
weight functions. Even after the po' integration has
been done, we will still have three integrals to perform
to obtain the kernels. We will find, however, that in
many cases we may approximate the phonon spectral
weight function in order to reduce the number of
integrals to two.

=1+
«e(q, qp)

or we may write

1
F.'(q, ~)l

kqp
—N+'l8

1
iso, (43)

qp+(0 18)

2
K(o

«, (q, qp)' «, (q,0)'

1
F,'(q, (e)

qo (o+i5—

where

1 2
+—,(44)

qo+Q) —z5 M

Im[«„'/,(q,q )']= F,'(q, qo) sgnq—, . (45)

Using Eqs. (40) and (43), we obtain

Since we have inversion symmetry, g (q)g (—q) =
~ gz (q) ~

'
and «, (q, po —po')=«.[—q,

—(po —po')] We use the
spectral weight function for z„'/«,(q,qo)', i.e.,

iQmb
dqq g dk)'B«(q, (v')

E(~') 1
dpo'i, , I, , —,, I g«(q) I'

(p "—E(~')'+gg (po —po' —~'+s5 po —po'+~' —z8 — «, (q,0))

1 1 2)
F,'(qpr) — +—~do) . (46)

po—po R+'ll po—po —+61—$8 Mi

We may again evaluate the po integral by closing either above or below. Since poles now arise from the phonon

propagator as well as from the Green's function and the screening, the integrals are slightly more tedious than in
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Again Kz(e, e',pp) is not singular as pp approaches
zero since the two terms in the integral approach zero
as pp approaches zero so that the complete term is finite
as po approaches zero.

We also note the similarity between Eqs. (50) and
(47). Just as in the high-electron-density case, the
only diGerence is the sign of one of the two terms in the
phonon kernel. The modifications of the screening are
the same for all kernels.

When sv«», h and ev«»„all equations derived
in this section may be evaluated at pp= +E(o), leading
to a nonretarded gap equation. The correct nonretarded
"interaction" has therefore been obtained. See Eqs.
(37) and (48).

For a many-valley semiconductor (see Ref. 1) all
integrals over wave vector q are separated into diferent
regions of momentum space: the large-wave-vector
interv alley processes and the smaller —wave-vector
intravalley processes. The procedures for obtaining the
intervalley and intervalley parts outlined earlier' for the
case of the modified Bardeen-Cooper-Schrieffer equa-
tion hold also in the present case.

In particular, all equations derived in this section
hold for a many-valley degenerate semiconductor if the
following modifications are made. First, all kernels are
the sum of intervalley and intravalley contributions.
The intravalley contributions have the form derived
above if it is understood that k v= (3rr I/v)'I' when I is
the total carrier concentration and s is the number of
valleys. For the intervalley contribution, an over-all
factor of (v—1) multiplies all kernels. Also, the bare
Coulomb interaction is given by

p' B(~)er 4 ss/Qq 2u er

where qo is the wave-vector separation between valleys.
For practical calculations we will want to express

the electron-phonon coupling for intravalley processes
in terms of the polaron coupling O.r„and express the
electron-phonon coupling for intervalley processes in
terms of the deformation potential $. For intravalley
modes we have

I g~(v) I'= L4 (»~)'/()v'(2m'(ox/0)' jnx (52)

where or& is the bare phonon frequency of the Xth mode.
For intervalley modes, the deformation potential $

as defined in Ref. 1 can also be obtained in terms of
gr, (q), where X refers to the intervalley phonon mode.
In the notation of Ref. 1, the electron-phonon coupling
was expressed in terms of the matrix element M~.
We have

(53)

f»r po'r 'r-'
!

—tan-'
! (56)

when po(»z. Also, using Eqs. (50) and (19),we obtain

nr»r, (»r) "' rr»g+ po) '"
Z(o,po) =1+-

2p, E c i 5 e i
t'»r, —Po)"'

s
(57)

when pp(»r, . The renormalized quasiparticle energy
Esr= ( +o)X/Z can then be obtained from Eqs. (56)
and (57).

If we expand Eq. (56) for small s and pp and keep
only linear terms, we obtain'2

X(o)=—nr»r+ snr, o

Expanding Eq. (5'?) we obtain

Z(e) =1+-,'nr, ,'nr, (o/»r—)-
and keeping only linear terms in n& we obtain"

—0!gravy —6Cg6 r

which is the usual weak-coupling polaron result ob-
tained by consideration of a single electron interacting
with longitudinal optic phonons to first order in
perturbation theory. Equation (60) yields

an Einstein spectrum, and B&(q,oo)s™5(or—err,). We
also note that the contribution of intervalley inter-
actions to XB are obtained using Eq. (51) rather than
Eq. (18) for V,B(g) so that Eq. (22) must be modified
for intervalley contributions to X&. It can then be seen
that the intervalley contribution to Xg is a constant
independent of wave vector or energy:

er (v 1)4B2$ 3/3su error

X~'" will be much less than X~" since k p(&qo.
It is instructive to consider the phonon contributions

to X(o,Po) and Z(o,Pp) in the low-density limit ov ~ 0.
We consider a normal material LA(o,po)=0j in the
weak-coupling limit n&(&i. We consider only intravalley
coupling to longitudinal optic phonons and neglect
Coulomb interactions between electrons, and therefore
screening. Using Eqs. (48) and (21) with Br,(q,oo')
= h(or' —err, ), »,b —+eo, and F,'(q,or) =0, we obtain

t'»~)"' (»~+Ps)"'-
!X(e,Po) =—snr»r I—

l pi

and 1/m*= (1/ms) (1——,'nr, ), (61)

(54)

Here, n is the degeneracy of the phonon mode and or„
is the frequency of the intervalley mode. The phonon
spectrum for intervalley modes is well approximated by

where m* is the renormalized efkctive mass.
We can now compare the relative contributions of

X(o) and Z(o) to the renormalization of the mass. From
ar Note that nxneer, "and nq ~0 as car, —e ee, so that s(e)=i

for instantaneous interactions (eer, -e ee). Also, s(e) ~ 0, because
vre have taken eg=0.
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Eqs. (58) and (59) we see that X(e) has contributed a
term +-s,rrq and Z(e) has contributed a term ——,'n&, . The
contributions from X and Z therefore tend to cancel,
and in the low-density limit the cancellation is two-
thirds complete. The partial cancellation of eGects from
X and Z occurs for all values of the Fermi energy, but
as the Fermi energy increases the relative contribution
from X becomes less important.

We also note that no linear terms in ps appear in
Eqs. (58) and (59) since X and Z are even in po. This
result con6rms our original approximation, that for
ep&Aorpi, the variation of X, Z, and 6 with e is more
important than their variation with po.

APPENDIX

The electron-electron interaction in a degenerate
polar material with any number of optically active
phonon modes may be calculated using a random-phase
approximation, that is, excluding vertex corrections.
We will show that this interaction is exactly the same as
that obtained by dividing the bare Coulomb interaction
by one plus the sum of polarizabilities from electrons
in the valence band plus those in the conduction band
plus the polarizability of the lattice.

We will find that the total electron-electron inter-
action may be separated into an electron-electron
interaction plus an electron-electron interaction through
the phonon field for a system having only one optically
active phonon mode. The interaction through the
phonon field is diGerent from the interaction given in a
recent paper'4 and we therefore believe the interaction
given in Ref. 23 to be incorrect.

For a material with more than one optically active
phonon mode, the presence of electrons in the conduc-
tion band couples the modes so that the total inter-
action cannot be separated into an electron-electron
interaction plus a sum of independent interactions
through the separate phonon branches.

We will consider all frequencies involved, bare
phonon frequencies co)„and plasma frequencies orp to
be much less than the band gap between the valence

Fxo. 5. Dyson equation for random-phase approximation
when only one phonon mode interacts with electrons.

band and the conduction band. Therefore, the polari-
zability of the electrons in the valence band is included
in the bare electron —electron interaction V,s(q) given
in Eq. (18) and in the bare electron —phonon coupling

gq(q) and in the bare phonon frequency coq(q). The
bare phonon propagator

%,=2rozl(~ —ron ) (A1)

we obtain from the Dyson equation of Fig. 5

V= Vrs/(1+PVrn), (A3)

where I' is the polarizability of electrons in the conduc-

is the propagator of phonons in the system with no
electrons in the conduction band. The bare frequencies
co), are then measured in the undoped crystal.

We will consider the set of all diagrams connecting
electron propagators which have no crossed diagrams
and no modifications of the electronic polarizability.
If there is one longitudinal phonon mode to which the
electron may couple, we have the set of diagrams shown
in Fig. 4. These diagrams are equivalent to the diagrams
included in the Dyson equation shown in Fig. 5, used
by Pines."

For two phonon modes interacting with the electrons
in the conduction band, we have the Dyson equation
shown in Fig. 6. The generalization to more phonon
modes is straightforward.

Sy defining

(A2)

+ ~ ~ e

+ ~ ~ o

FIG. 4. Diagrams included in the random-phase approximation
when only one phonon mode interacts with electrons.

24 J. Appel, Phys. Rev. Letters 17, 1045 (1966).

FIG. 6. Dyson equation when two phonon modes interact with
electrons. The longer-wavelength wiggle indicates a longer-
wavelength phonon.

ss D. Pines, The )Italy Body Problem (W. A. Ben-jamin, Inc. ,
New York, 1962), p. 86.
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z,j,(q,pp)/»„= V.a/(V. s+Q g)PD)„).

Using Eq. (A2) in Eq. (A3) we obtain

tion band. We will now show that this equation is the and
same as that obtained by dividing the bare Coulomb
interaction by the total dielectric function.

In the rigid lattice g),=0 and the Coulomb inter-
action is

(A7)

V.= V. /(1+~V. )= V. /L. (q,-)/..(q)j («)
When no electrons are in the conduction band the
interaction is

V= (V.'+2 g'»o)/(1+I'V. +~ 2 g~'»p) (AS)

or

V= V.'/(1+~V. '+LV.'/(V. '+2 g 'D )J—1) (A~)

V,~= V. +2 g),'D)„= (A$) and
P,p(q, pp)/~„(q)j V= V, /I La, (q,pp)/~„1+LK&g(q,o))/z„)—1I . (A10)

a.(q pp)/~„(q) =1+I'VP (A6)

where ~ph(q, co) is the dielectric function of the crystal
with no electrons in the conduction band. We therefore
have

And we see that the total interaction may be obtained
by dividing the bare Coulomb interaction by the total
dielectric constant.

We may separate Eq. (AS) into two terms:

or

VP (q) +2
L"(q ~)/~-(q)3 ~ 1+(1—I:~-(q)/~. (q ~)3)Z~ (g"» p/V')

g) D)p

VP(q) g) 2~x
V= +Q

I:"(q~)/~-(q) j " ~'—~~'+ (~'—~~') L1—(~-/") j&'(g"/V )I:2~'/(~' —~")j

(A11)

(A12)

where gq=gq/(~, /p„). The renormalized phonon fre- tion so that
quency is

and, in general, the frequency of a given renormalized
phonon mode depends on all other phonon modes and
their coupling to the electrons. When the bare phonon
frequencies are widely separated, or when the plasma
frequency is very large, the modes are approximately
independent.

When the electron interacts with only one longi-
tudinal optic phonon, one obtains

~,'=~&' —(2~&g&'/V. ')L1—~„/~.(q,~)). (A14)

Also, for a system with one optic mode, we have

gg'= —,
' V,~ (q)g„(1/g„—1/gp) cps, (A15)

where Ko is the zero-frequency phonon dielectric func-

L'(q,~)/~-(q))

L (1/p„)—(1/Kp) $V,~ (q)x„ppg'
(A16)

L~.(q,~)/~-(q) 3'L~' —~~(q ~)'j

(pe(q, pp) =(d . (A18)

For small q, there will be two solutions corresponding
to the coupled phonons and plasmons. For large q there
will be only one solution corresponding to phonons
screened by single-particle excitations. These modes
can be seen in Fig. 3.

(pe(q, &p) =(uy fK~/Kp+K~/Ke(q, M) K~ /KpKe(q—,pp)] ~ (A17)

Because of the frequency dependence of co&(q,pp), the
longitudinal modes of the system occur at frequencies
that satisfy the equation




