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A formalism is developed for the determination of a constrained idempotent one-body den-
sity matrix P. The method ensures pure-state representability in the Hartree-Fock sense.
This is accomplished by minimizing the quantity Tr(P -P) subject to either empirical or
theoretical constraints. The method leads to an iterative matrix equation of the form

P =3P -2P ++X 0—n+1 -n -n

where -X~ is the kth Lagrangian multiplier pertaining to the constraint TrPOy = Oy, and

0& is the expectation value of the observable O~. Applications to several diatomic molecules
are reported using the electrostatic and virial theorems as empirical constraints. Several
calculations are carried out in order to corroborate the following result: If the above iter-
ative equations are constrained with a sufficient number of bona fide Hartree-Fock con-
ditions, the solution is the Hartree-Fock P matrix.

I. INTRODUCTION

In paper P of this series, semiempirical electron
densities were given for some small molecules.
It was pointed out that the method did not ensure
N representability, i.e., there was no restriction
that the natural spin-orbital occupation numbers
nI be bounded as 0» ny» 1, a necessary fermion
condition. Indeed, some of the calculated ny were
negative. We couM have avoided this difficulty by
the expedient of working in terms of the param-
eters of a given wave function. However, in the
authors' opinion, a direct determination of the
density matrix has both computational and theo-
retical advantages.

The pr'esent paper is devoted to developing and
applying a semiempirical method that avoids the
previous occupation number difficulty. Thus a
technique is introduced that ensures not only that
0» np- 1 but also that a subset of the occupation
numbers nyocc be unity, whereas the complemen-
tary subset npocc are zero. This is accom-
plished by imposing an idempotency condition on
the density matrix. That is, we ensure single con-
figuration or Hartree- Pock N representability.

In the single-configuration approximation, the
one-body density matrix in the continuous repre-
sentation is given by

N
pl(1', 1)= ~ yk'(I')yk(1), (1)

4=1
where (k'lk) = 5kk&. Equation (1) implies that
p, (1', 1) is Hermitian, idempotent, and normalized
to N. That the converse is also true has been
shown by McWeeny. ' Thus if we develop a method
that ensures idempotency of p, = p, ~subject to Trp,
=N, then pure configuration representability is
also ensured.

II. CONSTRAINED VARIATIONAL PRINCIPLE

FOR THE DENSITY MATRIX

We define I', the representative of p, in the dis-
crete basis g, such that p, (1', 1)= TrPgl(1')$(l).

Following McWeeny we propose to ensure idem-
potency of I' by reducing the scalar quantity
Tr(P' —P)' to zero. Consider the following sta-
tionary condition

5Tr(P2 —P)' = 2T r(P' —P)5(P' —P) = 0. (2)

But 5(P' —P) is an arbitrary variation, and, Eq. (2),
therefore, is satisfied only if (P'- P) —= 0. ' Thus
stationarity of Tr(P'- P)' with respect to varia-
tions in (P' P) ensures -idempotency. In order
to generate a more useful result, we must now
consider variations with respect to P. We there-
fore require

5Tr(P —P) = 2 Tr(2PS —3P +P)5P =0. (3)

The arbitrariness of 5I' implies as usual that the
matrix in square brackets must be null. That is,

2P' —3P'+P = (2P —1)(P—1)P = 0. (4)

The three solutions P = —,'1, 1, 0 of Eq. (4) are trivi-
al. Note also that one of the trivial solutions, —,

' 1,
is not idempotent. Thus, in general, the solutions
of Eq. (3) contain those of Eq. (2), but the converse
is not true. All of the solutions of Eq. (4) can be
obtained iteratively as

Equation (5) has been given by McWeeny' for the
purpose of "purifying" a nearly idempotent matrix.
We now proceed to generalize this result by also
imposing physically important constraints on the
density matrix P. Our constrained variational
equations are

5Tr(P' —P)' = 0; TrPOk = Ok,

where 0& is the expectation value of the observable
Oy. Formally this problem can be handled by the
Lagrangian multiplier technique. Letting —2X& be
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where the sum is over all the theoretical or experi-
mental constraints to be satisfied.

Proceeding as before, we have to first order

Tr(2P' —3P'+P @~-X~0~)&P=0.

Again the arbitrariness of 5P implies that

(8)

the kth Lagrangian multiplier, an equivalent varia-
tional problem is

6Tr[(P'-P)2-+ 2~ PO ]=O,

term which is of the form TrAt:8 can be consid-
ered as a scalar product of two vectors with ele-
ments Ayy Ajj and 8». ..Bz& ~ ~ ~ in which case
its maximum negative change occurs when 8= —aA.
Thus we require that

6P= —o.(2P3-3P2+P ZX—0 ). (14)

We now insert Eq. (14) into Eq. (13), and working
to second order, we have

6(I- 2Z~&~ TrPO ~)

2P~ —3P2+P —Z & 0 =0. (g)
= —2aTr(P —(P —Z X 0 )'

The Lagrange multipliers must now be determined
by satisfying the second of Eqs. (6). Just as in the
case of the unconstrained equations a solution is
most easily obtained iteratively. Thus

(1o)

+ 'oTr(4P'-6P +1)(P-o-Z X 0 )'

+2o.'Tr[P(P-O'- ZX 0 )]' (15)

where n =3Pn'- 2Pn'. In order to determine the
Lagrange multipliers at any iteration, one inserts
Pn+ ] into TrPn+ ] Oy = Op. The ~'s then are solu-
tions of the following set of linear inhomogeneous
equations,

r
TrO

&
TrO&02 ~ ~ ~ TrO&O&

0

0

'(.)
TrO&O

&
TrO&02 ~ ~ ~ TrO&

0)- Tro' 0~
0

We next maximize the variation, or step length,
in Eq. (15) by choosing n such that

(8/Bn)[6(I- 2Z&X TrPO&)] =0.

This yields

Tr~
Tr(4P' —6P+ 1)b'+ 2 Tr(PA)'

(16)

Tr(P —s')2

Tr[6 (P' —P) + 1](P —g&)' (17)

where 4=—P —a —ZgyOy.
In the unconstrained problem 4=P-0'so that

0 —Tr.&O
k' ——k

Defining the square matrix on the left p Eq. (11)
as 7 and the column on the right as & & then,
& (& =—z —1&(+).4 This very simple algorithm has
been applied to both heteronuclear diatomic mole-
cules. These applications will be discussed in
Secs. V and VIIof this paper. In order to study
in more detail the variational problem of Eq. (6)
we now work to second order in 5P and employ a
steepest-descent procedure. Introducing
I=Tr(P' —P)—2, we have

6(I- 2Z&&&TrPO&) =Tr[(P+ 6P)'

(Pp 6P) ]2 I 2K ~A.„Tr0~6P, (12)

which, after some manipulation, becomes

6(I —2Z~&~ TrPO~)

= 2Tr(2PS —3P2+ P ZA. 0 )6P-
+ Tr(4P' —6P+ 1)( )6'P+ 2 Tr(P6P)' (l3)

Now as (P' —P ) tends to a null matrix, n tends to
+ 1. The preceding will be true in the constrained
problem also if, in the limit as P approaches an
idempotent solution, A.y(")-0 for all k, ' more
rapidly than (P- (P) -0. In this case Eq. (16) be-
comes identical to Eq. (17) and again n -1 so that

e u-u
P+6P = P —n[P ((P+Q X 0 )]-(p+g y 0

(18)
Thus Eq. (18) when used iteratively agrees with
Eq. (10), i.e.,

P +6P=—P 1=(p +Z~A~ 0(n) (lg)

We therefore have the result that the steepest-
descent method agrees with the first-order method
as one nears solution. Given then that both pro-
cesses converge, only the rate of convergence is
different.

In order to use Eq. (14) iteratively, it is neces-
sary to recalculate n at every iteration. This
leads to the following steepest-descent iterative
equation

The direction of the descent can now be determined
by considering only the first-order term. This P +OP=—P—n — —n+1 —n

(2o)
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III. NONORTHOGONAL BASES

which is the correct iteration equation for the non-
orthogonal basis. Note that the expectation val-
ues needed in the constraints are now given by

O = TrPO = TrP$-~/20 $- I = Try$-~0
u —u — —~- —— —u

(22)

One easily shows also that the steepest-descent
parameter n is still given by Eq. (16) except that
now

The question of convergence we handle in the
following operational way. The iteration is car-
ried out until Pz+ p is not changing monotonically
(i.e., is randomly oscillating) in the last decimal
place and all the ~'s have been reduced to zero.
This will be discussed in more detail when we
consider concrete examples. Practically speak-
ing, we have encountered little difficulty with con-
vergence problems.

IV. THE NUMBER OF CONSTRAINTS
REQUIRED TO FIX P

The question of the number of strictly idempo-
tent solutions of Eq. (9) and the related initial
guess problem can be handled in the following way. '
Recall that idempotency of P =P ~ implies factor-
ization. That is, P=CC j, where Cis m by N and
CjC =1N. The number of essential complex param-
eters 7&(m, N) in P therefore, is just the number
of elements of C, m&&N, less the 1P normalization
and orthogonalization conditions arising from
C jC =1N. It follows then, that the number of com-
plex parameters, that have to be fixed in order to
determine an Hermitian idempotent P matrix with
TrP=N, is

v(m, N) —= m X N N' = N(m —N) . - (23)

In any problem then, where there are exactly
z(m, N) independent constraints other than normal-
ization, there is no initial guess problem. On
the other hand, suppose we choose a certain class
of initial guesses and find that although Eq. (23)
is not satisfied; a unique solution results. This
implies that we have, with our choice of initial
guesses, singled out a portion of the matrix space
to which only one solution is accessible. The
scalar analog of this idea is easily visualized.

Equation (20) can easily be transformed to a non-
orthogonal basis. Let X=OS'~' where 4'j' ~ 4'=1
(i.e. , (gfl g&)

= 5f&); then Xf X = S is the metric of
the X basis. One easily shows that the trans-
formed matrix 0=- 4j ~ 04' is S '~'0 S 'I' where
0 is in the X. basis. In order to complete the
transformation, we multiply Eq. (18) on the left
by $ I and the right by $ and define P =-$ ~ P

$'~' Then

P 1=P —n [(P —(.(P +Z~A. "S O~)], (21)

%'e chose to study the molecules C» N„O» and
F,. The reason for this choice is that these mole-
cules all have a similar ground-state electronic
configuration. That is, each has six 0 electrons
and four vz electrons. They differ therefore only
in their m occupation. For a first-row homonu-
clear molecule with a limited basis, the m part of
the density matrix is trivially determined by a
knowledge of the total number of such electrons.
In the above molecules there are, respectively,
two, four, six, and eight electrons. Because of
this electronic structure the limited basis calcula-
tion reduces to a determination of the 3 &&3 o~
block of the P matrix, when P is referred to a
symmetry basis. According to Eq. (23) only two
constraints, other than normalization, are neces-
sary. These were chosen to be the experimental
electrostatic force and, via the virial theorem,
the experimental kinetic energy. The analytical
forms of the constraints are

2TrPS 'T = T =—T(~)+D
e e'

2TrPS 'F =Z~Z~/R ',
2TrP =N, (24)

where the factor of 2 is a result of the double occu-
pation of the space part of the molecular orbitals
(MO s).

Table I contains the relevant experimental data.
Note that T(~) =Tg+ T& is somewhat ambiguous,
since a variational [best atom (BA)] T(~) could
just as well be used in Eq. (24) as an experimental
T(~). We will do both of these ca,lculations and

TABLE I. Experimental constraint data for C2,
N2, Q2, and F2.

Molecule

C
c

N2

02
F2

2.588
2.074
2.282
2.680

~{~,), t'
75.424

109.475
150.376
199,572

T{Re)BA
b

108.814
149.271
197,945

r{Z ) =r{~) +D .8 expt expt e
T{Re) A

~{~) A+ D
cThe data for carbon are Hartree-Fock data.

For example, only one of the zeros of a function
f(x) may be accessible from a given portion of the
x axis with a given iteration scheme.

In most of the calculations reported herein the
initial P matrix P, was based on an atomic or
ionic state of the molecule as it would be as R-~
(i.e., a separated atom or ion state, ground or ex-
cited). This, of course, is a physically interesting
class of guesses. Hence it is desirable to ascer-
tain what kinds of solutions are accessible from
this separated atom or "ion" portion of P space.
Some of the dipole-moment results are especially
interesting in this regard.

V. LIMITED-BASIS CALCULATION
FOR THE MOLECULES C2, N2, 02, AND F2
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I

give arguments later to indicate that the use of a
variational (BA) T(~) in the constraint is more
consistent theoretically not only with our basic
principle [Eq. (2)] but also with the use of the BA
basis.

The iterative equations constrained as indicated
in Eq. (24) converged always to a unique solution. '
The convergence criterion used was operational in
the sense that iteration proceeded until all elements
of the P matrix showed no change in the last sig-
nificant decimal place carried in the calculation.
The solution P matrix is idempotent to the limit of
the number of decimal digits carried in the calcula-
tion. In most of the calculations reported here, we
worked with eight decimal digits, and our solution
~'s were of the order of 10 '.

The results of calculating expectation values
using our solution P matrices are presented in
Table II. We also compare our semiempirical
(SE) to limited Hartree-Fock (LHF), Hartree-
Fock (HF), and separated atom (SA) expectation
values. It is notable first of all that this set of ex-
pectation values exhibits very little difference for
all calculations ranging from SA to HF. Thus one
must be very careful in using these quantities as a
measure of the validity of a density matrix. Clear-
ly, just as in the case of the total energy, the effect
of molecule formation on these expectation values
is a relatively small one. Secondly, we see that
our calculations show very little improvement over
the separated atom values. It must also be noted,
however, that of all the densities referred to in
Table II only the HF and our semiempirieal, Se,
give the correct Hellman- Feynman forces, and of
course, only the SE density gives the experimental

- dissociation energy via the virial theorem. As we
will see the latter property is not unambiguously
the most desirable.

In the case of N, and F„Table II also contains
calculations for a density derived from the alter-

nate kinetic-energy constraint referred to above.
Thus

2TrPS 'T= T(~)&&+D (25)

VI. THE CONNECTION BETWEEN THE
PRESENT METHOD AND THE

HARTREE-FOCK METHOD

The final homonuclear calculation to be discussed
is one that corroborates a theorem alluded to in the
introduction. In brief, this theorem establishes

where T(~)fig is the best-atom variational energy.
It appears that this constraint is more nearly con-
sistent theoretically with the idempotency or single-
configuration representability of our density. The
reason for this is the following: Our solution P
matrices imply N-body single configuration wave
functions. The energy variational theorem then
requires that if we used this function to calculate
(H)' we would find that (8)) Uez t. But our
virial-theorem constraint of Eq. (34) requires that
( T ) = Tezpt = —Uezpt . Clearly then, our calculat-
ed kinetic and total energies can never be consis-
tent because by virtue of the previous expressions
—( ) ((H). Thus an inconsistency exists when
T( )ezpt is used. On the other hand, this incon-
sistency is lessened in the constraint of Eq. (25).
The reason for this is that we are not now forcing
an idempotent P matrix to take up the full correla-
tion kinetic energy but only that involved in the dis-
sociation energy. Thus Eq. (25) is much more
nearly a bona fide Hartree-Fock constraint.

Another reason for using T(~)ffA is that it more
nearly corresponds to the best-atom basis used to
represent the densities. Indeed if we did the calcu-
lation as A -~, T(~)Bg would become a bona fide
limited Hartree- Fock constraint.

TABLE II. Expectation-value comparison for T(R ) and T(R ) A
calculations.e expt e BA

Molecule

SE
HF
SA

Method

65.838
68.875
64.349

50.083
52.199
48.232

(1/r~)
16.961
16.978
16.821

18.653
18.938
18.475

Np

02

SE fT(R,),]e expt
fT(R,) ]

LHF

SA

SE
HF
SA

SE IT(R,), ]

LHF
HF
SA

49.729

50 538

52.970
54.180
50.547

59.897
64.182
59.915

81.102
82.596
81.865
86.335
80 ~ 899

35.524

36.276

38.920

38.762
36.798

48.548
49.354
47.745

70.430
71.914
69.810
71.475
70.061

21.673

21.607

21.480
21.646
21.477

23.348
24.137
23.398

24.157
24.067
24.321
24.775
24.127

22.199

22.371

22.830
22.873
22.333

25.768
25.692
25.513

29.888
29.771
29.799

29.597
aP. Cade, University of Chicago, private communication.bB. Ransil, Rev. Mod. Phys. 32, 239 (1960).



PURE- STATE DENSITY MATRICES. II

the connection between the present method and any
limited Hartree-Fock calculation done with the
same basis.

The theorem can be most precisely stated by
first defining a variational problem. This is done
by setting down the extremum condition and the
constraints. We have

6 Tr(P' —P)' =0, TrP =N, TrP 0 = O

a=i, ~ ~ ~, ~(m, N), (26)

Molecule x(a )e expt

FH
OH

NH

LiH
Lir
BF

1.733
1.834
1.976
3.015
2.850
2.385

100.53
75.78
55.53
8.07

107.50
124.74

TABLE III. Heteronuclear experimental data (a.u. ) .

where Oy is an m-square matrix representative of
an operator in the m-ba. sis 0 and Oy is a bona fide
limited Hartree- Fock expectation value. With the
variational problem defined, we now state the theo-
rem. One of the idempotent solutions of Eqs. (26)
is the limited Hartree-Fock density matrix PHF
provided the constraints of Eq. (26) are computed
with PHF (this is what we mean by a bona fide
Hartree-Fock constraint). The proof of this theo-
rem is simple. Thus the class of all m-square,
Hermitian, idempotent P matrices contains the
corresponding rn-basis limited Hartree-Fock
P HF. But such a matrix requires only a finite
number v(m, N) of constraints to determine it. If
therefore TrP Op=Op, &=1 ~ ~ ~ tc(m, N) are bona
fide limited Hartree-Fock constraints, one of the
idempotent solutions of Eq. (26) must be the cor-
responding limited Hartree- Fock PHF matrix.

Numerical corroboration of this theorem is given
by the following calculations. For the molecules
N, and F, the Pa„matrix is completely determined
by two constraints other than normalization. We
chose these to be kinetic energy and force and
used the actual calculated limited Hartree- Fock
values' as our constraints. In both N, and F„ the
corresponding limited Hartree-Fock matrix was
exactly reproduced independent of our initial guess.

It is manifest that the previous considerations
are much more generally applicable, that, is any
pure state can be selected out of the class of all
Hermitian idempotent matrices with a sufficient
set of the pure-state expectation values.

VII. APPLICATION TO HETERONUCLEAR
MOLECULES

Because of the availability of experimental and
Hartree-Fock" dipole moments, we chose to study
the series of molecules FH, OH, NH, LiH, LiF,

and BF." The pertinent experimental data are
given in Table III.

Using Eq. (23) one easily sees that the hydride
P matrices can be determined with the three con-
straints I'g, I'B, and T when a four-function cr

basis is used. In the case of LiF and BF a ten-
function (limited) basis is used. Whenever results
are reported for a case in which Eq. (23) is not
satisfied, the initial guess will be given with some
explanation.

As in the case of the homonuclear molecules, we
made calculations with both T(~)expt and T(~)g~-
here for two reasons. First, we are interested
in the importance of the effect of the energy incon-
sistency referred to in Sec. V and, in particular,
with reference to dipole moments. Second, this
calculation gave an idea of how the dipole moment
varies with the T constraint and, therefore, how
sensitive it is to errors in the dissociation energy.

Table IV displays the two sets of calculated di-
pole moments compared to experimental (LHF) and
(HF) values. It, first of all, is to be noted that

is in some cases very sensitive to a change in
the energy constraint —a 1% change in T of the hy-
drogen fluoride molecule, for example, inducing a
30% change in the net dipole moment. This is not
as serious as it might at first seem, however,
since errors in the dissociation energy are gener-
ally only of the order of 0.05% (or usually much
less) of the total energy, and therefore one shouM
not expect these errors to cause more than about
1% lack of precision in l pl . At present, of course,
errors of this order are not our most serious prob-
lem.

The next thing we note about the dipole moments
is that they were very poor for all LiH calculations
made with a six function basis no matter what ini-

TABLE IV. Dipole-moment comparison (debye units).

Molecule
(- +)

FH
OH
NH

LiH

L1F
BF

"SE
g( ~)

2.21
2 ~ 29
2.27

—5.82

—6.70
-0.584

1.75
1.88
1.93

—6.17

—6.70
-0.687

"HF

1.98
1.78
1.93/1.63

—6.00

—5.86
—0.668

1.12

1.68
—6.48

-3.43
—1.96

expt

1.82
1.65

—5.88

—6.28

a
10 function basis ~

b
Charge-transfer guess.

c
Atomic guess.



12 C LINTON, GALLI, AND MASSA 177

TABLE V. LiH dipole moments and initial guesses.
The guess is designated by the atomic occupation num-
bers, e.g. , the ground state is given by (2101) referred
to 1SL, 2SL 2PL-, and 1SII.

Guess Dipole moment Character of the guess

(210 1)
(2 —.

' 0 —,')
(200 2)

—1.36
—5.41
—6.17

Ground atomic state
Partial charge transfer
Charge transfer

VIII. CONCLUSION

It is to be noted in conclusion that all the results
herein reported have been obtained with what is
usually called a limited best-atom basis. Insofar

tial guess was used. This led us to try a calcula-
tion in which additional basis functions were intro-
duced on the hydrogen atom. The reasoning in-
volved here is that LiH is well known to be a charge-
transfer type molecule, i.e., Li+H, and there-
fore a single 1s function on hydrogen is not capable
of handling this transfer in addition to all of the
other conditions. The rectitude of this reasoning
seems to be borne out by the excellent dipole mo-
ments that resulted when we used a charge trans-
fer guess (see Table V).

We would like to emphasize at this point that al-
though there seem to be some regularities in the
deviation of the dipole moments from experimental
values, the present calculations are to be viewed
as interim in nature and certainly to.be improved
as more constraints are included. Our results
should be compared with limited Hartree- Fock
(LHF), which is the nonempirical analog of our cal-
culation. In this connection, we make note of the
LHF Hellman- Feyman forces. Table VI contains
these data. In general, the LHF forces are very
poor, and more often than not, our calculated di-
pole moments are better.

TABLE VI. Hellmann-Feynman electronic-force
comparison (a u )

Molecule

FH
NH

LiH
LiF
BF
Np

F)

3.438
2.326
0.487
3.463
7.093
9.422
9.468

LHF

2.859
1 ~ 743
0.272
2.060
4.873
9.422
9.468

Experimental
F~-F

2.997
1.793
0.330
3.092
7.911

11.462
11.015

as our dipole-moment results are generally an
improvement over limited-basis variational cal-
culations, our method must be considered a better
"fitting" procedure for the first-order density.
Thus a "best fit" of the Hartree-Fock density to a
limited ba.sis (at least as far as 1 p I is concerned)
is more nearly achieved using the method presented
in this paper than by energy minimization tech-
niques. (See paper EV for a more detailed anal-
ysis of this "fitting" aspect of the P equations. )

The prognosis for polyatomics seems to be very
good. This conclusion depends upon the assump-
tionthat the densities we calculate can only improve
with the addition of more constraints, and upon the
fact that al]. of our results have been obtained using
relatively modest computational facilities, which
leaves open the full exploitation of large machines
for polyatomic molecules.

A final point that should be made is that the
method is open to the incorporation of possibly
many other constraints via the theory of the hyper-
virials' and local energies. ' It is well known
that both of these methods offer, in principle, a
way of completely determining the wave function
of a many-body system. Unfortunately, no one
has as yet invented a computationally smooth way
of doing this. One of the possible future develop-
ments in our method could be in this direction.
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lim g =0 for all k.(n)
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This is evident because w is nonsingular and at solution
(P=P, and therefore, & is a null vector.
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However, because the conditions on the elements of
C are bilinear, several solutions are possible. Any
solution generated, however, will have the desired
properties of idempotency and constraint satisfaction.
In the present work we have had no difficulty with mul-
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Z' a=---.'g. ~.'-g Z,' lr -R
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cation) .
There are dipole-moment data available on still other

heteronuclear molecules. Our preliminary results for

BH, CH, and CO, however, indicate that force and
kinetic energy are not effective in yielding good dipole
moments. These molecules are in a different class
than the ones we report, in that they are generally con-
sidered to be more covalent in nature. There seems to
be some significance to this, but any detailed analysis
at the present time would be premature.

J. O. Hirshfelder, J. Chem. Phys. 33, 1462 (1960).
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Direct Deteriaination of Pure-State Density Matrices. IH.
Purely Theoretical Densities Via an Electrostatic-Virial Theorem*
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(Received 16 February 1968)

A combined electrostatic virial theorem is introduced and used to derive a differential
equation for the scale factor p in a diatomic molecule. This equation can either be used to
compute df/dR or it can be integrated to yield

t(R, )
ii' — 1 ' 2F(RI —MF(RI/dR

~ )T(R) 2T(RO) R T(R)

where R is the internuclear distance, R —= fR, F = (-BV~/BR), with V~ the one-electron po-
tential, T =— (g —2V ), and Ro is an integration limit. It is shown that if r. (RQ) is a. vari-
ational scale factor, then t'(R) is also a variational scale factor provided the electron density
p~ involves no other unoptomized variational parameters. Unlike the conventional variational
expression for (, which contains two-electron integrals, the above formula involves only
the one-electron force and kinetic energy integrals. Using this (, electron densities and
energies are calculated for Hq, H2, Heq, and Li& and compared with experimental and
variationally calculated values. Qualitative agreement is obtained in general, and, in par-
ticular, our theoretical energy curve for He2 is in very good agreement with the best vari-
ational results for 1.5 a.u. &R& ~. It is also shown how the electrostatic-virial theorem
can be used as a conditionin continuing density-matirx calculations from R to R+DR.

I. INTRODUCTION

In the first paper in this series, ' the electro-
static and virial theorems were used to determine
a semiempirical electron density. The method con-
sisted of three main steps: (a) A simple function-
al form for p, (r', r, R) was assumed and inserted
into the electrostatic and virial theorems. (b) In
place of the electronic energy E(R) and its deriv-
ative dZ(R)/dR, experimental data were used.
(c) The resulting equations, which by virtue of
(a) and (b) uniquely determine p„were solved.

In the present paper, a similar approach is fol-
lowed except that the semiempirical aspect [step
(b) above] is eliminated. This is accomplished by
combining the electrostatic and virial theorems
into a single equation that can be expressed en-
tirely in terms of the one-body density p, (r ', r, R).
This electrostatic-virial (EV) theorem can then be
used as a purely theoretical condition on the one-

body density.
If the density is expressed as p, = K'p, (fr ', rr, fR),

the EV theorem serves to uniquely determine f in
terms of force and kinetic-energy integrals in-
volving only the unscaled density p, (r', r, R). In
the first parts of this paper, a method is developed
for the theoretical calculation of the scale factor g .
It is shown that our f is the same as the variational
scale factor provided the density contains no other
unoptimized variational parameters. It is also
shown computationally that, even though many of
the densities we work with do contain other un-
optimized variational parameters, our g's are, in
every case, in qualitative agreement with the
variational f s, and in one important case quanti-
tative agreement is obtained.

The lastpart of the present paper is devoted to
the derivation of density-matrix equations that
allow one to continue an i.dempotent matrix from
one value of a parameter X to another X+ &X.


