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Ultrasonic Attenuation in Normal and Superconducting Indium*
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Measurements of the electronic contribution to the attenuation of longitudinal sound waves propagating
jn normal and superconducting indium have been made up to 330 MHz. Data have been obtained for propa-
gation along the principal crystallographic axes as well as for a number of directions in the (010) plane. The
results exhibit considerable deviation from free-electron behavior. The limiting slopes of the attenuation
versus frequency are highly anisotropic, and for quasi-longitudinal modes include a significant contribution
which vanishes within approximately 30 mdeg of T,.This drop is in addition to the less sudden drop associ-
ated with the SCS attenuation for longitudinal waves. Comparison of the measurements with simple calcu-
lations based on a modified free-electron model suggests that the eGect of the crystal potential on the Fermi-
surface topology is largely responsible for the observed attenuation behavior.

I. INTRODUCTION

''N pure metals, the conduction electrons interact
-~- strongly with ultrasonic waves at low temperatures.
The attenuation of an acoustic wave with phonon wave
number q has been shown' to depend on the topology
of the Fermi surface, its deformation properties under
static strains, and the electron mean free path /. In the
limit ql»1, however, the dependence on l is negligible,
and only electrons on the effective zone (those with
velocity nearly perpendicular to the propagation
direction) can contribute to the attenuation. Since the
attenuation coefFicient e approaches a linear dependence
on the frequency f in this limit, determination of the
limiting slope value dn/df in a particular propagation
direction can provide information about the Fermi
surface and its deformation properties on the associated
effective zone.

Indium is well suited for such an investigation since
its Fermi surface has approximately the free electron
form," and because the separation of electronic
attenuation from other contributions is greatly simpli-
fied in superconductors. ' It is also readily available in
high purity form, and large single crystal ingots can be
grown with relative ease, owing to its low melting point.

Previously reported measurements of attenuation in
indium~~ show marked deviations from the free-
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electron predictions, considerable anisotropy in limiting
slope values, and a significant amount of disagreement
between the various sets of data. Although a wide
variety of explanations has been oGered for these
effects, the discussion has remained essentially qualita-
tive and the relative merit of the various explanations
undetermined. This paper presents additional measure-
ments and reports the results of numerical evaluation of
the attenuation integrals for a simple modification of
the free-electron Fermi surface. A detailed comparison
of the data and calculations allows some conclusions
to be drawn about the non-free-electron behavior of
the attenuation.

II. EXPERIMENT

A. Experimental Procedure

The indium single crystals used in this work. ranged in
purity from 99.9% to 99.9999+%, and had residual
resistance ratios measured by the eddy current tech-
nique'0 of approximately 200 to greater than 200000.
These crystals were grown in vacuum by a modified
Bridgman technique from starting material supplied by
Cominco American Incorporated of Spokane, Washing-
ton, and American Smelting and Refining Company of
South Plainfield, New Jersey. The lowest purity
m.aterial was obtained by suitable doping with lead.
Acoustic specimens with faces normal to the required
propagation directions were prepared from the single
crystal ingots by spark erosion, with particular care
being taken to minimize surface damage and consequent
recrystallization. The extent of such surface damage was
investigated by use of preferential etching and x-ray
techniques and is believed to be limited to a depth of
approximately 0.1 mm, about 3% of the smallest
sample thickness. The final orientation of the samples
was determined to within 1' by I aue back-refIection
photographs.

Measurements of the relative attenuation of longi-
tudinal and quasi-longitudinal waves in these samples
were made in transmission using a pulse comparison

I C. P. Sean, R. W. DeSlois, and L. B.Nesbitt, J.Appl. Phys.
30, 1976 (1959).
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amplitude of the input pulse couM be produced by a
calibrated attenuator at the transmitter output. The
sample temeperature was automatically regulated by a
feedback. control system referenced to a carbon resist-
ance thermometer between 1.1 and 30'K and a copper
wire thermometer from 30'K to room temperature.
Temperature measurements were made with a cali-
brated germanium thermometer (Honeywell MHSP
2404) below 100'K and a copper wire thermometer
above that point. A longitudinal magnetic field of up
to 700 G could be applied for making normal-state
measurements below T,. Measurements were subject
to the following uncertainties: relative attenuation and
applied amplitude to +0.2 dII, frequency to within 2%,
temperature to ~0.01'K at the lowest temperatures
and +0.1'K above about 10'K, and magnetic field to
wit in 3%.

B. Experimental Results

technique. Data were obtained at frequencies as high
as 330 MHz for propagation normal to the (100),
(001), (110), (011), and (111) planes, as well as for a
number of intermediate directions in the (010) plane.
The acoustic waves were generated and received by 5,
10, and 30 MHz, x-cut quartz transducers, which
operated at an odd harmonic and were bonded to the
specimen faces by glycerin. A range of 70 dB in the
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FIG. 2. Typical temperature and amplitude dependence of the
superconducting and normal-state attenuation for indium between
1 and 10'K. The data were obtained at 90 MHz on 99.99/0 pure
indium for (121) propagation.

FIG. 1. Typical temperature dependence of the zero-amplitude
attenuation for superconducting and normal indium up to 80'K.
The dashed curve is the extrapolated behavior of the back-
ground attenuation due to nonelectronic interactions. The data
were obtained at 90 MHz on 99.999j& pure indium for (111)
propagation.

The quantity of initial interest is the electronic
contribution n„, to the normal-state attenuation o,„at
low temperatures. In the present case, measurement of
this parameter is simplified since it is known' "that the
electronic part o„of the superconducting attenuation
o;, goes to zero as the temperature approaches O'K.
Thus if n„and n, are both extrapolated to O'K, their
difference at that point should be n„.. This is illustrated
in Fig. 1, which demonstrates that an extrapolation of
the background (nonelectronic) attenuation to O'K
agrees with the zero-temperature value of n, .Further the
temperature-dependent ratio n„/n„. can be compared
with the BCS theory'" to obtain a measure of the
superconducting energy gap.

The attenuation of indium in both the normal and
sup erconducting states exhibits a dependence on
transmitter pulse amplitude' ""similar to that found
in lead. "" Figure 2 shows typical behavior for the
temperature and amplitude dependence of n„and 0,
between 1 and 10'K. Since the effect of amplitude is
diferent in the normal and superconducting states,
except for the low-purity samples or at very low

frequencies, both the difference n„—n, and the apparent
value of n„/n„, are also functions of amplitude. To
correct for this dependence, data were taken over a
range of amplitudes at each temperature and extrap-
olated to zero amplitude. This procedure is truly
satisfactory only when data can be tak.en at low enough
amplitudes that the attenuation-versus-amplitude curve
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begins to flatten out. In general, this is fairly easy to
accomplish for low-purity samples, but it becomes more
difhcult as the purity increases. When this condition is
not met, larger error estimates must be assigned to
allow for inaccuracies in the extrapolation. The error
from this source and from the magnetoacoustic effects
to be discussed later often makes fitting to the BCS
theory a rather insensitive method for determining the
superconducting energy gap. This being the case, no
energy-gap values are reported here.

It is claimed by some authors'" that the same
mechanism responsible for the amplitude effect, namely,
dislocation damping, makes a significant contribution to
o.„and 0., even at zero amplitude. For reasons to be
discussed in Sec. III A, we assume that the effect of this
contribution on n„—e, is negligible.

Another problem in the measurements is the appear-
ance of magnetoacoustic effects under application of
even the rather weak magnetic field (283 G or less's)
required to keep the metal in its normal state. These
effects are most pronounced for very pure samples and
are usually dificult to extrapolate to zero Geld. Figure
3(a) shows typical attenuation versus field data at five
temperatures near and below T,. To separate the
effects of field and temperature dependence in the
normal state, the magnetic field is increased in steps
as the temperature is lowered below T,. That is, at
constant field, the temperature is lowered nearly to the
point at which the superconducting transition would
occur; then, at constant temperature, the Geld is
increased by 50 to 75 G and the process repeated until
the lowest temperature is reached. The data are then
reduced by subtracting al1. attenuation changes which
occur when the field is varied. This procedure appears
to be the most reasonable correction method available
and leads to no unexpected or inconsistent results.
Nevertheless, as with the amplitude effect, uncertainties
due to this procedure must be considered when assigning
error estimates to the results. For some orientations,
the attenuation-versus-Geld curves display the much
more convenient form shown in Fig. 3(b). In this case,
it is assumed that the zero field extrapolation can be
obtained by extending the curve about which the
attenuation oscillates.

Using these established procedures to compensate for
such obvious complications, it has been possible to
measure o.„, extrapolated to O'K for a number of
purities and propagation directions. A detailed study
of the dependence of attenuation on the acoustic wave
number q and the electronic mean free path L has been
conducted for propagation normal to the (111)plane. s

Figures 4 and 5 show, respectively, the frequency
dependence of n„. and the ratio of attenuation divided

by frequency, u„,/f, for samples of three, four, five,
and six nines plus purity with this direction of propaga-

'" W. P. Mason, Phys. Rev. 143, 299 (1966)."D. K. Finnemore and D. E. Mapother, Phys. Rev. 140, A507
(1965).
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Fio. 3. (a) Typical variation of the attenuation with magnetic
Geld due to the magnetoacoustic e6'ect. The data were obtained
at 90 MHz on 99.999+% pure indium with propagation 25'
from L0011 in the (010) plane. (b) More desirable variation of
the attenuation with magnetic field. The data were obtained at
150 MHz on 99.9999+% pure indium with propagation 3'I'
from I 001) in the (010) plane.
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FIG. 4. Frequency dependence of the normal-state electronic
attenuation for longitudinal waves in indium of varying purity.
The propagation direction is along the normal to the (111)plane.

"A. B.Pippard, Phil. Mag. 46, 1104 (1955).

tion. It can be seen that at high frequencies and for the
purest samples (gt))1) the attenuation is proportional
to the frequency, whereas at low frequencies and for
the less pure samples (qt«1) it varies quadratically
with frequency. As discussed in Sec. III, this dependence
is predicted by theoretical considerations, ' which also
show that for a given propagation direction n/f is a
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Fro. S. Variation of a/f versus f for the normal-state electronic
attenuation for longitudinal waves in indium of varying purity.
The propagation direction is along the normal to the (111)plane.

TAnLE L Measured values of the limiting slopes da/df for
longitudinal waves propagating along the principal crystallo-
graphic directions in pure indium. The data are compared with
the results of other workers and also with the predictions of the
free-electron model.

Propagation Present
direction work Ba

daid f
(dB/cm MHz)

Sb F.L.o F.E.~

da/d f
normalized to
free-electron

value

I 1oog
t001)
L110j
(011)
(111)

0.234 &0.010
0.270 &0.010
0.397&0.015
0.430~0.015
0 424 o'.o1~

0.158
0.185
0.330
0.339
0.301

0,260
0.266
0.392

0.318

0.217
0.236
0.356

0,497
0.519
0.429
0.471
0.440

0.47
0.52
0.93
0.91
0.96

a See Ref. 7. b See Ref. 9. See Ref. 5.
d Computed for 3 electrons/atom and sound velocities extrapolated to

absolute zero from Ref. 20.

function of the product ql. This conclusion can be tested
by determining whether it is possible to scale the
frequency values for each specimen purity, such that
all the data for n„,/f lie on a common smooth curve as

ql varies from zero to its highest value. This procedure
should be equivalent to multiplying the frequency in
each case by the ratio f/f„&.„„.The scaling factors so
determined agree, within experimental error, with mean
free path ratios obtained from approximate residual
resistance measurements. The results of this analysis
are shown in Fig. 6.

For other propagation directions, measurements have
been performed only on high purity 99.9999% and.

99.9999+%samples to determine the limiting values of
dn„,/d f All the c.urves of attenuation versus frequency
are similar to those for the 99.9999+% sample in
Fig. 4. The resulting slopes for propagation along axes
of high symmetry are given in Table I, together with
the data of other workers. '7' The agreement between
the various experiments is rather poor. It is noteworthy,
however, that in all cases the observed values of drr„,/df
for tl parallel to L100j and L001j are much lower than
for other propagation directions.
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FIG. 6. Variation of n/f versus f for the normal-state electronic
attenuation of longitudinal waves propagating along (111) in
indium. The dashed curves are the predictions of the free-electron
model for assumed values of /gg. g% the electronic mean free path
corresponding to the sample of lowest purity.
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where X is the number density of conduction electrons,
ko is the radius of the Fermi sphere, M is the density of
the metal and n, is the sound velocity appropriate to
the propagation direction. Table I gives the calculated
free-electron slopes for indium, assuming three conduc-
tion electrons per atom and using values of v, obtained
from the elastic constants extrapolated to absolute
zero. ' Also shown are the ratios of the latter to the
values of der„,/df obtained in the present experiments.
For t 100j and $001$ propagation it can be seen that the
observed slope is only about one half the free-electron
value, while for the other directions it is quite close to
the free-electron limit.

The results for propagation of quasi=longitudinal
waves in the (010) plane are shown in Table II and
Fig. 7. It is clear that the limiting slopes are highly
anisotropic, there being a particularly large 1imiting
slope for q approximately 25' from $001).In an attempt
to determine the cause of this behavior, the temperature
variation of the attenuation has been studied imme-
diately below T,." The possible importance of such
measurements is suggested by the recent observation"
of an extremely rapid drop in the superconducting
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attenuation of quasi-longitudinal waves in white tin
very close to the critical temperature. Our data show
that this effect is also present in indium for quasi-
longitudinal modes, being especially large for some
directions of propagation. In a few cases the decrease
within 20 mdeg of T, accounts for nearly 50% of the
total normal-state electronic attenuation.

Figure 8 is an example of the kind of data obtained
from these measurements. It also illustrates the fitting
procedure used to extract that part of the temperature
dependence of O.„which is predicted by the usual BCS
expression. The initial plan was first to calculate the BCS
attenuation, using the estimated point of intersection
with the line T=T, and a reasonable value of the super-
conducting energy gap, and then to follow an iterative
procedure with the intercept and energy gap being
adjusted until the best dt to the data below about T,
—0.03'K was obtained. In practice, the comparison
between theory and data is made by superimposing a
graph of the BCS calculations over a graph of the data.
It has been found that changing the intercept and the
energy gap within the appropriate ranges has an effect
essentially equivalent to raising or lowering and rotating
the initial BCS graph with respect to the data. Thus the
best curve through the data can be obtained by
physically displacing and/or rotating the BCS graph
based on an initial intercept estimate and an energy

gap of 1.75 ktt T,. The BCS calculations are made using
an approximate analytic expression" for the tempera-
ture-dependent energy gap h(t) modified by an addi-

tional small correction term. The modified form,

6 (t)/h (0)= (cos-', trP)'" —1.15X 10 '8'"
XsinL'5. 46(1—t)j, (2)
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FIG. 8. Temperature dependence of the electronic attenuation
near T, for a 150 MHz quasi-longitudinal mode propagating in the
(010) lane of 99.9999+%pure indium with q approximately 19'
from 0017. The dashed line in the inset is the BCS prediction
for ~= 1,75kgT, .

gives a maximum departure from Muhlschlegel's
tabulation'4 of less than 0.5%%uq as compared with about
3.1% for Sheahen's cosine function alone. The part of
the rapid fall, which remains after the BCS prediction
is subtracted, is given by the bottom curve in Fig. 7.
Such a plot emphasizes the anisotropy of the e8ect and
the fact that it makes a considerable contribution to the
total observed attenuation in some propagation direc-
tions. The rapid-fall contribution to da/d f is aiso given
in Table II.
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(io Tanzx II. Measured values of the limiting slopes dat/df for
quasi-longitudinal waves propagating in the (010) plane of pure
indium. The contribution arising from the rapid drop in attenua-
tion near the transition temperature is also given. In both cases
the results are given in dB/cm MHz and normalized to the free-
electron value.
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(degrees

from (da/d f) total
t 002)) (dB/cm MHz)
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PIG. 7. Variation of the limiting slope dar/df, normalized to the
free-electron value, for quasi-longitudinal waves propagating in
the (010) plane of indium. The dashed line is the component of
dn/df associated with the rapid fall of the superconducting
attenuation near T,,

I 001j
10,5

13.5
19.0
25.0
37.1
(101)
55.6
65.0
69.2
76.2
82.0

L100&

0.270 &0.010
0.220+0 0"-0.007

0.515 o'.pgi

0 575+0.019

0.662 +0.035
0 452-o'.olo

0.430&0.015
0.431&0.020
0.412 &0.015
0 350~' 91

- 0.199&0.010
0.203 %0.010
0.234 +0.010

0.521~0.019
0 430+0.091

1 012~0'.ocr

1 148 0.08-0.050

1.351+0.071
952+0.04%

«0.009

0.913%0.032
0.911~0.042
0.859+0.031
0 723+0.059-0.081

0.406 &0.020
0.410~0.020
0.471+0.020

0.015%0.005
0.043 &0.005

0.245 &0.024

0.267 %0.008
0.145 &0.015
0.047 &0.017
0.036~0.011
0.066 +0.017
0.138%0.011
0.100&0.026
0.033~0.006
0.015%0.007
0.017&0.005

0.028 ~0.009
0.083+0.009
0.482 ~0.047

0.532 +0.015
0.295 &0.030
0.099+0.036
0.075 ~0.022
0.139+0.036
0.286 +0.022
0.206 &0.054
0.066~0.011
0.029 %0.023
0.034 +0.010

zt T. P. Sheahen, Phys. Rev. 149, 368 (1966). '4 B.Miihlschlegel, Z. Physik $55, 818 (1959).
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III. THEORY

A. Dislocation Attenuation

An amplitude dependence of the type shown in Fig. 2

is thought to be caused by dislocation attenuation. '5 ' "
Granato and Lucke, " hereafter referred to as G Lp

have calculated the properties of a model in which
damped dislocation loops break away from intermediate
pinning points. Their expression for amplitude depend-
ent attenuation due to the breakaway mechanism is

lowest temperature normalized to three different e

values. As can be seen from the latter figure, it is
possible to get a rough fit to the low amplitude data by
choosing a large value of E', but the agreement is still
disappointing and is especially bad for the higher ampli-
tudes. A more frequently used method of comparison" '~

is illustrated in Fig. 11, where the lowest temperature
data is plotted in the form ln(o. bee) versus 1/ee. Accord-
ing to Eq. (3) such a plot should give a straight line
with slope Ea—nd intercept 1n(nbsK). Clearly this
prediction is not realized.

The discrepancies between this work and the G-L
expression can probably be traced to one or more of the
simplifying assumptions made in its derivation. These
assumptions restrict the validity of Eq. (3) to fre-
quencies much less than the resonant frequency of the
dislocation loops, to amplitudes sufhcient to unpin
only a small fraction of the dislocations (E'))I), and
to rather impure material in which L~, the separation
of network pinning points, is large compared to Lq, the
separation of point defect pinning points. Since all of
these restrictions are probably violated in our measure-
ments, it is not surprising that the quantitative agree-
ment is poor. Nevertheless, all of the qualitative
predictions of the model that can be checked are
verified experimentally. For example, the decrease in
electron damping in the superconducting state should
result in an enhanced dependence on amplitude as the
temperature is lowered below T,. Such an enhancement
is evident in Fig. 2, which also shows the damping to
be essentially temperature-independent in the normal
state.

I.O

rrb xbe(r&/ o) eexp( —E/eo). (3)

In this equation &0 is the longitudinal strain amplitude,
while a~0 and E are parameters which depend on the
properties of the dislocation network.

Because only relative transmitter amplitude and
relative attenuation are known in our experiments and
because reliable values are unavailable for many of the
other quantities in Eq. (3), the ways in which measured
attenuation versus amplitude curves can be compared
with the theory are limited. One possibility is to normal-
ize nb in Eq. (3) to its value nb at some maximum
strain amplitude e . If X' is substituted for E/e, '

then Eq. (3) gives

o.b/nb
——(e /ep) exp''(1 —e /es)$. (4)

Thus a variation in the value of E' generates a family
of curves which can be compared to data normalized
in the same way. Figure 9 shows Eq. (4) plotted for
two E' values, while Fig. 10 shows typical data for the

» Q, R. Tittmann and H. E. Bommel, Bull. Am. Phys. Soc. 9,
713 {1964).

~6 A. Granato and K. Lucke, J. Appl. Phys. 27, 583 (1956).
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FIG. 10. Typical experimental data for the strain amplitude
dependence of the attenuation in the superconducting state of
indium normalized to three different maximum strain values. The
dashed curve is the Granato-Liicke prediction for IC' equal to 1.5.
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A further conclusion can be drawn from the more
generally valid G-L expression for loop displacement.
This expression is a sum over i of terms containing
[(co;zs—a&')'+ (aB/A)'jzl' in the denominator, where
~;z= (2i+1)(e-/L)(C/A)"' L is the loop length, A is
the effective loop mass per unit length, and 8 is the
damping coefFicient in the equation of motion for a
dislocation loop. It can be seen that for either low
frequencies or small I. the importance of the term
containing 8 is diminished, and the amplitude depend-
ence of n, and o,„should be more nearly the same.
This prediction is confirmed by experiment. An increase
of the frequency such that (~;zs—zps)'&&(ppB/A)' should
have a similar effect. When ~=~;I, the other extreme
occurs, i.e., 8 becomes very important and o, and n,
should show markedly different dependence on ampli-
tude. It might, in fact, be possible to determine cvpl.

by making a detailed study of the relative effect of
strain amplitude on e„and n, as a function of frequency.
Such a determination has not been attempted in this
work.

Since Eq. (3) depends on the assumption that disloca-
tion loops vibrate in phase with the applied stress, it
describes a static type of loss with frequency entering
only in the proportionality between n and AW/W.
However, there is also a dynamic loss, since the disloca-
tion motion is opposed by damping, and hence must
actually lag behind the oscillating stress by a frequency-
dependent phase angle. The G-L expression for attenua-
tion due to this mechanism can be written

~z=C CzA(( ozA)'8/[( zA)s(Q -'—Q )'+Bs7), (5)

where Qz=or/pppz and Cz=rrLs/A. Both Ct and h. are
constants depending on the properties of the metal and
the dislocation network. The effect of a distribution of
loop lengths can be approximated by substituting for
I. an effective value L,~~ larger than I-»..

A generalization of the G-L derivation for breakaway
attenuation, valid to higher amplitudes and for smaller
values of Lrr/Lo, has been given by Rogers ss However,
the resulting expression for nb does not display any new
qualitative features and is still limited to frequencies
much less tha, n copL, . The dynamic loss is also discussed
and shown to exhibit an amplitude dependence of its
own due to increased attenuation by the longer un-
pinned loops. This dependence is given, for all fre-
quencies and amplitudes, by

ngrr =nsz, „(1 [1 (I /ep+1) —exp(——E/ep)]")
+naze(term decreasing from 1 to 0

with increasing ep) (6)

where nsz~ is the dynamic attenuation of Eq. (5) with
L=Lrr and N=Lrr/Lo 1. Since for all —rs the term
multiplying o.dl.~ simply varies from 0 to 1 as ~p is
increased, the main interest is in the factor nd~~. The
ratio nzz„/nzzo is equal to (Lrr/Lo)' for 1»Qzo«(upzoA/

s' D. H. Rogers, J. Appl. Phys. 33, 781 (1962).
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FIG. 1i. Typical Granato-Lucke plot of the measured strain-
amplitude —dependent attenuation in indium.

8, and approximately equal to unity for Ql.~&1, as can
be seen by considering the L dependence of C&, copL, ,
and Qz, in Eq. (5). By normalizing the Lrr part of nzz in
the same way as nb, their variation with amplitude can
be compared:

(1+%'e„/ep)
&dR +dB~—

(1+K')
exp%'(1 —e /ep). (7)

Equation (7) is plotted for two values of E' in Fig. 9.
It is seen that o, b and ndg exhibit identical dependence on
amplitude for large E', but that for E' on the order of
unity or less O. b passes through a maximum while nd&

does not. Clearly it is desirable to establish whether one
or the other of these contributions is dominant. Rogers
plots two sets of curves showing combined dynamic
and breakaway loss versus amplitude, assuming ngp/

nd»=m and 10n, respectively. These curves seem to
compare favorably with recent measurements in lead."

We now consider the predictions of these expressions
with respect to the magnitude of zero amplitude disloca-
tion attenuation. Equation (5) indicates that, even for
the limit of zero applied stress, there is an attenuation
which depends on the damping coefficient J3. Since J3 is
always smaller in the superconducting state, the
contributions to a, and n„differ, and o.„—a, does not
give a true measure of the electronic attenuation.
Attempts have been made" to minimize the importance
of this dynamic loss by pointing out that it is not valid
to calculate 8 due to electrons by use of electron-
viscosity concepts, unless the product of a typical
Fourier component of the dislocation strain field and the
electron mean free path l is much less than unity, a,

» A. Hikata and C. Klbaum, Phys. Rev. Letters 18, 750 (1967).
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requirement not met in reasonably pure metals at low
temperatures. While this statement is true, it does not
invalidate the use of Eq. (5) with a properly calculated
B.

The real question is not whether the dynamic loss is
present, but whether it is small compared with the
electronic attenuation. From the discussion following
Eq. (6), it can be said that the zero-amplitude disloca-
tion attenuation 0.«~ will in no case exceed that part of
the high-amplitude attenuation due to dynamic effects
n«~ and that it may be much less. In addition, the
comments following Eq. (7) indicate that nzz,„is less
than or equal to n&0. As an example, consider the lead
data'~" used in a recent paper'~ concerning the
importance of nzz~. Ife=Lz/Lo 1=10—, ndL~—nt 0/10+,
n~o—10 dB/cm, and Qz~(1 so that nfl, g/ngzN(1, then
ndz~(0. 1 dB/cm and the contribution to n„n, from—

zero-amplitude attenuation would be on the order of
1/o or less. Even if a large correction should be made,
however, it is not clear whether the correction term
would increase or decrease with temperature, since
Eq. (5) has a maximum as a function of I3 and the
value of 8 at this maximum is a function of co. Because
the effect appears too small and its sign is uncertain,
we have made no correction for zero-amplitude dis-
location attenuation.

B. Electronic Attenuation

According to the theory of normal-state electronic
attenuation in real metals, the expression for attenua-
tion of an acoustic wave of arbitrary polarization and
propagation direction is'

X)=E' +k cosP and the limiting forms of Eq. (8) are

and

Ag
CYg «y=

4m'Mv,
X)'dS,

Ag
Qg »]= EK,'dP,

4x'3l v,
(12)

where R is the reciprocal of the Gaussian curvature of
the Fermi surface and P specifies the position of the
projection of v, in the y, s plane. The integral on f is
taken around the effective zone deiined by P=-,'m. ,
indicating that in the high qt limit only those electrons
with velocity approximately perpendicular to the
direction of propagation can contribute. Equations (11)
and (12) show the limiting quadratic and linear fre-
quency dependence mentioned previously. In the free-
electron approximation E,= ——', ko, where ko is the radius
of the Fermi sphere. Equation (11) then reduces to

0'f.e.=
dekko a' tan 'a

Mlv, 3(a—tan 'u)
(13)

Note that n/f exhibits a progressively weaker depend-
ence on a until, as seen from Eq. (12), it reaches a
limiting value independent of a.

For propagation directions in which the acoustic
wave is not purely longitudinal, Eqs. (11) to (13) are
not correct, but Eq. (8) can still be simplified somewhat
for a))1 by dropping terms which go to zero as 1/a.
If in addition u is chosen to be in the x, y plane and 0
is the angle between q (the x axis) and u, then"

Ag
&ne=

kr'3A,
+I3@Ig;

1+a' cos'P
(8)

n„,= (hq/4''Mv, ) (Ji+Jg),

where Ji and J~ are given by

where u=qt, and g is the angle between the electron
velocity v, and the propagation direction of the
acoustic wave, taken to be along the x coordinate axis.
S is given by D u/I, where u is the particle velocity
and D(k) = K(k)+k cosP. In the latter expression k is
the electron wave vector and K(k) the vector deforma-
tion coefficient, which is defined such that a strain e
causes a shift of the Fermi surface by an amount K e
normal to itself. The coeKcients 8;; are given by the
relation 8;;= (A );;, where the A@ are integrals over
the Fermi surface:

a;a;dS

u(1+a' cos'P)

The I; are also surface integrals and are given by

K)G cosp
I;= a,I idS.

&1+a' cos'g]

n, .= (hq/&'Mi), )JiX2f(A), (17)

where f(6) is the Fermi function of the superconducting
energy-gap parameter. From a comparison of Eqs. (14)
and (17) it is clear that if J~——0, which is true for pure
longitudinal modes (Q=Li ——0), then the usual BCS
expression' "holds and n„/n„. = 2f(b). Otherwise,

Ji——cos Q gg, d 2 sinQ cosQ

+sinsof RE 'l0 (15)

and
J2=Li cos'Q+L2 sinQ cosQ+L3 sin'Q. (16)

Here Li, L2, and 13 contain integrals over the whole
Fermi surface.

In the superconducting state for a))i, the general
equation for superconducting electronic attenuation
reduces to

For the particular case of pure longitudinal waves, n..=n, ./2f(~)+DE/4 'u~, 3J„ (18)
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indicating a rapid drop at T, equal to the term contain-
ing J2, due to the loss of electromagnetic coupling in
the superconducting state. This drop is in addition to
the less sudden decrease of f(A) below T,.

t.ooi]

IV. DISCUSSION

A. Pure-Mode Attenuation

Ideally, the data should be compared with Kq. (8),
allowing for the full range of q/ values and for deviations
from purely longitudinal polarization. However, evalua-
tion of this equation requires a complete knowledge of
the Fermi surface, including the deformation parameter
and mean free path at all points on it. Since the Fermi
surface of indium is only approximately known,
especially with respect to the geometry of the third
zone arms, and since we can only guess at the anisotropy
of S and l, the errors involved in using the appropriate
simplified forms of the theory will be negligible.

In the free-electron pure-mode approximation given
by Eq. (13), we can calculate curves of o/f versus q/

for given values of l. Four such curves are plotted in
Fig. 6 together with the data for propagation normal to
the (111)plane, which is a nearly pure mode direction
for longitudinal waves. At low frequencies, the data are
fitted by the free-electron theory for a mean free path
of 9+10 ' cm. This figure corresponds to a ql value of
approximately 0.2 for the least pure sample at 90 MHz
and agrees within a factor of 2 with surface-impedance
estimates. " In this orientation at the high frequency
extreme (ql—200), the data give a measured limiting
value of drr/df which agrees with the free-electron
value within experimental error (see Table I). For the
intermediate ql range, however, the data show a de6nite
departure from the free-electron theory. This result
differs from that previously reported for polycrystalline
indium, 3' suggesting some anisotropic eGect not
accounted for by the free-electron a,ssumption. It is also
clear that previous analyses of attenuation experiments,
involving the use of the free-electron theory to obtain
information about the mean free path l, may give
incorrect results.

From the temperature dependence of the attenuation
of a given sample at axed frequency, it is possible to
obtain an analogous plot of u/f versus q/ for phonon
rather than impurity scattering. The resulting behavior
for propagation normal to (111) is quite similar to
that shown in Fig. 6, the curve being Ratter than the
free-electron prediction at intermediate values of qt.
Because of the uncertain background (nonelectronic)
attenuation at higher temperatures, however, it is
found that there is considerable scatter in such plots
even for the same sa,mple at different frequencies. Thus
there has been no attempt to infer any differences in

ss P. N. Dheer, Proc. Roy. Soc. A260, 333 (1961)."R. W. Morse, in I'rogress in Cryogenics, edited by K. Mendel-
ssohn (Heywood and Company Ltd. , London, 1959), Vol. 1,
p. 242.
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Fro. 12. (a) Free-electron second-zone Fermi surface for indium
showing the effective zones for L100$ and $110j propagation.
These are numbered 1 and 2, respectively. (b) Free-electron third-
zone Fermi surface for indium showing the inequivalent a, P arms.

the behavior of the attenuation in indium due to small-
angle phonon scattering and large-angle impurity
scattering.

In two of the other four pure-mode (or nearly pure
mode) directions, namely those normal to the (110)
and (011) planes, the measured limiting slope values
agree almost as well with the free-electron calculations.
As noted previously, however, the agreement for
propagation normal to (100) and (001) is poor, the
measured limiting slopes being roughly half the free-
electron values. Clearly in explaining these results we
must consider the anisotropy of either the Fermi
surface, the deformation parameter, or the mean free
path, and perhaps even all three. Since for u» 1,
dn/df should be independent of f and since little is
known about the deformation tensor, an investigation
of possible Fermi surface effects seems to oGer the best
hope for understanding the disagreements just noted.

Indium is trivalent and has a face-centered tetragonal
crystal structure. Its c/a ratio differs from unity by less
than 8%, so that it has a Fermi surface very similar to
aluminum. The important parts of the free-electron
Fermi surface are the second-zone hole surface and the
third-zone electron monster, both of which are shown in
Fig. 12. Unlike aluminum, the third-zone arms a, P are
not equivalent. The free-electron model also predicts
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small pockets of carriers in the 6rst and fourth zones,
but these are removed by the lattice potential. Figure
12 also shows the effective regions (g=-,'s) on the
second-zone surface in two of the major propagation
directions for infinite q/. It is clear from this figure

f (Degrees)

FIG. 13. Equal-area projection of one half of the free-electron
Fermi surface for indium. Those sections of the sphere assoc-
iated with the second-zone faces are numbered and those parts
associated with the third zone are identiied as part of an 0, or P
arm. For propagation along L001$, the effective zone is the line
@=90'.The dashed and dot-dashed lines show the effective zones
for propagation in the (010) plane at 20' and 50' toward L100$
and in the (110) plane at 20' and 50' toward $110$, respectively

that, for propagation along $100j, the effective region
runs along the cusps of the second zone Fermi surface.
Since R=0 for these cusps, it is obvious from Eq. (12)
that they make no contribution to the attenuation.
Thus the second zone only contributes approximately
one half of the attenuation in the free-electron model,
the remainder coming from the inside parts of the n
arms. Similar considerations apply to the L001]
propagation direction, the third-zone contribution aris-
ing in this case from the P arms. On the other hand, for
propagation along $110j, most of the contribution to
the attenuation arises from the second-zone surface,
since the effective region crosses surface edges but
does not run parallel to any of them. For propagation
along the normals to (011) and (111), an analogous
situation occurs. Thus, there seems to be a correlation
between the second-zone contribution and the ratio of
measured attenuation to the free-electron value, i.e.,
the data seem to imply a near-zero contribution to the
attenuation by the third-zone Fermi surface. Such an
assumption also provides a qualitative explanation for
the behavior of the (111)attenuation for intermediate
q/. As q/ is reduced, the P arms parallel to the plane
P=zsr make up an increasing fraction of the widened
effective zone. This can be seen quite clearly in the (111)
projection of Fig. 14 to be described in Sec. IV B. If
these arms make no contribution to the attenuation,
then n/f will drop faster than the free-electron predic-
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FIG. 14. Equal-area projections of
one half of the free-electron Fermi sur-
face for indium. The equatorial effec-
tive zones correspond to propagation
along (101), (111),L100], and [001j,
respectively.
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tion. Of course, the predicted high-frequency limiting
value is also reduced somewhat because of the other
third-zone arms. A possible reason for the high measured
limiting value will be discussed later.

B. Quasilongitudinal Attenuation

To see if the same correlation is found for propagation
directions between L001j and $100j, we must subtract
the contribution due to the Js term in Eq. (14) (the
rapid-drop part of n, ) from the measured slopes of n
versus f. The remainder may then be compared with
the J~ term, evaluated over the second-zone surface
with the free-electron values of R and E,. For all
propagation directions in the (010) plane 0 can be
shown to be less than 3 deg, using the known elastic
constants of indium. "Thus, the second and third terms
of Eq. (15) are negligible.

In order to see more clearly the location of the
effective zone for various orientations, and at the same
time to provide a means of graphically evaluating the
J& term, it is convenient to show the effective zone
path on some kind of projection of the Fermi surface.
One type of projection is constructed as follows. The
faces of the free-electron second-zone surface in Fig. 12
are segments of Fermi spheres centered on neighboring
reciprocal-lattice sites. If each face is translated in
reciprocal space by the vector required to bring the
center of the associated sphere to the center of the
Brillouin zone, then all of the second-zone faces are
placed on the surface of a single sphere, and the face
boundaries can be expressed in analytic form. Using
spherical coordinates, an equal-area projection is
constructed by plotting cosg versus f, where f is the
azimuthal angle. If the coordinates are chosen so that
p= 0 is in the direction of propagation, then the effective
zone will be along the equator (g=-', vr) of the projection.
In Figs. 13 and 14 representative parts of the Fermi
surface are plotted on equal-area projections for the
five major propagation directions. On these projections,
the relative contributions of the second and third
zones can be determined by simply measuring their
relative contributions to the effective zone length along
the equator. Furthermore, for orientations other than
these the effective zone can still be plotted, as shown
in Fig. 13 for orientations 20' and 50' toward

i 1001
and $110].To measure the relative second- and third-
zone contributions in such cases, the nonlinear char-
acter of the projection must be accounted for, but this
presents no great problems. For propagation in the
(010) plane, the results of such effective-zone calcula-
tions and data corrected for the rapid-drop part of n,
are given in Fig. 15. It is seen that the orientation
dependence of the measured slopes dn/d f is qualitatively
the same as the variation of the second-zone Fermi
surface contribution alone, except for the region within
about 20' of the L100] direction.

At this point it is appropriate to consider what
properties of the Fermi surface might explain the
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apparent ineffectiveness of the third zone. Recent
experimental data' and pseudopotential calculations" "
indicate that the crystal potential eliminates not only
the first- and fourth-zone pockets, but also the third-
zone o. arms. This would certainly explain their in-
effectiveness. If this is the case, however, then it is not
sufhcient to simply regard the n arms as making a zero
contribution, while the second zone is unchanged.
In the nearly-free-electron approximation'4 the dis-

appearance of the n arms can be explained by the crea-
tion of energy gaps on the Brillouin zone boundaries,
and if the lattice potential causes gaps at the it values
corresponding to 0. arm locations, not only the n arms
but also a part of the second zone will be affected. This
is illustrated in Fig. 16, which shows a central cross
section of the Fermi surface in the (110)plane. It is seen
that the partial elimination of a third-zone P arm is
accompanied by a rounding of the corresponding
second-zone cusp. In the nearly-free-electron approx-
imation the energy gap is centered at the energy given
by E=k'ko'/2rtt, and this results in "removal" of equal
parts of the arm and cusp. Thus it appears that when
calculating the expected second band contribution to
the effective zone, as much as twice the width of the n
arms should be subtracted from the free-electron
surface. The effect of subtracting this additional amount
is seen in the solid curve of Fig. 15.

O' N. W. Ashcroft and W. K. Lawrence, Phys. Rev. (to be
published).

'3 W. J. O' Sullivan, J. E. Schirber, and J. R. Anderson (private
communication)."J.M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, London, 1964), p. 74.
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Fro. 15. Normalized limiting slopes da/df, minus the rapid-fall
contribution, for quasilongitudinal waves propagating in the
(010) plane of indium. The measured values are compared with
the result obtained by subtracting the third-zone free-electron
contribution for gl-+~ (dashed curve) and with a modification
to account partly for the eGects of the crystal potential on the
second-zone surface for gl =200 (full curve).
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Fro. 16. Central cross section of the Fermi surface for indium
in the (110)plane. The full lines represent the free-electron surface
and the dashed lines represent the results of a pseudopotential
calculation (Ref. 33) with V(11P)=—0.050, V(002P) = —0.031,
V(200)=+0.00'I ry, where P=a/c

The over-all agreement between the measurements
and calculations is now somewhat better, the most
obvious improvements being for propagation directions
0' to 30' from $1007 and 5' to 20' from L0017. In the
first region the sharp peak about 13' from L1007 is
partly smoothed out and the attenuation is reduced;
a similar change occurs near I 0017. The unexpectedly
large difference between the two curves for propagation
in the L0017 direction is due partly to the additional
amount of Fermi surface which has been subtracted and
partly to the difference in calculation methods. The
dashed curve, obtained by measuring effective zone
lengths on the projections in Figs. 13 and 14, is based on
the assumption of an infi. nite mean free path. In this
case the effective zone has no width and the four n arms,
which come very close to the equator of the $0017
projection without crossing it, do not affect the attenua-
tion. The solid curve results from numerical integration
of the attenuation integral, given by the first term in
Eq. (8), over the modified second zone for an assumed
ql value of 200. This 6nite qt leads to an effective zone
width on the order of 1', so that the same four a arms
do affect the calculated attenuation. Clearly the as-
sumption of a finite ql is the more reasonable, and the
dashed. curve should be somewhat lower for L0017
propagation. A similar explanation applies to the
smaller difference between the two curves in the L1007
orientation.

Fermi surface cross sections calcu1ated from a recent
set of pseudopotential parameters3' suggest that the
assumption of equal efrects on the third-zone n arms and
the associated second-zone cusps is reasonable except

hg
Jt rIsK~ dI y p

4g~3A,
(19)

where dl.~ is the difIerential length measured along the
effective zone and E@ is the radius of curvature in the
plane defined by f=lcsotn. The angles p and f are
labelled in Fig. 18. %hen the equation is written this
way, it is clear that only the radius E~ can affect the
attenuation. This is reasonable since it is R@ that deter-
mines the width of the effective zone.

To estimate the magnitude of these effects in indium,
it is necessary to know something about the actual
dimensions of the P arms. de Haas —van Alphen measure-
ments" indicate that the normal cross-sectional area
of the P arms is approximately half of the free-electron
prediction. It can be shown that any two-dimensional
geometric figure (such as the P-arm cross section), whose

"G. B.Brandt and J. A. Rayne, Phys. Rev. 132, 1512 (1963).

near the ends of the arms. In Fig. 17 the dot-dash
curve shows the e8ect of subtracting half the width of
the associated n arm from the second-zone t 0117 free-
electron cusp. It is seen that the pseudopotential
calculations given by the dashed curve predict a larger
deviation near the ends of the third. -zone arms, in such a
way as to round off the corners of the second zone
surface quite severely. By noting the way in which the
effective zone changes with orientation on the projec-
tions of Figs. 13 and 14, it can be seen that the contribu-
tion of these second-zone corners to the attenuation is
directly related to the presence of sharp peaks in the
calculated attenuation curves of Fig. 15.Thus removing
these corners, a crude approximation to the rounding
which actually takes place, would be expected to further
improve the agreement between experiment and theory
in Fig. 15, particularly for orientations 5' to 20' from
L1007.

The apparent ineffectiveness of the third-zone P arms
can be at least partly explained by considering the
effect of the crystal potential in rounding off the edges
of the arms and associated second zone cusps. Rounding
these edges has two effects: it reduces the length of any
effective zone crossing the edge, and, at the same time,
changes the Gaussian curvature at points on and near
the edges, as can be seen in Fig. 16. Since the reduction
of the effective zone length is negligible for effective
zones which run along an arm and never cross the edges,
the importance of the fi,rst effect depends strongly on
orientation. The attenuation change due to the second
effect is also orientation-dependent, because the
dependence of Eq. (12) on the Gaussian curvature
does not necessarily mean that a region of high curva-
ture makes a small contribution to the attenuation.
Equation (12) can be rewritten as

Ag
n, »i= Rs(&=90', f)Ey(&=90', g)K,'df

4m.

~cafe,
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area is halved while its shape is held constant, will have
a 6nal perimeter equal to 1/V2 times the original
perimeter. Any increase in the ratio of area to perimeter
during the area change, such as will occur from the
rounding of sharp corners, will result in a further
decrease of the perimeter. Thus, it may be estimated
that the eA'ective zone around a P arm has approxi-
mately 60% of its free-electron length. If the crystal
potential has a similar effect on the corresponding
second-zone cusp, then the length of an effective zone
crossing a P arm at right angles may be shorter than the
free-electron value by up to 80% of the free-electron
P-arm width. When the effective zone crosses at an
angle less than 90', as for propagation directions 0' to
about 35' from $100], the effect will be somewhat less.
However, a signi6cant reduction in R~ also occurs near
the arm and cusp edges for these orientations, so that
the total drop in attenuation associated with the P
arms may be roughly equal to the drop calculated by
assuming the P arms to be totally ineffective.

For propagation in the L001] direction the effective
zone runs lengthwise along the P arms, as seen in Fig. 13.
Therefore, the reduction in its length is smaH, perhaps
15%, and Re is significantly decreased over only about
one quarter of this length. Although both the effective-
zone length and E& are also less than the free-electron
value near the corners of the second zone L100j faces,
it seems clear that for this orientation a reduction of the
attenuation by an amount equal to the total P arm
contribution is too large a correction to the free-electron
value. A more reasonable estimate, based on the above
corrections to the P arms and similar ones for the [100$
faces, raises the solid curve of Fig. 15 to approximately
0.54, much nearer the measured value. This includes a
contribution of about 2% from the rounded cusps of
the P arms and the second zone. For orientations a few
degrees away froin I 001j, the model becomes more

a
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FIG. 18. Coordinate system for sound propagation
in the x direction.

reasonable again since the eR'ective zone nears the edge
of the p arm and the adjoining second-zone face, where

R& is reduced to a few percent of its free-electron value.
In fact, the low value of R& near the edge of the second
zone will cause the area of reduced attenuation to
extend several degrees past the sharp rise exhibited by
the curves in Fig. 15, bringing them more nearly in
agreement with the data.

The one feature of the experimental results which
remains unexplained by the preceding discussion is the
high attenuation 25' from the L001] direction. Clearly
an attenuation greater than the free-electron value
cannot be explained by assuming the absence or ineffec-
tiveness of some part of the Fermi surface. A Oat area
near the central part of the (111)-type faces, leading to
a high value of E& along part of the effective zone, could
explain the increased attenuation, However, recent
size-eGect measurements" put an upper limit of about
10% on the deviation from free-electron curvature near
(111). The only remaining adjustable parameter is
the deformation coefBcient. Thus it appears that E,
must exceed the free-electron value on the (111)-type
faces in the region crossed by the eGective zone for
propagation approximately 25' from $001j.This region
is also crossed by the eGective zones for propagation
normal to (111)and (110),but this leads to no confhct.
On the contrary, it may explain why the predicted
attenuation for these orientations, after subtracting
the contribution of the third-zone arms, is less than the
measured value as indicated in Table I.

0 .6
k LPlP] ( UnitS Of 27r/0 )

I

I.O

FxG. 17. Central cross section of the second-zone Fermi surface
for indium in the (100) plane. The free-electron and pseudopoten-
tial predictions are given by the full and dashed curves, respec-
tively, while the dot-dashed curve shows the effect of the modihca-
tion discussed in the text.

C. Rapid-FaQ Attenuation

The lower curve in Fig. 7 is drawn through the
measured values of rapid-fall attenuation, as described

36 I. P. Krylov and V. F. Gantmakher, Zh. Kksperim. i Teor.
Fiz. 51, 740 (1966) )English transl. : Soviet Phys. —JETP 24,
492 (1967)g.



686 E. S. BLISS AND J. A. RAYNE

5—

O

CP .4—

N

CI
E
O
R

Q .2

'O
4l
h

O
Ol

a'

ii
I (II'

I
I
l
I
I

—,lo
E

C

O

O—.oe
4l
4J

O

o—.06
P

i

—.04
tlo

Ol

O
—.02

D
V

0
flool

lp
[op i]

previouslv. This part of the total attenuation is assoc-
iated with the A term in Eq. (14), where Js has the
theoretical form given by Eq. (16).From the symmetry
properties for propagation in the (010) plane, Lr, Ls,
and L3 are found to be

I r A /rrAy„, I s 2AB/rrA„„) Ls B/rrAyy, (20)

where

A = (K,+k, cosP) tang cosgdS,
S

B= (K„+k„cosP) tang cosfdS,
S

(21)

and the integrals A,, have the form given in Eq. (9).
For a pure longitudinal mode 0 is zero, causing the L~
and Ls terms in Eq. (16) to vanish. Since pure modes
propagate only in high-symmetry directions, and since
k =ks cosQ, the change in sign of tang at @=—',z.

causes both parts of A, and thus L~, to vanish also.
For quasilongitudinal modes, which propagate in

directions of lower symmetry, A will have a nonzero
value when the Fermi surface has asymmetry on
opposite sides of g=-', z.. In fact, for a model in which
pieces of the surface are assumed to be absent or
ineffective, it may become quite large for some propaga-
tion directions. The same arguments apply for that part
of B containing K„.However, k, contains a factor sing
which gives an even integrand when combined with
cosP and tanqk Thus, the second part of B always has a

Propagation Direction Relative to [lpp] (Degrees)

Fro. 19. Normalized contribution to the limiting dn/df arising
from the rapid-fall region for quasilongitudinal waves propagating
in the (010) plane of indium. The dashed curve shows the cal-
culated variation obtained by subtracting the third-zone contribu-
tion in the limit ql —+ ~, while the full curve shows the variation
obtained with the modi6ed second-zone surface for pl=200.

value on the order of (ks'). This is the same order of
magnitude as values calculated for A in the (010)
plane, but I.~ and L3 can still be neglected for approx-
imate evaluation of Eq. (16), since II is always less than
3' in this plane.

The integral J2—Lj has been evaluated by numerical
integration of A and A» over the model Fermi surface
obtained by assuming the third zone to be ineffective,
and also for the model which removes an additional
amount equal to the width of the associated o. arm
from each second-zone cusp. The results are shown in
Fig. 19 along with the experimental data plotted on a
reduced scale. It is believed that the nonzero values
measured for $001$ and $100$ propaga, tion probably
reflect systematic errors in the extrapolation procedure
used to reduce the data. The calculated curves exhibit
two pairs of peaks, each pair occurring in the same
range of propagation directions as one of the two peaks
in the data. Furthermore, the appearance of double
peaks in the calculated curves and the discrepancy in
the calculated and measured magnitudes can be
explained in qualitative terms by the known inac-
curacies of the model. Since the model for the dashed
curves makes no correction for the effect of the crystal
potential on the second-zone surface near the o. arms,
the discussion may be limited to the solid curve.

The structure in the calculated curve is due almost
entirely to the numerator of Lr in Eq. (20), i.e., the
integral A. Since this integral is zero when evaluated
over the entire Fermi sphere, it can be computed for the
modified surface by evaluating Eq. (21) over each of
the third-zone arms (with the n arms assumed to have
double their free-electron width), and adding the results.
The sum obtained is equal, with a change in sign, to
the integral A for the modified second zone. Although
all of the third-zone arms contribute to the integral,
four of the arms (in each quadrant of the surface)
dominate. These arms are indicated by single and
double prime markings in the left quadrant of the L001j,
(101), and t 100] projections in Figs. 13 and 14; the
associated peaks are labelled in Fig. 19.The separation
of these peaks is caused by the nearly zero width of the
arms at the points where they join and, in the case of P',
by the assumption of total ineffectiveness of the P arm
instead of ineffectiveness at the edges of both the P
arm and the corresponding second-zone cusp. Thus, it
can be seen that the rounding of the second-zone
corners and cusps on the actual Fermi surface would
tend to eliminate the separate identity of the n and P
arms in the evaluation of 3 and would give two single
peaks between the t 001j and L100$ orientations. This
tendency would be further enhanced by the wider peaks
resulting from a more gradual transition between
effective and ine6ective areas, as expected for the
actual Fermi surface.

These arguments also provide a possible explanation
for the magnitude discrepancy. Since the integral is
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squared in the expression for I.~, the effect of combining
two peaks in A is to give a single peak with a height
greater than the combined heights in Fig. 19.The calcu-
lated curve might then reach the measured peak values,
which are larger than the present calculations by a
factor of 4 or more. Although it is not clear how the
relative magnitudes of the single and double prime peaks
in Fig. 19 are affected by the preceding discussion, it
can be seen from the positive sign of the k„part of the
integral 8 that the 1.2 terms in Eq. (16) may be expected
to enhance the peak near $001j and reduce that near
$1007. As previously noted, the importance of this
effect is limited by the small value of Q.

D. Edge Effects

It has been proposed that there are reasons, essen-
tially independent of the crystal-potential effects on
the Fermi surface, for expecting the electrons near the
sharp edges of the free-electron Fermi surface to be
ineffective in attenuation. 9 In addition to having some
doubts about the validity of the arguments presented,
the present authors believe the predicted effects to be
negligible for a real Fermi surface, i.e., one whose
edges are rounded by the crystal potential.

V. CONCLUSiONS

Low-temperature measurements of the electronic
part of the acoustic attenuation in single-crystal indium
have been reported for a wide range of strain amplitude,
frequency, orientation, and purity in both the super-
conducting and normal states. It has been shown that
the attenuation exhibits signiicant amplitude depend-
ence except at very low strain amplitudes. This ampli-
tude dependence is found to agree qualitatively with
the predictions of a dislocation damping mechanism,
but satisfactory quantitative agreement with present
theories is not obtained. The effects of amplitude
dependence can be largely eliminated by extrapolating
to zero amplitude, and theoretical arguments suggest
that the error due to dislocations at zero amplitude is
small.

The measured electronic attenuation values have the
expected quadratic and linear frequency dependence
in the low- and high-frequency limits, respectively.
However, the high-frequency limiting slopes and the
intermediate q/ frequency dependence have been
observed to exhibit considerable deviation from the
predictions of the free-electron model. The limiting
slope values of u„versus f are highly anisotropic and
for quasi-longitudinal waves include a significant con-
tribution which vanishes in the superconducting state
within approximately 30 mdeg below T,.This drop is in
addition to the less sudden drop of the usual BCS
attenuation for longitudinal waves.

The deviations from free-electron behavior, including
thy observation of a large rapid-fall attenuation at T„

have been largely attributed to those features of the
Fermi surface topology arising from effects of the
crystal potential. The apparent absence of the a arms
is the most notable of these, but other relatively minor
modi6cations to the free-electron surface, such as the
rounding of corners and cusps, have been shown to be
important in determining attenuation values. These
conclusions are supported by a comparison of the
experimental results with calculations intended to
incorporate the basic effects of the crystal potential.
Although Fermi surface topology has been proposed as
the dominating factor, it is also noted that some
anisotropic departure from the free-electron value of
E, is likely.

There are a number of interesting possibilities for
continued investigation of the electronic attenuation in
indium. It is clear that attenuation calculations based
on a complete and accurate pseudopotential model for
the second- and third- zone Fermi surfaces are needed at
this time. Such calculations can be expected to establish
more conclusively the degree to which Fermi surface
topology can account for the deviations from free-
electron behavior. They should also make it possible to
extract more information about the deformation
parameter.

If more accurate calculations prove to be successful
in predicting the present limiting-slope values (including
the rapid-fall contribution), two additional steps might
be taken. First, it is of interest to see what sort of
anisotropy may exist for propagation in the (001) and
(110) planes. If any striking features are predicted,
additional measurements might be undertaken as a
further check of the model. Second, once a reasonable
degree of con6dence is gained in some model of the
Fermi surface topology, and noticeable progress has
been made in determining the anisotropy of the de-
formation parameter, further studies of the ql depend-
ence of attenuation may be useful for investigating the
possibility of anisotropy in /.

Finally, it should be noted that nothing has been
found which can be said to conflict with the presently
available theories for electronic attenuation. This is
not the case for the theories of dislocation attenuation,
however, and further progress in this area is to be
desired.
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