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An analysis is made of modulation sects in "resonant nuclear disorientation" experiments on radioactive
nuclei which have been polarized by hyperfine interaction at low temperatures in ferromagnetic host metals.
The inhomogeneously broadened nuclear magnetic resonance is detected through the destruction of the
y radiation anisotropy by a resonant-frequency-modulated rf Geld. It is shown that to a good approxima-
tion the observed line shape is determined solely by the modulation amplitude and the distribution of
hyperfine magnetic fields; for large rf fields, the signal amplitude depends separately upon the modulation
amplitude and frequency. For finite rf field intensities, the signal amplitude also depends upon a parameter
k which is closely related to the saturation behavior which would be observed in the absence of inhomo-
geneous broadening. At high modulation frequencies, the dependence of the signal amplitude upon k is
easily calculated, and this should permit experimental determinations of k values. Independent determina-
tions should also be possible from studies of the time rate of destruction of the p radiation anisotropy
immediately after applying a resonant rf Geld.

1. INTRODUCTION

KCENTLV there have been several reports' ' of
observations of the nuclear magnetic resonances

of dilute traces of radioactive nuclei in ferromagnetic
metals. In such "resonant nuclear disorientation"
(RND) experiments the effect of a resonant rf field
on the anisotropy of y radiation from nuclei polarized
by hyperfine interaction at low temperatures (~0.01'K)
was observed.

The polarization of radioactive nuclei in an axial

magnetic 6eld H at a low temperature T produces a
fractional change F in the intensity of y emission at an
angle 8 to the direction of H given by'

F= g I U'„F„B„F„(cos8)5—1,

recently given by Shirley, ' who shows that in addition
to the very accurate determinations of hyperfine
interaction fields and nuclear moments the method is
also of considerable fundamental interest. This is so
because the detection of resonance by the observation
of statistical tensors of order higher than first is closely
related to the nature of the absorption of energy from a
resonant field and of the nuclear magnetic relaxation.
It also should lead to criteria for the validity of the
spin-temperature concept.

Another possibility of observing RND is afforded by
the asymmetry of a hyperfine-split Mossbauer spectrum
due to the polarization of the parent nuclei by hyper-
fine interaction at low temperatures. ' ' The intensity
of one transition of the Mossbauer nucleus is propor-
tional to

where the B„are functions of P=ttII/kTI and describe
the orientation of the parent nuclei; the E„and U„,
respectively, are angular-momentum coupling coeK-
cients for the observed and preceding radiative transi-
tions. If a suSciently intense, linearly polarized rf
leld is applied perpendicular to H then at the nuclear
magnetic resonance (NMR) frequency, as is well
known in magnetic resonance theory, substantial
disorientation of the polarized nuclei will occur. The
subsequent reduction in the anisotropy of the p radia-
tion leads to a very sensitive method of detecting the
magnetic resonance by simply measuring, at a Gxed
angle e, the p radiation intensity as a function of the
radio frequency. A review of this technique has been

' E. Matthias and R. J. Holliday, Phys. Rev. Letters 17, 897
(1966).

~ J. E. Templeton and D. A. Shirley, Phys. Rev. Letters 18,
240 (1967).' J. A. Barclay, W. D. Brewer, E. Matthias, and D. A. Shirley,
in Hypergne Interactions and XNclear Radiation, edited by E.
Matthias and D. A. Shirley (North-Holland Publishing Co.,
Amsterdam, 1968).

s R. J. Blin-Stoyle and M. A. Grace, in Randbuch der P'hysih&
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 42,
p. 555.

I
p(m) =

t Q C(cVr, m)e ~»~~srI5/
MI I

1'

e tsroH/ATE (2)—

where H is the hyperfine Geld acting at the parent
nucleus of spin l, and the C(Mr, m) are coupling
coeKcients representing the branching probability of a
parent nucleus in the state 3f& decaying to the initial
state m of the observed Mossbauer transition. At
present there has not yet been a report of RND detected
by this technique although it should be applicable at

D. A. Shirley, in Hyperfsne Zgteractiogs agd Nuclear Radiation,
edited by E. Matthias and D. A. Shirley (North-Holland Publish-
ing Co., Amsterdam, 1968).

6 J. G. Dash, R. D. Taylor, P. P. Craig, D. E. Nagle, D. R. F.
Cochran, and W. E. Keller, Phys. Rev. Letters 5, 152 (1960).

r J.G. Dash, R. D. Taylor, D. K. Nagle, P. P. Craig, and W. M.
Visscher, Phys. Rev. 122, 1116 (1961).

sR. D. Taylor, in Proceedings of the Second International
Conference on the Mossbauer Effect, edited by D. M. J. Compton
and A. H. Schoen (John Wiley R Sons, Inc. , New York, 1962}.

~G. J. Ehnholm, T. E. Katila, 0. V. Lounasmaa, and P,
Reivari, Phys. Letters 2SA, 758 (1967).
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rized for the case of a large rf 6eM amplitude and in
Sec. 4 we then show how the dependence of the reso-
nance amplitude upon modulation frequency for smaller
rf field amplitudes depends strongly upon the causes of
the intrinsic linewidth which would be observed if
inhomogeneous broadening were absent.

2. EFFECTS OF THE MODULATION AMPLITUDE
FOR FAST MODULATION

02

FIG. 1. Modulation-broadened line shapes for a Lorentz distri-
bution of hyperhne 6elds plotted for various values of R, the
ratio of modulation width to the width at half-height of the
hyperfine field distribution.

considerably higher temperatures than those neces-
sary to observe anisotropy of p radiation.

In the Qrst observation of RXD by Matthias and
Holliday' the axial intensity (i.e., 8=0 ) of y radiation
from ' Co nuclei polarized in iron at 0.03'K was
measured. Although, due to the nuclear alignment,
the axial intensity wa, s 16% lower than the isotropic
intensity observed at 1 I&, the rf field caused only a
small ( 2+o) increase in the intensity at resonance.
Templeton and Shirley' showed that this small effect
was due to inhomogeneous broadening. In the ferro-
magnetic sample the distribution of hyperfine fields
causes the NMR resonance width to be far greater than
the intrinsic width associated with the nuclear relaxa-
tion processes. Consequently an rf held with a well-
defined frequency can only disorient a very small
fraction of the nuclei. In order to observe significant
resonant destruction of the radiation anisotropy it is
necessary to employ frequency modulation of the rf
field. The modulation amplitude needs to be comparable
with the inhomogeneously broadened line width and the
modulation frequency should be comparable or fast
compared with the reciprocal of the nuclear spin-lattice
relaxation time T~.

In RND experiments, as in conventional magnetic
resonance experiments, " " the true line shape (in this
case the distribution of hyperfine fields) is only obtained
if the modulation amplitude is small compared with the
linewidth. However, the signal-to-noise ratio is then
often poor. Hence it is important to understand the
dependences of the resonance amplitude and modulation
broadening upon the modulation amplitude. In Sec. 2
these dependences are given for Gaussian and Lorentz
line shapes together with methods for correcting ob-
served line shapes for modulation broadening. In Sec. 3
the effects of finite modulation frequency are suiiima-

' G. V. H. Wilson, J. Appl. Phys. 34, 3276 (1963)."G. V. H. Wilson, J. Sri. Instr. 41, 98 (1964)."G. V. H. Wilson, J. Appl. Phys. 36, 3505 (1965).

A. Calculation of Resonance Amplitudes and
Modulation-Broadened Line Shapes

In this section we assume that the modulation
frequency co/2ir is suKciently large so that we may
neglect the reorientation of nuclei during those intervals
of the modulation period when they are not being
resonated by the rf field; i.e., we assume that ~T&))1.
We also assume that the rf field is suKciently intense
so that all nuclei which are resonated during the modu-
lation period are suKciently disoriented so that their
y radiation anisotropy (or in the case of a Mossbauer-
effect RND experiment, the asymmetry of the Moss-
bauer spectrum of the daughter nuclei) may be
neglected.

In both of the RND experiments described above
there is, in the absence of the rf field, a fractional change
F in the observed radiation intensity upon cooling the
specimen from a temperature at which the nuclear
orientation is negligible to a low temperature T. For a
single hyperfine field H,

F(II,T)=)I(H,T) I(H, ~)j/I—(H, ~). (3)

In a y radiation anisotropy experiinent I(H, T) is the
p radiation intensity at a fixed angle 0 to the alignment
axis; in the Mossbauer experiment I(H, T) is the
intensity of one of the lines of the hyperfine-split
Mossbauer spectrum of the daughter nuclei. Allowing
for inhomogeneous broadening we have

F(T)= F(H, T)p(H)dH,

where p(H) is the normalized distribution of hyperfine
fields. From now on we consider this in terms of the
distribution P(v) of NMR frequencies v=tJH/hI so
that:

F(T)= F(v, T)P(v)dv,

P(v)dv =1.

If the center frequency and modulation amplitude of the
frequency modulation are y and 8', respectively, then
from the above assumptions it follows that all nuclei
which resonate at frequencies between y—lV and y+ W
will be effectively completely disoriented. We de6ne
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the RND signal S(y) as the fractional reduction of
F(T) so that

1.0

0.8

S(y) = F (v, T)P(v)dv F(v, T)P(v)dv.

a 0.6

Generally the fractional width of the inhomogeneous

as independent of ~ over the width of the line so that

P(v)dv

C0

0.2

M tv(y) = P(v)dv

and the fractional destruction of Ii is equaual to the
fraction of nuclei being inQuenced by t e r e

If the rf field is not intense enough to effectively
completely disorient the resonated nuclei then, pro-
vided coTg))1, all nuclei with resonance frequencies in
the range y&S" will be disoriented to the same extent
so that S(y) =cps (y), where c is a constant which is
less than unity, and

0 1 2
R

of the si nal amplitudes for Lorentz andp o g'

lfh'h f h h fi fild
ne field distribution upon, e

lation width to the width at ha - eig o
distribution.

The existence o a af h rd-core effect for an inhomoge-

neously broa ene ine ad d l h s not yet been demonstrate .
In Figs. 1 and 2 the line shapes &tv(y) which wou

be o serve or ob d for I.orentz and Gaussian hyperfine field

distributions, respectively, are shown. e a e
normalized distributions

P(v) =[7r(1+v')] ' (I.orentz) (6)

,0,the resonance is symmetric about y=0 then 3E~, ,
1 t the signal amplitude, norma ize so

that 3fiv(0) —+ 1 as W~~. Equation (5) shoul a so
still represent the effect of the modulation amplitude
if cuTi))1 and there is a hard-core value of the radiation
anisotropy w ich' h cannot be removed no matter how
intense is t e r eh f fi ld. Shirley' has shown that because
the p radiation anisotropy is given by statistical tensors

nuclear magnetic precession and the rf field at resonance

relaxation and inhomogeneous broadening are neglected.

0,8

0.6

and
P(v) =e &""~'/ir (Gaussian).v= — ' 7)

Th l sha es are shown for various vvalues of R,e ine s ap
the width

i ht. For 6)
h t' f the modulation width (2W) to

of the field distribution P(v) at half-heigh . or (

is proportional to P(v) but the signal amplitude is
small:

[Ms (y)]iv p~ 2WP(y).

In Fi . 3 the signal amplitude A (R) =Ms 0 for the
I.orentz and Gaussian distributions is plotted against

necessary with a Gaussian distribution since less nuclei
e fields in the "wings" of the distribution.

In dilute alloys one expects a Gaussian dis ri

effectively obtain complete disorientation.

0.4

0.2

Fzo. 2. Modulation-broadened line shapha es for a Gaussian
tion of h erfine fields plotted for a various values o

h 4 dh thlfh'h f ththe ratio of modulation widt to t e wi
hyperfine Geld distribution.

B. Moments of the Modulation-Broadened
Line Shapes

ting to note that Eq. (5), which accurately
re resents the modulation-broadened signa or a

as first used" as an approximation to the
modulation broadening for the phase-sensitive e ec i

f nventional magnetic resonance experiment. In
d o derive expressions for the momentor er to erive

broadened line shapes we firstly define t iehe normalized

"M.M. Perlman and M. Bloom, Phys. ev.ev. 88 j.290 (1952).
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modulation-broadened line shape:

E(y) =~~(y) ~~(y)4 =~~(y)/(2W). (9)

Equation (5) may be rewritten as

I'(y+ x)ch,

E(y) = 2 ~-~""'(y),
m=o

where x= v —y and a Taylor expansion leads to

C. Correction of Modu1ation-Broadened Line Shayes

The amplitude W' of the frequency modulation is
easily measured so that by using (13) moments of the
line shape may be accurately corrected for modulation
broadening. As in conventional magnetic resonance
experiments" we may also correct the observed line
shape for modulation broadening to obtain the distri-
bution of hyper6ne 6elds by either a series method or
correction of Fourier coeKcients. :::s:i::-.''t: s!s' AQ%@'g

In the series method the Taylor expansion (11) is
inverted to express P(y) in terms of derivatives of the
observed line shape:

~(y) = Z &'E""(y)

where P&'~) (y) refers to the (2m)th derivative of E(y)
with respect to y and u =W'~/(2m+1)!. Let Ss and o s

denote the eth moments of the observed line shape OQ 00

S(y) and true line shape I'(v), respectively. Then
s=o m=o

P,g~s (m+ i) —1

and from (11)

E(yb "dy "= &(y)y"dy

ynP (sm) (y) dy

where D is the differential operator. By equating
coefficients of powers of D a set of linear equations is
obtained and the first four solutions (ks to ks) lead to

P (y) =E(y)—W'E") (y)/6+ 7W'E t"(y)/360
—7W'E&') (y)/2160+ ~ ~ . (16)

By tabulating the observed line shape the derivatives
may be determined from the central differences and the
calculation of P(y) using (16) is very simple. However,
the series is only suKciently rapidly convergent for
8&0.5 so that this simple method can only be applied
in cases where the distortion is not too great.

In the Fourier coeScient correction method we
ex and P in the ran e —I'& & I"

After e partial integrations, assuming that 0" is finite,
we obtain

g72tn~ fn/2
gn o'" sm (rI even). (13)

m=o (2m+1)!(n —2m)!

szy m zy)
P(y) = as+ P u, cos +b, sin

Y I') (17)

Y' (a, ~iy 1); rriy) 7riW
E(y) =as+ P~ —cos +—sin

~

sin
W~'= &i V s I') (18)

FS'= o'+-'W'

p b) g
For odd e the limit in the sum must be changed to
—',(e—1). Equation (13) may be used to correct the
moments of any order of the observed line shape for
modulation broadening. The second moment is often
used as a measure of the width of the line shaPe and S„bst,tut, ng th;s;nto Eq (10) leads to
(13) leads to the following expression relating the second
moment of the observed and true line shapes:

as first obtained by Perlman and Bloom" in their
approximate treatment of modulation broadening in
conventional magnetic resonance experiments.

For sufficiently large values of 8" the Taylor expan-
sion (11) will diverge and the above derivation of the
correlation equation (13) is then invalid. However, as
for conventional magnetic resonance detection, " in the
case of RND experiments the method of Flynn and
Seymour'4 will always apply and also leads to Eq.
(13) 15

' C. P. Flynn and E.F. W. Seymour, Proc. Phys. Soc. (London)
75, 337 (1960).

'~ For this rigorous derivation of Eq. (13) we use the correction

so that in the range —I'~&y&~ P the Fourier coefficients

equation (Refs. 11 and 14)
elS"=P '

3E~(P)a" &, (i)
pI {~—p) ~

where 3IIs(p) is the pth moment of the response p(y) to a 8-
function resonance at 31=0. Then for RND experiments

P(y)=1 y &W
=0, 31 &W

ce

~u(W) =~~ P(y)y'&y

=W&/(p+1), (p even)
=0, (p odd)

and substitution of (ii) into (i) leads to Eq. (13).
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a;, 'b; of P(y) are related to the corresponding coeffi-
cients n;, P; of the observed curve by

vari= gisii Pi =pi~i y

where g; = (Y/Wrri) sin(s. iW/I'). These simple relation-
ships hold for any modulation amplitude. In using this
method to correct line shapes for modulation broadening
the parameter I' should be chosen to avoid cases where
sin(s-sW/1") =0 since the coefficients a;, b; as given by
(19) are then ratios of small, inaccurately known
quantities.

3. EFFECTS OF THE FINITE MODULATION
FREQUENCY

A. Basic Assumptions

In Sec. 2 it was assumed that ~T&&1. When this is
not so, nuclei with a given resonant frequency can
partially reorient during those intervals of the modu-
lation cycle when they do not experience a resonant rf
Geld. Consequently when averaged over all nuclei and
over a complete modulation cycle there is never com-
plete disorientation no matter how intense the rf Geld is.
The signal amplitude and observed line shape then
strictly depend upon both the modulation frequency
and waveform as well as upon the modulation ampli-
tude. However, we will show that to a fairly good
approximation the line shape depends only upon
modulation amplitude and the signal amplitude is
given by Ms (0) as in Sec. 2 multiplied by a function
of 8=(oTg.

Templeton and Shirley' could not detect any dis-
orientation with a resonant rf field and no frequency
modulation so that, because of the inhomogeneous
broadening, only a very small fraction of the nuclei
interact with the rf Geld. This is reasonable since the
intrinsic NMR linewidth 1/Ts is certainly very much
smaller than the observed inhomogeneous broadened
linewidths which are of order 1 Mc/sec. Consequently
we may treat the case of a finite modulation frequency
in terms of small groups of nuclei being resonated for
an infinitesimal fraction of the modulation period.
In between these disorientations each such group of
nuclei will partially reorient and we assume that this
may be described in terms of a spin temperature which
varies with time as

and, for a half-life rr~s of 1 year 10 pCi of activity leads
to a concentration of the active element of order 1 part
in l0'. Assuming that T2' varies inversely with concen-
tration' then, from measurements of T2' in more
concentrated alloys, " we expect T2' 0.2 to 5 sec for
the RND experiments. This estimate is for T]/2= 1

year and will be inversely proportional to 7&i2. At
present, RND experiments have only been reported for
cases where T& 10—50 sec. Hence in typical RND
experiments on elements with 7.~i~&1 year there will be
a high enough concentration of active nuclei for
T2'«T~ and the assumption of a spin temperature
should be valid. The assumption (20) of exponential
relaxation of T8 seems reasonable, since for the magne-
tized samples used there will be no domain-wall effects,
and a unique Tj is then usually observed in ferro-
magnetic metals. "

In experiments on nuclei with shorter half-hves,
weaker spin-spin interactions, or at higher temperatures
where Tj is shorter, there will certainly be cases where
T2'))T~ and then the transverse relaxation time T2 will

effectively be equal to T&. The assumption of a nuclear

spin temperature would then be invalid but (20) may
well be a fair approximation to the reorientation of the
nuclei in terms of an effective spin temperature Tg.

In the presence of the frequency-modulated rf
signal, the fractional change in intensity of the observed
radiation between a temperature where the nuclear
orientation is negligible and a low' temperature T is

v-W w

F=
~ + P(v)F(v, T)dv
l e,+w

P(v) F(v, T—s)didv
2%

=F(T)+ P (v)
y—8'

)( F v, Tg —F v, T dtdv, 2~

where F(T) and F(v, T) are de6ned in Sec 2A and.
g refers to an integration over one complete modu-

lation cycle. The RND signal is then given by

Sb) = LF (T) Fj/F (T)—
d(1/Ts) 1 (1 1 )

T lT Ts&
(20) P (v) PF (v, T) F(—v, Ts) jdtdv-

27r

The assumption of a nuclear spin temperature during
the absence of a resonant rf Geld is certainly valid if the
spin-lattice relaxation time Tj is much greater than the
characteristic time T2' for the decoherence in the
transverse nuclear magnetization as caused by nuclear
spin-spin interactions. The mass of the thin foil samples
used in RND experiments' ' is typically about 10 g

P (v)F (v, T)dv, (22)

"M. Weger, E. L. Hahn, and A. M. Portis, J. Appl. Phys. 32,
124S (1961).

~r V. Jaccarino, ¹ Kaplan, R. K. Walstedt, and J. H. Wernick,
Phys. Letters 23, 514 (1966);M. B.Salamon, J. Phys. Soc. Japan
21, 2746 (1966); ¹ Kaplan, V. Jaccarino, and R. T. Lewis, J.
Appl. Phys. 39, 500 (1968).
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and in terms of the dimensionless quantities O=coT~
and s= (i —y)/W the signal is

where

S(y) = W P(y+sW)p(s, 8)ds, (28)

and

Cdt

p(s, 8)= —f(T )d +
2' — 0

2x—co t'

f(TB)da (29)

1/Ts= T '(1—e
—"I'). (3o)

0
0.1 1 10 $0

0

Fro. 4. Curves of En(8) agains't 8 (=rsTi) for 1/T and 1/T'
temperature dependences of the y radiation anisotropy and sinu-
soidal and triangular modulation waveforms. A Gaussian distri-
bution of hyperfine fields is assumed. The function ICa(8) gives
the e8ect of modulation frequency upon the signal amplitude for a
modulation ratio R.

S(y) =2WP(y) p(s, 8)ds, (31)

For small modulation amplitudes P(y+sW) may be
Taylor expanded to obtain

from which it follows that for small modulation ampli-

and as in Sec. 2A we assume that the fractional tudes the true line shaPe is obtained regardless of the
inhomogeneous broadening is small so that modulation frequency which then simply contributes a

term Es(8) to the resonance signal amplitude where

where

S(y) = P (v)— f(T8)dfdr,
2'

(23)
Es(8)= p(s, 8)ds. (32)

f(Ts)=LP(vo, T)—P(~s, Ts)3/P(~o, T) (24)

and vo is the center frequency of the resonance. The
problem is now reduced to determining, for each group
of nuclei (i.e., each resonant frequency v), the depend-
ence of their spin temperature over a modulation cycle
and substituting this into (23) to determine the signal
amplitude and line shape. Each such group of nuclei
with resonant frequency y —W ~&i & y+ W will be
resonated twice during each modulation cycle. The
time interval between these disorientations will alter-
nate between f' and (2ir/M —f'), where

t'=7r I v —y —W~/Woi (triangular waveform)

For larger modulation amplitudes the effect of the
modulation frequency upon the signal amplitude will

depend upon the modulation amplitude and we write

S(0)=E (8)a(Z),

so that Err (8) is the ratio of the signal amplitude which
would be observed with O=orT~ to that with a modu-
lation frequency sufFiciently high for reorientation
during the cycle to be neglected.

When the fractional change F(T) in the radiation
intensity due to nuclear orientation is proportional to
1/T (e.g. , the Mossbauer experiment at suKciently
high temperatures or, somewhat roughly, the
radiation anisotropy in the "linear region") or to 1/T'

f'= (2/oi) arccos(~ i —y(/W) (sinusoidal waveform).
1.0

B. Complete Disorientation Model

We first consider a simple model in which the nuclei
are effectively completely disoriented whenever they
are resonated. If a given group of nuclei is resonated at
t=O then by (20) the time dependence of their spin
temperature until their next disorientation is given by

1/Ts= T '(1 e'Ir')—
and the integral over 1 cycle in (23) is given by substi-
tuting (26) into

tr 2x/o8 —t'

f(Ts)dt = f(Ts)dt+ f(T8)dh (27)
0 0

QN

Fzo. 5. Curves of Eo(0) against 8 (=~T1}for the detection of
axial p radiation from 6 Co nuclei in an iron host at various low
temperatures. The function E'0(8) gives the efject of modulation
frequency upon the signal amplitude for small modulation
amplitudes.
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(e.g., the p radiation anisotropy at suKciently high
temperatures), p(z, 8) may be calculated analytically
from (29), (30) as

p(z, 8) = (8/2tr) (2 e—"'" e—&"' 'x&te) (1/T law)

p(z 8) (8/2~)L3+r (e
—s(at'/e+es(~v 2e)te)—

2—(e "'te+e&"" 'e&te)5 (1/T law) (33)

where tof is given by (25). For a triangular modulation
waveforrn (31) may also be integrated, leading to

E'p(8) = (8/tr) Pl+ (8/2tr) (e ~to —1)5 (1/T law)

and

0.8

0.6
g

f7 0.&

0.2

I

2 3

g=o t

9 =05,3

Q 118

20 0
Z, (8) =—1+—(e-&-t P —1)

7r — 2'

FxG. 6. Modulation-broadened line shapes for R=2 and a
Gaussian distribution of hyperfine fields plotted for several values
of tt (=&oTt) and showing the weak dependence of the line shape
upon the modulation frequency. A 1/T law for the 7 radiation
anisotropy is assumed.

0 0
1+—(e ' te —1) (1/T'law). (34)

2~ 4x
modulation amplitude:

S(y) =E

p(8)&tv�(y)

. (36)

In Fig. 4 curves of Est(8) are plotted against 8 for both
1/T and 1/T' dependences of F(T). For R=O and a
triangular waveform Eqs. (34) are plotted; for the
other cases the curves were computed by numerical
integration of (28) and (29). For R=O the Gaussian
line shape (7) was used for P(v); for large R (in practice
R)3) it may be shown from (28) that the signal ampli-
tude does not depend upon the line shape P(v). It is
obvious from Fig. 4 that for typical modulation ampli-
tudes (R 0.5 to 2), E'st(8) is almost independent of
the modulation amplitude so that to a fairly good
approximation the signal amplitude depends separately
upon modulation frequency and amplitude:

&(0)=Zp(8)& (R) . (35)

In Fig. 5 curves of Ep(8) against 8 are given for the
detection of axial (8=0) y radiation from "Co nuclei
aligned by hyper6ne interaction in iron at various low
temperatures. A triangular modulation waveform is
assumed. These were computed from the known nuclear
orientation parameters' U„, F„, tt, and H. For 1/T=5
then F(T) pc 1/T' and the curve in Fig. 5 is identical to
the corresponding curve in Fig. 4, which applies to any
case in which the p radiation anisotropy is proportional
to 1/T'. For 1/T 50—100 the y anisotropy is very
approximately linear in 1/T and the curves in Fig. 5
are similar to the curve in Fig. 4 for a 1/T temperature
dependence.

Similar calculations showed that to a very good
approximation the observed line shape is the same for
either a sinusoidal or triangular waveform. Also, as
8 —+0 the observed line shape tends to &tv(y) as
would also be observed for a large 0 and, to a fairly good
approximation, it may be regarded as independent of 8,
i.e., it is effectively dependent only upon P(v) and the

This is illustrated in Fig. 6, where the line shape for a
1/T law and Gaussian P(v) is plotted for R=2 and
several values of 0. The dependence upon 0 is weak and
also the curves for sinusoidal and triangular wave-
forms agree to far higher accuracy than could be shown
in the figure.

4. EFFECTS OF THE FINITE rf
FIELD AMPLITUDE

A. Introduction

For sufficiently high modulation frequencies the
complete disorientation model (CDM) must become
invalid since the duration of each disorientation is
proportional to 1/po and the rf 6eld could only com-

pletely disorient the nuclei instantly if it had an infinite
amplitude. In order to allow for finite rf Geld amplitudes
we now assume that while the rf Geld is resonating a
group of nuclei the disorientation is given in terms of an
effective spin temperature T8 which satis6es

1/Ts= (1/T;)e "", (37)

where t=0 at the beginning of the disorientation when

Tq ——T;. It is well known" that in the presence of a
strong resonant rf Geld there is a non-Boltzmann distri-
bution of the nuclear spin populations so that these
cannot be described in terms of a spin temperature.
However, here we are simply assuming that, for a
noninhomogeneously-broadened group of nuclei, the
time dependence of their y radiation anisotropy during
disorientation is F(v, T&), where Te is given by (37).
In Sec. 4 C it is shown that this assumption may be
easily tested experimentally.

'e See, for example, A. Abragam, The Principle of Nttclettr
kfttgnett'snt (Oxford University Press, London, 1961), Chap. V.
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One of the most important results of Sec. 4 is to
indicate how values of k may be obtained from RND
experiments so that the dependence of the intrinsic
linewidth 0 upon temperature and possibly rf Geld
amplitude may be studied. For a system of nuclei
obeying the Sloch equations' the imaginary part of the
complex nuclear susceptibility in the presence of
saturation is given by"

k=O.S

k=02 '

x(v) = 2s'vpxpTs'(v —vp)/

P+& Ts (v vp) +—ysHisTiTs j (40)
0 I I I I IIII I I I I IIII
0.1 1 10

0

I I I IIII
100

FIG. 7. Curves showing the dependence Ep(8,k) of the signal
amplitude upon 8 (=&oTq) and the parameter k for 1/T' tempera-
ture dependence of the p radiation anisotropy. A small modulation
amplitude is assumed.

so that the intrinsic width of the resonance is

0= (2e-) '(1/Tp'+y'Hi'Ti/Ts)'I

and when y'II~'T~T2))1 then

(41)

If a triangular waveform is used then the duration
of the disorientations will be the same for all nuclei.
If E is the ratio of 1/Ts before and after each dis-
orientation we define a parameter k by

(3g)

For a given rf field amplitude Hi, k/8 should be propor-
tional to the duration of each disorientation, i.e.,

0=yHi Ti/27r Tp. (42)

For NMR in solids where there are strong spin-spin
interactions the behavior at large rf field amplitudes is
often well described by Redfield's theory. "The imagi-
nary part of the susceptibility is then given by

s v pXp(Hi'+2Hi'p)
X(v) = (43)

L4s- (v vp)P+7 (His+2Hi"))TiH 'v

so that
k/8 ~ 0/(cpW),

e 0/(T, W), (39)

where 2B~" is the square of the effective spin-spin
width of the NMR line. The intrinsic width is then

1.0
I I I I I I II I I I I I I II

0.8

-0$
CD

O
hC

0.4

k=S

where 0 is the width of the resonance which would be
obtained in the absence of inhornogeneous broadening.
The inverse dependence of k upon t/V means that as the
modulation amplitude is increased there is a reduction
in the effective rf Geld amplitude. In choosing the
modulation amplitude in an RND experiment to
achieve the largest possible signal amplitude it will be
necessary to obtain a compromise between this effect
and the dependence of Ms (0) upon W as given in
Fig. 3.

and for
0=y (His+ 2H(')'"/(2s)

Hi))V2Hi', 0=yHi/(2pr) .

Hence there is a difference by a factor of Ti/Ts in the
intrinsic widths as given by the equations of Bloch
and Red6eld. When T2'&)T~ so that T2 ——T~ the two
theories should lead to indistinguishable results for
RND experiments. From observations of the tempera-
ture dependence of k Eq. (39) enables the tempera-
ture dependence of 0 to be determined. The width
should be temperature-independent except when the
Bloch result applies and also T2/ T~. In conventional
NMR experiments at room temperature it has been
found that for cobalt" (where Ts«Ti) Redfield's theory
fits well whereas for iron" and nickeP4 (where Ts Ti)——
the results are well explained by the Bloch equations
when modified'5 for fast passage and inhomogeneous
broadening.

k=2

0
03

I I I I IIII
10

e

k=1

100

Fzo. g. Curves showing the dependence lkp(8, k) of the signal
ampijtude upon 8 (=coTq) and the parameter k for the detection of
axial y radiation from 6 Co nuclei in an iron host at a temperature
given by 1/1'= 200'K '. A small modulation amplitude is assumed.

"F. Bloch, Phys. Rev. 70, 460 (1946)."Reference 18, Chap. III."A. G. Red6eld, Phys. Rev. 98, 1787' (1955).
'~ A. C. Gossard and A. M. Portis, Phys. Rev. Letters 3, 164

(1959); A. M. Portis and A. C. Gossard, J. Appl. Phys. 3I, 205
(1960).

~ D. L. Cowan and L. W. Anderson, Phys. Rev, DS, A1046
(1964).

'4D. L. Cowan and L. W. Anderson, Phys. Rev. D9, A424
(1965).

"A. M. Portis, Phys. Rev. 100, 1219 (1955).
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g 1+(g 1)e (cut'—2cc)/—8 pe—2 /c8c

Ts g 2e—2~/I'8
(45)

Then during the interval t' the spin temperature of the
group is

1 1 //1 1~
/8

—t/8

T, T lT, T)
(46)

and during the interval 2tr/cp —3' the spin temperature
of the group is

B. Steady-State Solution

For an rf field with given modulation amplitude,
modulation frequency, and center frequency a steady
state will result in which, for each group of nuclei, the
spin temperatures before and after each modulation
cycle are equal (i.e., the reorientation between rf
pulses is equal to the disorientation caused by them).
By applying the relaxation equations (20) and (37) to
this steady state it follows that just after the rf pulse
preceding the interval t' in (29) the spin temperature
T, of a group of nuclei is given by

p, M
Cb

O
hC

OA,

y~ =SO
T

P, =eo

1& =zoo

r'-3oo

02

I I I IIIII

k
10

I I I IIIII
$0

cycle. By expanding (45) for large 8 it follows that

where

F (vp, T)—F (vp, Tt)
Ep(8)&k) =

F(v„T)

FIG. 9. Dependence upon the parameter k of the signal ampli-
tude of the fast modulated resonance from 6 Co nuclei in iron at
various temperatures. These curves are independent Of line shape,
modulation amplitude, and waveform. For any nuclei aligned in
any host similar curves may be easily calculated from Eq. (48).

T i T(1+k/7r——) . (49)
)8
—cct'/8 e cut/8+ — (47)

Ts —T T Ti - T T

The calculation of line shapes and signal amplitudes is
now the same as that for the CDM of Sec. 3 8 except
that Eq. (30) must now be replaced by (46) and (47)
for the integrations in (29).

In Fig. 7 and 8 the calculated dependence of the
signal amplitude upon modulation frequency and k are
shown for "Co in iron with 1/T=5 and 200, respec-
tively. A small modulation amplitude is assumed. For
1/T=5 the y radiation anisotropy from "Co nuclei
polarized in iron is accurately proportional to 1/T'
and Fig. 7 will apply to the polarization of any nuclei
in any ferromagnetic host when the temperature is
sufficiently high for a 1/T' law to be obeyed. Calcu-
lations for finite modulation amplitudes yielded results
similar to those from the CDM calculations —i.e., the
line shape is hardly affected by the modulation fre-
quency and, to a fairly good approximation, the signal
amplitude is separately dependent upon the modu-
lation frequency and the modulation amplitude. A
comparison between Fig. 5 and Figs. 7 and 8 shows that,
for any value of k, if 8((k the function Xp(8) is the
same as that from the CDM calculations. This is
expected since for sufhciently slow modulation the
duration of each disorientation will be large enough to
completely disorient each group of nuclei. As 6I is
increased significant deviation from the CDM curves
occurs at 8=k and finally Ep(8) approaches a limiting
value. Here the modulation is so fast that in the steady
state all nuclei have the same spin temperature Tg,
which is eGectively constant during each modulation

In Fig. 9 plots showing the dependence of the signal
amplitude upon the parameter k for "Co in iron at high
modulation frequencies (8))k) are given. These curves
are very simply calculated from (48) and (49) and the
condition 0))k is easily satisfied in carrying out RND
experiments. If for any reason (e.g., hard-core effect)
the orientation of the groups of nuclei experiencing a
resonant rf field do not decay to zero as assumed in
(37) then the curves of Figs. 6—8 inay well still be valid
if multiplied by an appropriate factor which is less than
unity.

C. Transient Solutions for Fast Modulation

Shirley and Templeton' showed how, by destroying
the nuclear orientation with a frequency-modulated
resonant rf field and then measuring the y radiation
anisotropy as a function of time after the center
frequency is moved oG resonance, the spin-lattice
relaxation time T& may be determined unambiguously.
Here we show that the parameter k may be determined
simply and unambiguously by measuring the y radia-
tion anisotropy as a function of time after the center
frequency is moved from off resonance onto the
resonance.

We assume that the modulation frequency is suK-
ciently high so that 8&)1 (a condition. very easily
satisfied in practice) and expand the exponentials in
(46) and (47), neglecting all terms of magnitude & 1/8'.
However, now, instead of assuming a steady state, an
expression for the change in 1/T// over 1 modulation
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cycle is obtained:

2~p1 1 2k
8(~/Ts) =—I—

8 kT Ts 8Ts

The two terms on the right-hand side give the re-
orientation and disorientation which occur during $

modulation cycle. Since these are independent of ]'
it follows that all nuclei with v between y —kV and

y+W have the same spin temperature. Since it is
assumed that 8 is large (50) may be written as a
differential equation:

~(1/Ts)

dt

(~+k) 1
+

&~1~8 ~1~
(51)

5. CONCLUSIONS AND APPLICATIONS
TO EXPERIMENTS

When the modulation is suKciently fast (8»1) the
modulation broadening in RND experiments is given

accurately by Eq. (5) and the dependence of the
observed line shape and signal amplitude upon modu-

lation amplitude for Gaussian and Lorentz hyperfine

field distributions is as given in Sec. 2 A. The moments

of observed line shapes may be easily corrected for
modulation broadening using Eq. (13). If the modu-

so that if a resonant rf field is applied at t=0 the
reciprocal of the effective spin temperature will decay
exponentially from 1/T to 1/T~ with a time constant:

T,'= T,(1+k/~) '. (52)
2

The published curve of Templeton and Shirley

showing the destruction and recovery of "Co nuclear
orientation upon entering and leaving the resonance
illustrates very well the shorter time constant T& during
disorientation. The exponential decay of 1/Ts as

given by (51) is in fact equivalent to the assumption

(37) of exponential decay of 1/Ts for each group of
nuclei as for fast modulation since the rates of dis-

orientation are then the same for all groups of nuclei

being resonated. Hence this assumption may be easily

tested experimentally from the time dependence of the
y-radiation anisotropy after entering the resonance.
The curve of Templeton and Shirley is to within

experimental error quite a good 6t to an exponential.

lation broadening is not too great, the series method
of Sec. 2 C may be used to determine the hyperfine
field distribution from the observed line shape. For
larger modulation amplitudes the Fourier method must
be used and care must then be taken in the analysis to
avoid "zeros" in sin(n. iW/I').

If the modulation is not fast then, to an accuracy
which would generally be quite adequate in most
experimental analyses, the observed line shapes are the
same as for fast modulation but the signal amplitude is
reduced by a factor Eo(8). For large rf fiel intensities
Eo(8) may be calculated for various 8 using the CDM
method of Sec. 3 B, where the only assumption made is
that of exponential decay of a nuclear spin temperature
between complete disorientations. By measuring the
signal amplitude as a function of modulation frequency
these calculations may be easily checked and this may
well be the simplest method of determining fast spin-
lattice relaxation times.

For weaker rf 6eld intensities, if the disorientation
may also be described in terms of an effective nuclear
spin temperature, then KD(8) will also be a function of
the parameter k as in Section 4 B.For fast modulation
(8»1), Eo(8) is very easily calculated as a function of
k from Eqs. (48) and (49) and the known temperature
dependence of the y radiation anisotropy. Values of k

may be obtained experimentally either from the signal
amplitude or by applying Eq. (52) to measurements of
the time dependence of the p radiation anisotropy after
entering the resonance. From the temperature depend-
ence of k, the temperature dependence of 0, the width
of the noninhomogeneously broadened resonance, may
be obtained. This is of fundamental interest in under-
standing saturation and spin-spin interactions in very
dilute alloys. It would also be interesting to study the
dependence of k upon the rf field intensity.
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