
PHYSICAL REVIEW VOLUME 177, NUMSER 2 10 JANUAR Y 1969

Laser-Induced Line-Narrowing Effects in Coupled
Doyyler-Broadened Transitions*

M. S. FzLn Awn A. JAvAN

Physics Departmeut, Massachusetts Iustitute of Techuology, Cambridge, Massachusetts

(Received 13 May 1968)

The line shape of a Doppler-broadened transition is dramatically altered by the presence of a laser Geld
resonating with a second Doppler-broadened transition sharing a common level: Two narrow resonances
of difFerent widths appear superimposed upon the broad background signal at frequencies symmetrically
located about the corresponding line center. The efFect has already found application in a number of seem-
ingly diGerent though intimately related studies, including high-resolution hfs and isotope-shift deter-
minations. The theory of the efFect is developed with reference to these applications. The treatment is
formulated in terms of transition rates induced by two classical Gelds resonantly interacting with a pair
of coupled Doppler-broadened transitions of arbitrary frequencies. The perturbation approach adopted
is valid for one Geld fully saturating its transition; the resulting line-shape expression exhibits important
power-broadening eRects. This approach is equivalent to the familiar density-matrix formulation, which
is also presented. Various features of the resulting expression are discussed in detail as they apply to two
precision spectroscopic applications, mode crossing and spontaneous emission line narrowing. The con-
nection with previous work is also discussed.

I. INTRODUCTION

""T is well known' that the over-all gain prohle of a„.a Doppler-broadened laser transition is dramatically
influenced by the presence of the laser field. This may
be demonstrated by scanning the gain profile with a
weak, monochromatic probe field collinear with the
laser held: As the probe field is tuned through the
transition, two identical sharp decreases in gain appear
superimposed upon the broad line shape, one at the
laser frequency and one symmetrically located on the
opposite side of the atomic line center tFig. 1(a)).
These resonant decreases occur because the standing-
wave held within the laser cavity selectively interacts
with atoms whose velocities Doppler shift one of its
travelling-wave components into resonance. This
produces changes in the laser-level populations —an
increase in the lower-level population and a decrease in
the upper-level population —over two intervals sym-
metrically located about the center of the velocity dis-
tribution. These changes reflect themselves in deple-
tions in the gain prohle over the corresponding fre-
quency intervals. The extent of these intervals is
determined by the natural widths (or, more generally,
the homogeneous widths) of the atomic transitions.

In the foregoing discussion, it is assumed that the
laser held is detuned from M2, the atomic center fre-
quency. As its frequency approaches within a natural
width of co2, the two resonant decreases merge into a
single one. However, let us primarily consider those
cases in which the laser frequency is detuned and the
change signals are well resolved.

The line shape of a second Doppler-broadened
transition formed by either of the levels of the laser
transition and a third level is also considerably altered
by laser oscillation: Scanning as before the gain (or
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attenuation) profile of this transition with a weak
probe field, one again finds two sharp resonances at
frequencies symmetrically located about the cor-
responding line center. These change signals differ
from those of the laser transition in one remarkable
aspect: One can be considerably narrower than the
other LFig. 1(b)). We shall refer to the widths of the
broad and narrow change signals as F~ and F~, re-
spectively. For example, if the center frequency of the
coupled transition (0-1) is close to that of the laser
transition (0-2), then, for a weakly saturating laser
field, I'~ ——pi+ps and I'rs yi+ys+2yo, with y, ——the
decay rate of level j. In comparison, the change signals
of the laser transition are each of width I'r, ——yo+y&.

Similar line-shape features would be observed in the
closely related situation in which the fluorescence from
either of the laser levels to a third level is monitored
along the laser axis. Note that the resulting spontaneous
emission spectrum directly follows the spectrum of
emission stimulated by a weak probe field tuned through
the coupled transition when the lower-level population
of the coupled transition is ignored. As an illustration,
suppose the laser field were tuned to the low-frequency
side of its Doppler prohle: For emission originating
in its upper 1evel, the laser-induced change signals
would appear as resonant decreases of widths F~
below coj and F~ above co1, with co1 the fluorescence
center frequency. In contrast, emission originating in
the lower laser level would result in resonant increases
with the positons of the broad and narrow change
signals interchanged. A further noteworthy distinction
is the differing radiative origins of the change signals:
In the former case, they result primarily from double-
quantum transitions, while in the latter case, they are
primarily due to single-quantum transitions. This
important distinction is elaborated below.

Since Fz and F& are generally much narrower than
the Doppler widths, we shall refer to this effect as
laser irtdttced Dop-pler lirte starroioittg.
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LASER-INDUCED LINE NARROWING

As has been noted, the stimulated and spontaneous
versions of laser-induced Doppler line narrowing are
different manifestations of the same basic quantum-
mechanical effect. Nevertheless, important applica-
tions of these versions bear little resemblance to one
another on the surface. A major purpose of this paper
is to relate the basic effect to these intimately con-
nected though seemingly different applications. In
some of these, I'~&&F~, causing the differing width
characteristics to reveal themselves in particularly
striking ways.

Several publications dealing with details of the line
shape in various special cases have appeared previ-
ously. 2 8 The initial presentation' by Schlossberg and
Javan, a quantum-mechanical analysis of the third-
order polarization induced by two classical 6elds,
demonstrated the applicability of the narrow resonance
I'& to high-resolution studies of closely spaced Doppler-
broadened laser transitions [Fig. 2(b)]. The latter
treatment also applies to a cascade system /Fig. 2(c))
in which the middle level lies about half-way between the
upper and lower levels. Subsequently, Notkin, Rautian,
and Feoktistov presented a quantized Geld calculation4
which described the spontaneous emission spectrum
arising from one of the levels of a weakly saturated
laser transition. A recent discussion' by Holt, formu-
lated on the basis of two-photon transitions induced by
the laser 6eld, analyzed the frequency profile of the
spontaneous emission arising from the lower laser
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(a) Laser Transition (2-0) (b) Coupled Transltlon (1-0)

Fro. i. Spectrum of line narrowing induced in the Doppler
gain (or attenuation) profiles of (a) laser and (b) coupled tran-
sitions. In the energy level configuration depicted the effect takes
the form of pep/etioes in gain of the coupled transition over two
narrow-frequency intervals. As an example, for a weakly saturating
laser field and for closely spaced lower levels of equal lifetimes,
the broad change signal (width: 1'e) of the coupled transition is
twice as wide as the laser change signals (width: Pz), while the
narrow change signal (width: Ps) is reduced from Ps by twice the
width of the upper level (level 0) and is independent of it. In the
cascade configuration (not shown), level 2 above level 0, change
signals of similar widths selectively eehunce the background profile
of the coupled transition. Also, in the latter case the positions of
the two change signals are interchanged.

' H. R. Schlossberg and A. Javan, Phys. Rev. 150, 267 (1966).' M. S. Feld, Ph.D. thesis, MIT, 1967 (unpublished).
4 G. K. Notkin, S. G. Rautian, and A; A. Feoktistov, Zh.

Eksperim. i Teor. Fiz. 52, 1673 (1967) LEnglish transl. : Soviet
Phys. —JETP 25, 1112 (1967)g.' H. K. Holt, Phys. Rev. Letters 19, 1275 (1967).' M. S. Feld and A. Javan, Bull. Am. Phys. Soc. 12, 1053
(1967}.' M. S. Feld and A. Javan, Phys. Rev. Letters 20, 578 (1968).' R. Bose and J.A. White, Bull. Am. Phys. Soc. 13, 172 (1968).
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Fro. 2. Energy level configurations. Frequencies Q~ and &
refer to the applied fields and co~ and or2 to the level separations.
In each case level 0 is common to both 1-0 and 2-0 transitions.

level LFig. 2(c)j. This treatment neglects single-
quantum events and would not apply, for example, to
the case of spontaneous emission arising from the upper
laser level. The treatment of Ref. 4, however, is valid
in either case. A subsequent letter' by the present
authors analyzed the spontaneous and stimulated
versions of laser-induced Doppler line-narrowing ex-
periments by means of a classical-6eld approach,
emphasizing their close relationship; the theoretical
treatment took into account the inQuence of both
single-quantum and double-quantum transitions, and
included, in addition, intensity-dependent line-broaden-
ing effects. 9

The present paper is, in part, an elaboration of that
letter, and contains additional detailed discussions.
The treatment is formulated in terms of transition rates
induced by two classical 6elds reasonantly interacting
with a pair of coupled Doppler-broadened transitions of
arbitrary frequencies. The method of analysis is an
extension of the one' adopted some time ago in cal-
culating the line-shape details of a three-level maser.
In this approach two distinct processes emerge: The
6rst, a double-quantum transition, involves the ex-
change of a photon with each of the two applied 6elds;
the second, an inherently single-quantum act, includes
the inQuence of one Geld on the rate at which single-
quantum transitions are induced by the other 6eld.
This distinction is not apparent in the usual density-
matrix formalism in which the induced polarization is
calculated. The two approaches are, of course, equiv-
alent; their connection will be clarified below. Moreover,
the theoretical approach adopted is not restricted to a
third-order polarization calculation, and is valid for one
Geld fully saturating its transition; the resulting line-
shape expression exhibits important power-broadening
effects. We are able to obtain such an expression be-
cause in the applications discussed here it is generally
sufhcient to consider the standing-wave laser Geld to be
detuned from the center of its Doppler-broadened. gain
profile. Then its travelling-wave components do not
couple to each other and, consequently, may be

9 The authors were not aware of the work of Rautian and his
collaborators (Ref. 4) at the time Ref. / was prepared, and on}y
learned of its existance when the present manuscript was sub-
mitted for publication. Accordingly, the manuscript has been
revised to acknowledge this substantial work and clarify its
connection with our paper and several previous publications.+ A. Javan, Phys. Rev. 10'/, 1579 (1957).
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treated independently. Furthermore, major applica-
tions and their important physical features are ade-
quately described by considering the toeuk-field gain
of one transition as influenced by a fully saturated
coupled transition; the method may be readily ex-
tended, if necessary, to include higher-order effects.

The approach of Notkin, Rautian, and Feoktistov, 4

which calculates the laser-induced spontaneous emission
spectrum, is complementary to ours. That treatment is
formulated considering both radiation 6elds in quan-
tized form. The actual calculation is somewhat simpli-
6ed, however, by considering the laser Geld in its
classical form, a procedure, of course, justi6able for
radiation oscillators in states of high excitation. The
spontaneous emission 6eld, however, is kept in its
quantized form. The introduction of Geld quanta leads
naturally to a mathematical development considerably
different from our classical-Geld approach. The com-
putations are rather involved, and relevant results are
obtained only for a weakly saturating laser Geld. As
discussed below, the latter results agree with the weak-
saturation limit of those obtained here. In the dis-
cussions of Ref. 4, the connection with experimental
observations"" and theory' of an earlier stimulated
version of the effect has not been considered. This con-
nection, which is not apparent on the surface, is
clariGed below.

The calculation of the Doppler-broadened response is
carried out in Sec. II. Section IIA considers the
interaction of two monochromatic classical travelling-
wave Gelds with a group of three-level atoms moving
with Gxed velocity. One Geld is assumed to fully
saturate the transition with which it resonates; the
second 6eld, assumed weak, probes the coupled transi-
tion. The emitted power at the probe frequency is
calculated in terms of transition rates, as indicated
above. The subsequent average over atomic velocities,
which leads to the Doppler-broadened travelling-wave
response, is outlined in Sec. IIB, together with a
discussion of the resulting line shape. The extension of
the travelling-wave analysis to standing-wave applica-
tions is presented in Sec. II C, which also discusses the
speci6cally standing-wave effects arising when the
intense Geld is tuned to its atomic center frequency.
Wherever possible, the presentation of detailed alge-
braic manipulations and proofs has been deferred to
Appendices.

Section III discusses, by example, important features
of laser-induced Doppler line narrowing. Section
III A examines the frequency dependence of the
atomic response prior to Doppler-averaging. Section
III 3 continues by discussing the extension of the line-
narrowing effect to the spontaneous emission version

~ M. S. Feld, J. H. Parks, H. R. Schlossberg, and A. Javan,
in Physics of Quantum Electronics, edited by P. L. Kelley, B.
Lax, and P. E. Tannenwald (McGraw-Hill Book Co., New York,
1966), p. 567."H. R. Schlossberg and A. Javan, Phys. Rev. Letters 1T, 1242
(1966).

mentioned above, explaining the connection with
earlier formulations. In Secs. III C and III D, two
important applications are examined in detail: The
first, " a technique involving two classical Gelds,
enables structure of Doppler-broadened systems with
closely spaced levels to be measured with great ac-
curacy. This technique has already been employed in
measuring hyperGne structure" and paramagnetic
properties" of several excited atomic levels. The
second, "based upon the spontaneous-emission version,
has been utilized in isotope-shift" and linewidth-
parameter" "measurements in Ne.

The results of this paper are also directly applicable
to the extraordinary behavior of atomic oxygen Gne-
structure laser oscillations at 8446 1,'s already brieRy
discussed in Refs. 3, 7, and 19. In that case other
physical processes, entirely unrelated to the present
discussions, are of great importance. We prefer to
discuss these together in a separate publication"
which will utilize expressions derived below.

II. DOPPLER-BROADENED GAIN

We now proceed to calculate the interaction of a
weak, monochromatic probe 6eld with one of the
transitions of a Doppler-broadened three-level system,
as inQuenced by a saturating Geld resonating with the
coupled transition. In order to describe applications
within a Fabry-Perot cavity, one must consider the
possibility of Gelds in the form of standing waves, as
well as travelling waves. For reasons given below, the
major features of important standing-wave applications
may be understood by analyzing the case in which the
intense Geld is detuned from the center of its broad
Doppler pro61e, Considerable simpli6cation then
results, and the standing-wave response may be
analyzed in terms of pairs of travelling-wave 6elds
interacting with the respective transitions of the three-
level system. As will become evident, the relative
propagation direction of probe and saturating field
components is of crucial importance: Fields propagat-
ing in the same direction lead to a probe-field line shape
which is strikingly different from that due to op-
positely propagating fields.

n G. W. Flynn, M. S. Feld, and B.J. Feldman, Bu]1. Am. Phys.
Soc. 12, 669 (196~7) .

~4 A. Javan, in Quantum Optics and Electronics; Lectures Delivered
at Les Honches Dnring the 1964 Session of the Snmmer School of
Theoretical Physics, University of Grenoble, edited by C. DeWitt,
A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, Sci-
ence Publishers, Inc. , New York, 1965), p. 383; J. A. White, J.
Opt. Soc. Am. 55, 1436 (1965); see also Ref. 1, Sec. 15.

+ R. H. Cordover, P. A. Bonczyk, and A. Javan, Phys. Rev.
Letters 18, 730; 18, 1104(E) (1967).

"W. G. Schweitzer, Jr., M. M. Birky, and J.A. White, J. Opt.
Soc. Am. 5'7, 1226 (1967)."H. K. Holt, Phys. Rev. Letters 20, 410 (1968).

'8 W. R, Bennett, Jr., W. L. Faust, R. A. McFarlane, and C. K.
N. Patel, Phys. Rev. Letters 8, 470 (1962).

» M. S. Feld, B. J. Feldman, and A. Javan, Bull. Am. Phys.
Soc. 12, 669 (1967).

~0 M. S. Feld, B.J. Feldman, and A. Javan, Phys. Rev. (to be
published) .



I.ASRR-IXD VCR D LINE NARRO%'ING

The atoms of a Doppler-broadened gas may tra-
verse many wavelengths of the applied fields before
decaying. We adopt here the simple picture of atomic
motion in which an atom produced in a particular state
travels undetected with constant velocity as it decays.
The calculation of induced emission may be divided
into two stages: The response is first obtained for a
band of three-level atoms within a narrow range of
axial velocities interacting with the applied travelling-
wave fields; this quantity is then summed over the
entire distribution of velocities, thus obtaining the
complete emission profile. The first stage, the calcu-
lation of the ensemble-averaged travelling-wave re-
sponse, may be carried out in several ways. The
induced dipole moment of an atom produced in a
given state may be calculated from the Schrodinger
equation. Equivalently, one may calculate the rate at
which an atom produced in a given state makes transi-
tions to other states. In either case the response of
the entire velocity ensemble is obtained by averaging
the quantity calculated over all initial conditions. The
transition-rate approach, which has the important
advantage of identifying the various radiative proc-
esses by which an atom emits and absorbs photons, is
presented in Sec. II A. The connection between
transition rates and induced dipole moments is ex-
amined in Appendix B. An alternative derivation of
the line shape using the ensemble-averaged density-
matrix equations of motion, and related discussions,
is presented in Appendix C.

A. Ensemble-Averaged Response:
Transition-Rate Approach

The resonant interaction of two monochromatic
fields, E& and E2, with a three-level system was treated
in Ref. 10 for cases where Doppler broadening is
negligible (e.g., the microwave region) and the decay
rates, considered equal for all three levels, were as-
sumed to result from hard collisions. The perturbation
method consisted of first obtaining a closed-form
solution to the Schrodinger equation for E~——0 and E2
arbitrary, and then using this result to generate a
solution valid to first order in Ej.The present section is,
in part, a generalization of that method valid for levels
with diGering decay rates.

The three-level systems to be studied are of the type
shown in Figs. 2(a) —2(c). Level 0, the common level,
is coupled to levels 1 and 2 by electric dipole matrix
elements p&0 and p20, respectively. Denote the energy
of level j by KW, , and let

~
W, —Wo ~=o&;; cubi and os

fall in the optical-infrared region. We shall assume that
~ cubi

—o o ~
is large compared to the natural linewidths.

In the present section, we consider the "inverted-V"
level configuration, in which level 0 lies highest LFig.
2(a)$. The treatment is easily extended to cases in
which level 0 lies below either or both of levels 1 and 2.
This extension is discussed in Appendix C.

Ai(z) = —,Ei exp(i&i —ikiz),

A2(z; o) = ',E2' exp(iy, -iok—,»)

(&b)

Consider an ensemble of atoms at given position and
time, and moving with axial velocities in the narrow
interval between z and a+do. In a coordinate system
in which the ensemble is at rest the incident fields

appear as Ei'(z, t) and E2'(z, t; o), with Ei identical to
Eqs. (1) except that, due to the Doppler effect,

Qy~Qy'= Oy —kgv,

~2 ~2 ~2 &~2~y

k,~k =0 /c.

(2)

Note that in this section, s and t always refer to the
coordinates in the moving frame. The total Hamil-
tonian for the system is

H =Ho+ V (t),
where Bo is the Hamiltonian of an isolated atom with
stationary states P;(R) of energy SW;:

Hog;=SW; P;, j=0, I, 2. (4)

The ensemble is coupled to the applied fields by the
interaction Hamiltonian

V(t) = —pE'(z, t),

in which p, is the electric dipole operator and E'=
Ei'+Eo'. The time evolution of a particular member of
the ensemble is determined by its wave function 4,
which may be expanded in terms of the stationary
states f;:

(6)

with e;(/) the probability amplitude of level j. The
equations of motion for the e s may be obtained in the
usual manner by inserting Eqs. (3)—(6) into the time-
dependent Schrodinger equation H%'=iSM'/Bt, multi-

plying on the left by P,*, and integrating over all space

The system interacts with a strongly saturating
field E2(z, t; o) at 02, a frequency close to &vo. The
resonance at o~i is probed by the weak field Ei(z, t) at
variable frequency 0&. To allow for both possible
relative propagation directions, Ei(z, t) is taken to be
travelling in the positive (+z) direction, while

E2(», t; o) may propagate in either positive (o=+ I) or
negative (o= —1) directions. Specifically,

El(z) ~) =Ei Cos(01~ klz+41)

=Ai(z) exp(iQit)+c. c.,

E2(z) i) o) =E2 cos(02$ ok2»+42)

=A2(z; o) exp(i02t)+c. c.,

with k, =Q,/c; thus
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one obtains

c;(t) =e;(t) exp(iW;t),

(R). Going over to the interaction picture by means of
the transformation

We adopt the notation c, (t' tp k) to indicate a solu-
tion to (11) for an atom produced in level k at tp."
The appropriate boundary conditions are

c; (tp, tp, k) = bp; exp(iq, ),

in which

Cs= ~ Gsg'Cg~

a;,= —(i/5) V,, expI i(W;—W;) t],

V;,= —t1;,Z'(r, t).

(8)

(9)

(10)

in which the p s are unimportant arbitrary phase
factors. The transition probability to another level,
level j, at subsequent time t is

I
c, (t' tp k) I'. The

probability of an atom in level j decaying in the interval
between t and t+dt is y,dt. Thus, for an atom produced
in level k at $0, the transition rate to level j is'4

Note that in the absence of applied fields (11) leads to
exponential decay of level j with decay rate p;:

I
c (t—t') I'=

I 6(t') I' expI —~ (t—t') j (»)
Equation (11) may be simplified by the substitution

d;(t) = c;(t) exp(+-,'q;t), (13)

which yields a set of coupled equations of exactly the
form of the undamped equations of motion (8):

(14)

with

(In the above equations R indicates the electron co-
ordinates in the atom's reference frame and r is the
position vector of the atom's center of mass in the
moving frame. )

Equation (8) describes the evolution of an undamped
atom. The effects of radiative decay may be included2'

by modifying (8):

c;= Q (ag 2y;b;, )—c;-

t

22pypy2
I c;(t) tp, k) I2dtp 222Jp, ,

—— (18)

which de6nes" J», the ensemble-averaged k—+j transi-
tion rate per atom produced in level k.

In order to estimate the net emitted power induced
by E&', all events in which a photon is emitted or
absorbed at Q~' must be considered: An atom which is
produced in level 2 and subsequently decays from level
1 at rate J» must, by necessity of energy conservation,
exchange two photons with the applied fields, a photon
absorbed at D2' and a photon emitted at 01' LFig.
2(a) j.In contrast, an atom which is produced in level 0
and subsequently decays from level 1 at rate Jo& must
emit a single photon at Q~'. An atom produced in level
1 absorbs photons at 0&' by the reverse processes,
namely, single-quantum transitions from levels 1 to 0
and double-quantum transitions from levels 1 to 2.
The net rate of emission of photons at Q~' is, therefore,

y; I c; (t; tp, k) I'.

Considering that the rate of production of atoms in
level k is nj,yi„ the ensemble-averaged transition rate
between levels k and j is

f1;,= a;; expI 2 (7;—y;) G. 222~21+ 22(Jpl '+1 (+lp+ J12) (19a)

The system of equations (11) for its equivalent,

(14)j must be solved subject to the appropriate
initial conditions. Generally speaking, immediately
after its creation the wave function of an atom is a
mixture of stationary states with arbitrary phase
factors. The random nature of these phase factors,
however, makes possible the assumption that the atoms
are produced in the pure states, levels 0, 1, and 2. In
considering the excitation of these levels, one may dis-

tinguish between transitions induced by the applied
fields and background excitation arising from inco-

herent processes. The latter are responsible for popu-
lating the levels at rates which may be assumed to be
independent of the applied fields~; accordingly, ba,ck-

ground atoms are produced in level k at a rate n~y~,

where eI, is the number of atoms with velocity com-

ponent v in level k in the absence of applied Gelds.

"W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. '79, 549
(1950l.~ See Ref. 10 for further details.

and the corresponding power emitted is

(19b)

Note that in the limit of E2'~0, J2~ and J~2 should
vanish, and Jo~ and J~o should reduce to the usual
transition rates for a two-level system.

In the formulation presented here the elementary act
of transition from level k at Pp to level j at t is described
in terms of its corresponding transition probability,
I c;(t; tp, k) I'. It is evident on very general grounds that
the reverse act of transition is equally probable:

(20)
» It might be thought that c; is also a function of g0, the position

of the moving atom at its time of creation. Note, however, that
in the ensemble's rest frame the atoms are stationary; conse-
quently, the position of each member of the ensemble remains
axed (at @=go) over the entire period of interaction with the
applied fields.

'4 Note that expression (j.7) is the rate at which an atom pro-
duced in level k makes a coherent transition to level j because of
induced emission or absorption, where it decays.
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4021=GOg
—

C01,

d;(t; tp, k) =e;(t; to, k) exp(-', y, t)

tea=i (&e Q—p') + p (vp —vp)

n =PgpAg/5

p =pggA2*/A

T=5—fp

g~= k(ep+s)

TABLE I. Symbols used in calculation of transition rates,
Eqp. (31) and (32).

starting from Eq. (22). For instance, in this way it is
shown that for atoms produced in level 2 [Fig. 2(a)],
the emitted power at Q&' is given by Mz'N&J», while for
atoms produced in level 0 it is given by M&'»pjp&.

We proceed to calculate the emitted power in terms
of transition rates, Eq. (21). The explicit form of the
equations of motion (14) are

s= ($pp+4
~ p p) ~lp

This point is discussed further in Appendix A. It im-
rnediately follows that JI,;=7;p, and (19a) simplifies to

dp in——*exp(ibqt) dq+iP exp (i8pt) dp,

dg in——exp( ib—gt) dp,

dp
——ip* exp( —Apt) dp,

(24a)

(24b)

(24c)

(R= (+2»1)~»+ ('% Nl)~pl) (21) in which

a convenient form for calculation.
It is worth noting that Eq. (19) utilizes the fact that

the atomic ensemble on the average exchanges elec-
tromagnetic energy with E» in units of fiQ». This is
interesting, since throughout our formulation we
have dealt with classical 6elds exclusively. In fact, in
calculating the emitted power it is not necessary to
explicitly introduce the concept of 6eld quanta; instead,
one may evaluate' the expectation value of the induced
dipole moment, f%'*end'R. Then the ensemble-
averaged polarization at 0 for atoms produced in level
k is

t

Etp(t) =»py& 2Refp;pe, *(t; tp, k) ep(t tp k)]dtp'(22)

and the net power emitted is

I„(Q; ) = —( g P, (t)E,'(z, t) ); ..„,. (23)

In Appendix 8, using density-matrix notation, it is
shown that Eq. (23) leads to I„(Q&') =5Q&'(R, Eq.
(19b), where (R is identical to Eq. (19a). This is
accomplished by calculating the power emitted or
absorbed by atoms produced in particular levels,

n= pypAy/5~

p =
JII,p pA p /5, (25)

and ibm=i((op —Qp')+-', (yp —yp). In writing (24),
antiresonant terms have been neglected, since their
influence is negligible when (pE)«5&v;. From Eqs. (13)
and. (16), the appropriate boundary conditions are
seen to be

d (tp,
'

tp, k) =8p exp(&'r tp+iy~). . (26)

A solution to this set of equations for all values of E2
and for weak E» may be obtained by means of a simple
perturbation technique. " This procedure, however,
involves lengthy expressions. To present the important
steps in a concise manner, a number of symbols are
introduced. For the convenience of the reader, these
are collected in Table I. Additional details regarding
the perturbation technique will be found in Appendix A.

Consider an atom produced in either level 0 or 2: In
the absence of coupling through n (i.e., n=O), (24b)
yields d&

——0, while (24a) and (24c) reduce to the
equations of motion of a damped, two-level system.
The solution is straightforward: For an atom initially
in level 2,

dp" (t; tp, 2) = [Pd&(tp, tp, 2) exp(ib&tp)/s] [exp(iq+T) exp(iq—T)5,

dp (t tp 2) = [dp(tp tp 2)/s][q+ exp( —iq T) —
q exp( iq+2')]—

(27a)

(27b)

In these equations the superscript I designates the parameters of the uncoupled system and T=f—fp,
s= (hpp+4

~ p ~')'I', and q+
——-', (8&&s). By virtue of symmetry, dp" (t; tp, 0) may be obtained from dp(t; tp, 2) by

replacing dp(tp tp, 2) by dp(tp& tp 0) and q+ by —q~. For nAO& d& no longer vanishes: An approximate expression,
complete to lowest order in n, may be obtained by integrating (24b) with dp replaced by dp",

d&(t; tp, k) =in exp( ib&t') dp(t—'; tp, k) dt',
tp

For an atom initially in level 2, substitution of (27a) into (28), and using (13),yields

exp(ig+T) 1exp(iq T) ——1
ex(t; tp, 2) = (np/s) exp( —-'r&T) exp( —i j(Q» %21)tp pppI )

'9+
(29)

in which Q»'=Qp' —Q&', co»=ppp —
pp~, and rt~=q~ —8&. Similarly, c&(t; tp, 0) may be obtained by substituting
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dse(t; te, 0) into (28); one finds

q~(exp(ist T) —1j q Lexp(zrt~T) —1g
ci(t; ts, 0) = (cr/s) exp( —s71T) exp(iI (&1'—col) ts+psI )

Q+
(30)

In accordance with (18), Joi and J» may be obtained by integrating I ci I, obtained from Eqs. (29) and (30),
over ts; one finds

J»=»»(l ~ I'
I P I'/I s I') «{(1/I V+ I') E71 '+ (71—z(n+ —v+*) ) '—2/(7i —zv+) j+ (1/I ~- I')

XL71 + (71 z(rt — '0- ) ) 2/(71 zst—)j (2/rl+ rt—) I 71 + (71 z(st- rt+ ) ) (71 zst-) (71+zrt+ ) j}
(31)

J = 7o7 (I ~ I'/I s I') «I (I v- I'/I n I') I:7-'+&7 —i(~ —~+*)) '—2/(7 —i~+) 1+(I v+ I'/I n- I')

XI 7;+(7,-'(. —.*))--2/(7, -'. )j-(2V *&,/.,*. )

XL71 + (71—z(rt —sly*) ) —(71—zrt ) —(71+zst+*) ) I . (32)

The constituent terms of (31) and of (32) may be
combined and simplified in a straightforward (though
lengthy) manner to obtain

J»= 2
I
~ I'

I p Is Im
AB

(33)

~=IL, I+(47 /7.7,) I
pl',

a=-m, ,*+Ip ls,

Ll Al +z710

Ls —As +z7zo, ——

E= (i4 —As ) —z7si,

a =n —~;,

(35a)

(35b)

(36a)

(36b)

(36c)

(37)

7' =s(7.+7) (38)

As expected, for
I p I'~0, J» approaches zero while

Jsi reduces to 2
I
a Is7io/I Li Is, the usual expression for

the 0—+1 single-quantum transition rate. Accordingly,
the laser Geld manifests itself through two separate
radiative acts: (1) It gives rise to a double-quantum
transition rate J», (2) it modifies the single-quantum
transition rate Jg~. As discussed in Sec. III A below,
for Q~' tuned close to co~ and Q2' close to cd the mag-
nitude of J» is of the same order as Jolt', the P-depend-
ent portion of Jo~. At detuned frequencies, however, J2~

may be considerably larger than Jo~&. In fact, at detuned
frequencies J2~ reduces to the familiar expression" for
Raman transitions between levels 2 and 1. (See Sec.
III A for further details. )

» A. Javan, in Proceedirtgs of the Irtterrtatiortal School of Physics
"Erlrico Fermi, " Varuna, Italy, edited by C. H. Townes and
P A. Miles (Acad.emic Press Inc., New York, 1964), p. 284.

Jsi ———2
I

cr I' Im —+ I p ['
Ls—2(7ss/7s) &

8 AB
(34)

Here,

Having obtained explicit expressions for J21 and J0~
the net rate of emission at Q~' in the moving frame
follows from Eq. (21):

(8= 2
I

cr I' ImS(v, e), (39)

E , Ls—2(7so/7s) &
x)(v, ,) =(n,—n, ) +(n—s I,) I

—p I8 AB

As in previous notation, the variable e speciGes whether
Ei and Es propagate in the same direction (e=+1) or in
opposite directions (e= —1). In the laboratory, rest-
frame photons are emitted with energy 50&. Thus, in
that frame the contribution to the emitted power from
atoms moving with axial velocity v is

ftf),2 I a ls Imn(v, .). (41)

Setting all the 7; equal, (41) reduces identically to
expressions obtained in Ref. 10, where hard collisions
were introduced as the mechanism of decay. The
detailed features of that line shape have been fully
verified" in the microwave region where velocity
broadening is negligible. The reader is referred to
Refs. 10 and 26 for additional details.

In the formulation presented above, the saturation
effects manifest themselves as nonlinear intensity
dependences of the traesiHorI rates. The level popu-
lations n; enter into the expression for the net emission
rate through the background excitation rates e,~;,
which are assumed independent of the applied Gelds. ~
Nevertheless, the ensemble averages of these popu-
lations, n;, do depend on the intensities of the applied
fields. These average populations may be computed in a
straightforward manner by considering the average

~6 T. Yajima and K. Shimoda, J. Phys. Soc. Japan 15, 1668
(1960);A. P. Cox, G. W. Flynn, and E. B. Wilson, Jr., J. Chem.
Phys. 42, 3094 (1965). The latter article contains a number of
other relevant references.

"The latter assumption is not essential and has only been
made to simplify the formulation of the problem. Although widely
applicable, there are eases where this assumption is not valid.
Our approach may be readily modi6ed to include such sects.
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number of atoms found in level j due to production of
atoms in all possible initial levels k:

tt, = g tea f ) (tt; t„ t)t)'d»

(42)

This equation is merely a restatement of the steady-
state condition: Rate of production into level j equals
net rate of decay from all levels. Equations (42) and
(43) may be combined to yield

Z (n&» n1~~2) = (n—~ 22~) V—1 ~

For j=1, the left-hand. side is just (R, Eq. (19a).
Accordingly, this expression may be interpreted as the
steady-state form of a rate equation for the population
of level 1,

dn1/dt =0= (n1—n1) y1+(R, (45)

underscoring the fact that emission and absorption of
photons must be accompanied by atomic decay.

As pointed out earlier, an equivalent way of calcu1.at-
ing the emitted power at Q~' is to solve the ensemble-
averaged density-matrix equations of motion in the
steady state and obtain the induced polarization. In the
latter approach, one does not generally distinguish
between single-quantum and double-quantum proc-
esses. Also, the solution of the density-matrix equations
involves algebraic manipulations quite different from
those used above. This approach is presented in
Appendix C. The method of solution is more or less
standard, except that in the perturbation approach
employed one of the applied fieMs may be taken as
arbitrarily large. The final results are, of course, in
complete agreement with Eq. (39).

The right-hand expression immediately follows from
the delnition of J2;, Eq. (18). It should be noted,
however, that the average level populations n; do not
enter explicitly into the expressions for the power
emitted or absorbed at 0&' and 02'. That these quanti-
ties are related to the net rate of photon emission may
be seen as follows: It is shown in Appendix 8 [Eq.
(319b)) that the transition rates are connected by the
relation

(43)

In carrying out the velocity averages it is convenient
to introduce G;(v), the velocity distribution of atoms in
level j:

21, =X,G;(2)), G;(2)) d2) = 1, (47)

with E; the total number of atoms in level j. To an
incident light beam of propagation constant k the
frequency breadth associated with 6; may be char-
acterized by a "Doppler width" kN;, with I; as the
most probable speed of G;. Where the velocity distribu-
tions are thermalized, the G, (v)'s are Maxwellian. In
some applications of laser-induced Doppler line nar-
rowing, however, the velocity distributions are non-
thermal and may even deviate considerably from
Gaussian form. (See, in particular, discussions of the
atomic oxygen laser, Refs. 3, 7, and 20.) In general, the
integrals involved in obtaining (46) depend upon the
specific form of the 6 s. Nevertheless, because in the
present case we are considering the fully Doppler-
broadened limit y/ku&(1 [I and y characterize the
magnitudes of the most probable speeds (u, 's) and the
natural widths (y s), respectively), the resonant
behavior of I(Q1, «) becomes largely independent of the
6 s and it is possible to perform the averages without
recourse to their specific form.

The velocity averages are carried out in detail in
Appendix D. Briefly, the velocity dependence of
X)(2); «), which enters through L1(Q1') and. L2(Q2'),
Eqs. (36a), (36b), and E(Q1', Q2'), Eq. (36c), as well
as 22;, Eq. (47), is rather complicated in its present
form; therefore, as a first step, S is rewritten in a form
consisting of terms having velocity dependence of the
type

H1~(0) = G, (0) {[(co+i')+k2)j[(10'+iv') +k'2)$ } ',

(48)

in which co, co', y, and y' are real and y and y'&0.
As shown in Appendix D, in the Doppler limit y/k20(&1,

t
—(20i/k') G, (0.)/k)

(t0+iy) + (k/k') (00'+iy')

and

obtaining I(Q1, «), the total emitted power at Q1'.

&tt»; ) =ttt»
I
~ I'tttt f tt(~, )&~.

B.Doppler-Broadened Response H;+(v) d2)= 0. (49b)

Having obtained the power emitted by the atoms
moving with axial velocity e, it is now necessary to
sum over the entire distribution of axial velocities, thus

Using Eqs. (49) and then recombining the velocity-
averaged terms, one obtains a remarkably simple ex-
pression for the total emitted power at 0»..

I(Qlt «) = 21r&0 ) o' )'{&01(t4/k1) —2 (0)1/«02) () 0 ) /VOQ) &02(~2/k2)

XIm [+4 «(0)1/0)2) +2J 0[710+(«t)1/0)2)720Q 270(1+«Q)]p I ~ (50)
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6 =0—co (52)

Q is the factor by which the saturated levels of the 0-2
transition are broadened,

Q=L1+4 I ~ I'/v. v 7'", (53)

and ~ speciGes whether E~ and E2 propagate in the same
direction (0=+1) or in opposite directions (0= —1).

Equation (50) predicts a sharp Lorentzian decrease
(for E0)¹)superimposed. upon the broad gain
proGle, an effect due to the nonlinear coupling of
Ei(s, t) and E2(s, t; 0) Th. e center frequency and
width of this resonant decrease are dependent upon the
relative propagation directions of the applied Gelds.
%hen Ej and E2 propagate in the same direction
(0=+1 case), the change signal is detuned from 0',
the center of the 0-1 Doppler proGle, by an amount
Ai= (0ii/c02) A2 and is of width

1 N =Vl+ L (00i/002) (V0+V2) 70]Q. (54)

On the other hand, when E~ and E2 propagate in
opposite directions (0= —1 case), the change signal
appears at a frequency detuned from co& by 6&=
—(002/002) 62 and is of width

1 B 'Yl+{ (001/&2) (70+72) +|'0]Q) (55)

which is broader than F& by 2&0Q, twice the saturated
width of the middle level. The frequencies at which
the 0=+1 and 0= —1 change signals occur have the
following signiGcance. Because of the Doppler effect,
each applied Geld couples resonantly only to atoms
within a narrow band of velocities. Referring to Eq.
(2), it can be seen that Ei resonates with atoms of
velocity near v&, given by 0&—k&v&

——co&. Similarly, E2
resonates with atoms of velocity near v2, given by
02 tk2v2 =c02. In general, the velocity bands centered
at vj and v2 are distinct and do not overlap. However,
at particular frequencies of the applied fields, the two
bands will merge into a single one. Equating v~ and v2

for ~= +1, this condition is seen to be

ki = 6 (COi/002) A2,

which is the location of the center frequency of the
corresponding change signal.

Evidently, the applied fields can couple to each
other most effectively when they resonate with the
respective transitions of atoms within a narrow band
of velocities. Complete substantiation of this point
follows from a detailed inspection of the frequency
behavior of the rest-frame response---determined by
the corresponding transition rates —for a particular
atomic velocity band. A full discussion is deferred to

LThis expression has been derived for ~02)00i2 and

I P I «y(kN). See Appendix D.j
Here, or, =ck;,

fla;, (v) =E,G;(ii) E—,G, (0), (51)

Sec. III A. Several remarks, however, may be useful at
this time. A glance at Eqs. (33) and (34) reveals that
J» and Jp~ are rather complicated functions of Q~' and
02'. Furthermore, the frequency characteristics of Jpy
are quite different from those of J». In the fully
Doppler-broadened limit, however, a number of
simplifying cancellations occur and many details of the
responses of individual velocity bands average out.
In fact, in this limit the velocity-averaged 2—+1
transition rate becomes equal to the negative of the P-
dependent portion of the ~1 transition rate, a fact
responsible for the particularly simple form of the
final expression for the emitted power, Eq. (50) .

Despite the fact that the 0=+1 and 0= —1 change
signals are symmetrically located about the 0-1 center
frequency, the corresponding widths differ. This
asymmetry results from the resonant behavior which
enters J» and 102 through the quantity E=L(Qi'—
Q2 ) —0022$

—i|22
——

I (Q22—i022) 2'—2j v(k—i 0k2—) N.ote
that in contrast to Li and L2, the velocity dependence of
R differs strongly for 0=+1 and 0= —1, particularly
if co~ and co2 are comparable. For example, in the im-
portant case in which I0i2—002 I v/c«y22, &{0=+1}
becomes essentially velocity-independent, while
2{0=—1} remains strongly velocity-dependent. Bear-
ing this fact in mind, the different widths of I'~ and
I'& can be understood by inspecting (33) and (34).
See Sec. III A for further details.

As discussed in Appendices C and D, the preceding
remarks also apply to the other level conhgurations of
interest. For example, the expression for emitted power
for the "V" configuration I Fig. 2(b) j, which is the
inverted version of the level scheme treated in this
section, is given by the negative of Eq. (50), as one
inight expect. Equation (50) also describes the power
emitted by the cascade configuration LFig. 2(c)j when
the factor 0Q appearing in the imaginary part of the
denominator is changed to —0Q. This has the interesting
consequence of interchanging the positions of the
broad and narrow change signals (for a given value of
Q2), a "geometrical" effect arising from the diferent
way in which the fields couple to a cascade system.

C. Extension to Standing-W'ave Fields

The extension of the above considerations to cases
where one or both of the applied Gelds are in the form
of standing waves is straightforward. As discussed
above, nonlinear coupling occurs when two (or more)
travelling-wave Gelds, at least one of which can saturate
its transition, are Doppler-shifted into resonance with
the same narrow velocity band of atoms. As noted in
the Introduction, each standing-wave Geld may be
decomposed into travelling-wave components of equal
amplitude propagating in opposite directions. As long as
the strong Geld is detuned from the center of its broad
Doppler profile (i.e., I

Q2—002 I)y20), its components
resonate with atoms in distinct bands symmetrically
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located about the center of the velocity distribution.
(In this respect the tuning of a weak standing-wave
held is unimportant, since its travelling-wave com-
ponents cannot couple to one another. ) Then the
nonlinear coupling can occur only when the frequencies
of the applied fields are such that one of the travelling-
wave components of the intense field and one of the
weak field are Doppler-shifted into resonance with
the same band of atoms. One such possibility couples
together travelling waves propagating in the same
directions and will be recognized as the e=+1 con-
dition of Eq. (56) . In addition, there is the possibility of
coupling between oppositely propagating travelling
waves, which is just the e= —1 condition of Eq. (56).
Consequently, the broad and narrow resonances appear
simultaneously, symmetrically located about the 0-1
center frequency.

To illustrate the preceding remarks, consider an
intense standing-wave field of amplitude 2E2' and a
weak travelling-wave field of amplitude Eio resonating
with the respective transitions of a Doppler™broadened
three-level system. For the present, assume E2 to be

detuned from co2. This situation is directly applicable
to the example presented in the Introduction, where
Zi(Qi) probes the line shape of an optical transition
sharing a common level with an oscillating gas laser
transition (Fig. 1). For concreteness, suppose the
velocity distributions G;(ti) [Eq. (47)] are all Max-
wellian at temperature T: In the absence of the laser
field (Zs ——0), d(Qi), the spectrum of power emitted at
the probe frequency, is just

s(Q,) =g(Q,)
= (Xo—Xi)2Mi ( u P/(kig/+sr) exp[—(Ai/kiN)'],

(57)

which defines g(Qi), the usual expression for power
emitted by the Doppler-broadened 0-1 transition
induced by weak travelling-wave Geld E&,' here, u=
(2xT/M)'" is the most probable speed, M is the
atomic mass, and I(: is Boltzmann's constant. In the
presence of the laser field, s((Qi) is strikingly modified:
From the e=+1 and c= —1 cases of Eq. (50) one ob-
tains (for oii&ois)

Eo—Es2 ~P )'~&
~(Q1) g(Q1) 1+ Im{[(~i+ir(oil/oi2)~2)+ssIB] +[(Al o (oil/ois)+2)+ssl iv] j (58)

&o—% VoQ ~s

so that narrow and broad change signals identical to
those described above for the travelling-wave case
appear simultaneously on opposite sides of co&. In a
number of important applications y~=y2((yo, causing
Fz and, I'& to diGer enormously.

Equation (58), which was originally presented in
Ref. 7, has been written in a form valid for both
cascade (o= —1) and "inverted-V" (o=+1) coupling
configurations, Figs. 2(c) and 2(a), respectively. The
corresponding expression for the "t/"" level scheme,
Fig. 2(b), is given by the negative of (58) with o =+1.
These statements are based on the extension of Eq. (50)
to the other coupling schemes, as outlined in Appendix
D. See also the remarks at the close of Sec. IIS.

In the case of a weakly saturating laser 6eM, I'&
reduces to 2(bio+(oui/ops)iso —Yo) and I'n to 2(yn+
(oil/ops) 720) which agrees with expressions previously
obtained by other methods. ''

Equation (58) is valid for oii&ops. The case of o:s&o&i

introduces additional mathematical complexities and
will be deferred to a later time.

The interpretation of (58) as it applies to the
spontaneous emission version is presented in Sec.
III B.

Equation (58) is valid as long as the intense standing-
wave field is detuned. from its atomic center frequency.
When both fields are tuned to the centers of their
respective gain profiles, all of the travelling-wave
components can couple to the same atomic velocity
band (namely, the one with negligible component of
velocity along the z axis). Consequently, the above
considerations, which are based on the coupling of

pairs of travelling waves, becomes inadequate. A
standing-wave analysis' which specifically includes
this possibility has described the third-order inter-
action of Ej and E2 for the special case in which levels
1 and 2 of the "V" configuration [Fig. 2(b)7 are
assumed closely spaced (~ ops —ooi

~
e/c&&y). [Note that

the analysis of the cascade configuration, Fig. 2(c),
in which the middle level lies about half-way between
the other two levels, follows identically. ]The analysis, ss

"The expression for the standing-wave polarization given in
Ref. 2, Eq. (33), contains a number oi errors. The corrected
expression is

Pi = —ssr"'/(2kN)

X I ( ~
ssu ('/yips) (Ns —Ni) E f1+ipisPyu s(oisi vi)—g '$—

+ (lis13 ~'/rl rs)(¹—¹)Ei U+visP'ru —s(sssi —vi)P'g (33a)

+( I s is ls/vi) EiEss(vu/vs) (Ns —¹)5'» —s(~s —va) 3 '

+ ( I s u I'/vi) (vis/vs) (Ns —¹)his —s(~si —va) j ' (33b)

+( ~ ssupsi ~s/2v, ) (Ns+Ns —2N, ) EisLy —s(cps —vi) ]-i (33c)

+( ~
ssusssl ~'/2») (Ns Ni) EiEssg& s(—ids vs) g ' (33d—)—

+ (I ssisstst I'/4i) (¹Ni) EiEssgv—s(rua vs) j—' (33—d')

+( ~
isusssi ~'/yi) (Ns —¹)EiEs'$2v+s(cuss rs) g '—

X f1+yiPyss+s(osss —n) g 'Q J (33e)
2'i' fs/v(4& —)$N( ssusssi i'(Ns =¹)EiEssj—vu s(assi vi) g— —

XPvss+s (cuss —n) g ' (33l)
It should be noted that this expression only holds when the two
Doppler gain proxies closely overlap and the laser frequencies
are fairly close to their respective center frequencies. More gen-
erally, each Lorentzian term is multiplied by a slowly varying
Gaussian. For example, terms (33c) and (33d') vanish when there
is no overlap. A complete Erratum for Ref. 2 by H. Schlossberg
and A. Javan will be submitted shortly to Phys. Rev.
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based on a density-matrix calculation, shows that as
E2 is tuned close to the center frequency of the 2-0
transition an additional contribution to d(01) arises.
The latter contribution, however, may be neglected in
virtually all cases of interest because it originates in a
polarization with spatial variation other than that of
the inducing field. Specifically, Ei(s, t), the velocity-
averaged polarization at frequency 01 induced by a pair
of standing-wave fields Ei(s, t) = ReIE1' coskis expiQit J

and E2(s, t) = Re{E," cosk2s expi02tI, is of the form'

Pi(s, t) =ReIX, coskis+Xs cos(2k2 —ki) s}E1'exp(iQit),

lated in terms of J21 and Jet IEqs. (33) and (34)j,
the transition rates associated with the emission of
photons at 01'. Let us now inspect these quantities in
the rest frame of the atoms, prior to Doppler averaging.
To avoid unnecessary detail, consider the limit of these
expressions for weakly saturating E2(I p Ir«&2). From
Eqs. (35)—(38) one finds"

J21(Ill f12 )

Jsi(~)i' f)2') = 2
I
~ I'v»/I Li I'+Jms (61a)

where X, and Xb are the complex susceptibilities associ-
ated with the response at 01. The former term is due to
the interaction of pairs of travelling-wave components
as discussed above, and may be obtained in our treat-
ment from the sum of the ensemble-averaged polariza-
tions y(s, 2=+1) and y(e, e= —1) I Eq. (C14)]
integrated over velocities. The latter term, in contrast,
is due to the coupling of several travelling-wave com-
ponents and only becomes large when Q1 and 02 are
tuned close to their respective atomic center frequencies.
We are thinking of a polarization induced in a sample
cell placed within a resonator. The net emitted
power may be obtained from the time average of
Pi(s, t)E1(s, f) integrated over the volume of the
sample cell. Consequently, the X, term leads to a
contribution to the emitted power identical to the

limiting expression of Eq. (58) for cot o12 and
I p I'«y'.

This contribution is proportional to the length of the
sample cell and is independent of its position within the
resonator. In contrast, the contribution due to the Xq
term vanishes when the applied fields are detuned
several natural widths from their atomic center fre-
quencies. Furthermore, for 01 and 02 tuned close to
their center frequencies the latter contribution is
highly sensitive to the exact location and length of the
sample within the resonator, and in virtually all cases
of interest is either negligible for all locations within
the resonator, or may be positioned to become so.
Inspection of the treatment of Ref. 2 indicates that
these conclusions are also applicable for cases where
the approximation cv1 ce2 does not hold.

III. APPLICATIONS AND DISCUSSION

In this section, important features of the preceding
analysis are illustrated by means of several discussions
and applications.

A. Frequency Characteristics of the
Rest-Frame Response

It will be recalled that the Doppler-broadened line
shape was obtained by summing the ensemble-averaged
response of a particular velocity band over the distri-
bution of atomic velocities. This response was formu-

1 i 1 1 1 1
61b

RL1*2 ys L2Li* R Li* L2a )

~2 ~1 =2 1y (63)

which does not necessitate resonant coupling of the two-
level type I Eq. (62)$. Close to resonance I Eq. (62)),
J21 and J01t' exhibit different line-shape characteristics.
Nevertheless, in this region they are comparable in
magnitude. A few natural linewidths away from
resonance, however, J21 begins to dominate, becoming
larger than Jsis by a factor y/I Li I. In fact, in this

2' In obtaining these results, the Grst term of Eq. (34) must be
expanded to first order in ( P ~'. In the remainder of (34), which is
identical to (33), B ' maybe replaced by (—EL&~) ', and A 'by
I & I

'= (2/2&22) p(1/L2) —(1/A') g, and specific use is made of
the fact tha, t L&*+I*=8—z~o.

As explained earlier, J21 is the 2~1 transition rate, due
to double-quantum exchanges with the applied fields;
the first term of J01 is the 0—+1 single-quantum transi-
tion rate in the absence of E2,. and the second term,
which we have denoted as J01&, describes the nonlinear
dependence of the 0—+1 transition rate to lowest order
ln E2.

The frequency behavior of J21 and J01 is determined

by the quantites Li= (01' oui) +—ignis, L2= (—02'+ie2)+
iy2s, and R= (Qi' —~1) —(02'—re2) —iy21 appearing in

the denominators of the various terms of (60) and (61).
These quantities exhibit distinct types of tunability:
I,1 ' and L2 ' may be associated with the usual two
level behavior, in which one of the applied fields

resonates with a pair of energy levels; E. ', on the
other hand, involves the frequency of both fields and
becomes large when their separation approaches the
2-1 level spacing. Terms involving L,1 ' and L2 ' to-
gether are strongly enhanced when

01'~O)1,

simultaneously, a condition equivalent to Eq. (56), as
discussed in Sec. II B. Terms in E ' are also enhanced
under those conditions. Note, however, that E '
remains resonant for the less stringent condition
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limit J2~ reduces to the familiar expression for the
Raman transition rate, "

(64)

n
/

SINGLE MODE LASER FILTER
SC ANN IN Q

FABRY-PEROT

PHOTO-
MULT I PL I E R

and Jo&l' becomes negligible. Thus, double-quantum
transitions predominate when level 0 is detuned from
resonance. These line-shape features were considered
previously in Ref. 10 and subsequently substantiated"
in the microwave region.

In considering a pair of applied field resonating with
a broad atomic velocity distribution, it is possible for
atoms within a particular velocity band to satisfy
condition (62); consequently, in our case J'et' and J»
contribute comparably to the velocity-averaged re-
sponse.

The foregoing discussion is directly applicable to the
other energy-level configurations of interest. Note that
in extending these considerations to the cascade case
I Fig. 2 (c)g, the "Raman" condition LEq. (63)g
should be replaced by Qi'+02'=cot+ter. See Appendix
C for further details.

So much for the frequency response of a particular
velocity band. The Doppler-broadened response is
obtained by summing this quantity over the entire
distribution of atomic velocities. As pointed out
earlier, in the present case these averages I Eq. (46)]
have been carried out in the fully Doppler-broadened
limit (y/kN«1), resulting in a number of cancellations
which greatly simplify the final expressions. Thus, in
this limit the velocity average of J2i becomes identical
with the negative of the velocity average of Jo&~.

This may be easily seen in the special case of weak
saturation of the 0-2 transition, Eqs. (60) and (61),
where the first term of Jo~t' averaged over a broad
distribution of velocities vanishes; the remainder is
equal to —J». It is important to point out that such
cancellations do not occur in higher orders of y/kN.
For instance, the complete cancellation of yo in I'~
which occurs in the case of (oui/co2) 1 (see Sec. III C)
does not occur in the next order of y/ku.

B. spontaneous Emission Line-Narrowing EBect

%e turn next to the manifestation of the laser-in-
duced Doppler line-narrowing eGect appearing in the
profile of spontaneous emission from either of the levels
of a Doppler-broadened, gas laser transition. In this
case, the interaction of a standing-wave laser field with

'0 Note that when E1 and E2 are detuned from their respective
center frequencies by sizeable fractions —a situation which does
not concern us here —additional nonresonant terms which were
dropped from the Schrodinger equation (2) may no longer be
ignored. For example, we have ignored terms with frequency
dependence of the type (01'—cog) '. Upon inclusion of such terms,
one finds that Eq. (64} should be multiplied by the factor

(~2+~1) (02 +tiI )/(~2+iii ) p

which is very close to unity in our case. For a complete discussion
of the Raman effect see Ref. 23.

2
LASER

SPONTANEOUS
EMISSION

the 2-0 transition (Fig. 3) considerably influences the
0-1 profile of spontaneous emission as observed along
the laser axis. This inhuence arises both through single-
quantum and double-quantum exchanges with the
radiation fields in a manner completely analogous to
the induced-emission case, and the resulting line
shapes are identical. In fact, the 0-1 spontaneous
emission spectrum follows the spectrum of emission
induced by a weak monochromatic probe 6eld tuned
through the resonance when the population of level 1 is
ignored. Accordingly, Eq. (58) gives the required
spontaneous emission spectrum when S& is set equal to
0 and g(Qi) is interpreted as the usual unperturbed
Doppler profile (E2——0) due to 0-1 spontaneous
emission. In the quantized field calculation of Ref. 4,
the laser-induced spontaneous emission profile is ob-
tained directly. Those results are in exact agreement
with the weak-saturation limit of our results as they
apply to spontaneous emission, given below.

To amplify the foregoing remarks on the applicability
of the classical-field treatment to the spontaneous
emission case, reca11 the discussions of Sec. II A,
formulated in terms of the response (in the rest frame
of the atoms) of a particular velocity band of three-
level atoms to a weak monochromatic probe field
Ei'(Qi') as influenced by a second field E2'(02') strongly
interacting with the coupled transition. Suppose that
the monochromatic probe field is replaced by a wave
packet distributed in frequency about Oj.

' over a
narrow interval dQ~'&&y and incident in a given direc-
tion within a small solid angle dS. Then all of the
considerations of Sec. II A follow identically, where the
field intensity c(Ei')'/8ir is interpreted as an average
quantity. Since dQ&'«p, the response at 0&' is inde-
pendent of the specific form of the frequency distribu-
tion of the wave packet. Accordingly, let us express
this average field intensity as

c(Ere) 2//Sir = IdQg'dS, (65)

where I represents the average intensity per unit

I

4UI

frequency

7 Fro. 3. Spontaneous line-narrowing effect: simplified experi-
mental arrangement, energy level diagram, and spontaneous
emission line shape as influenced by laser field. In the latter
diagram the laser is assumed to be oscillating somewhat below
its atomic center frequency (csz —02)yzo+qy&). See text for
details.
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frequency interval and solid angle. In terms of r, the
average number of light quanta per mode of the
(polarized) radiation field, the field intensity becomes

IdQi'dS= r (hQ1'2/8m'cs) dQi'dS. (66)

The transition rates J;~, representing the absorption and
induced emission processes described in Sec. II A, may
therefore be written in terms of r by replacing (Eis)'
in Eqs. (33) and (34) by 1(SQ1'2/irscs)dQ1'dS.

I Note
that (Ei')2 enters into Eqs. (33) and (34) through

I
n I', defined. as

I pisEis/25 I'.j To explicitly emphasize
the dependence on r, let us write

J;A,=r, 7,dQg'dS (67)

Note that in this expression the e~ coeKcient has
vanished because for r=0 the absorption coeKcients,
%o and S», also vanish. For I P Is~0, Eq. (68) reduces
to the usual expression for spontaneous emission from
the 0-1 transition. In applying this formula one should
interpret p, s as fp;*(R)e;.tsfs(R)d'E, where It is the
electric dipole operator, C2 is the polarization of the
laser Geld, and g~ is the polarization of a spontaneously
emitted photon. Thus, the angular and polarization
properties of the spontaneously emitted radiation
depend on the characteristics of the particular states
involved.

Doppler broadening and standing-wave effects may
be included in exactly the same way as in Secs. II 8
and. II C, respectively, considering contributions only
from that portion of the spontaneous radiation emitted
into a small solid angle in the forward (+z) direction.
Thus, as stated above, the spectrum of spontaneous
emission from the 0-1 transition is given by Eq. (58)
with %1=0 and. Q(Q1) interpreted as the usual Doppler-
broadened spectrum of power emitted. spontaneously
into dQ~dS with given polarization in the absence of the
laser field. Equation (58) has been written in the form
valid for both folded (&r=+1) and cascade (o =—1)
cases, Figs. 2(a) and. 2(c). Suppose, for example, the
laser Geld is tuned to a frequency below its center
frequency, ~2,' then the 0-1 spontaneous emission

"It can easily be shown that this procedure leads to results
consistent with the requirements of thermal equilibrium, both
for 0~1 single-quantum events and for 2~j. double-quantum
events.

with +'2=(l pie I2Q1"/4&~sc')~'2/I ~ I2 The effect of
spontaneous emission at frequency Qj' may be included,

by simply replacing 1 by r+1 in the esisissioss rates,
J» and J0&." Consequently, for v=0, the 1~0 and
1—+2 absorption rates vanish, and the 0~1 and 2—+1
emission rates reduce to O~dQ~'dS and $2~dQ~'dS,
respectively. Using Eqs. (19a) and (19b), the power
spontaneously emitted in frequency interval dQ~' and.
solid angle dS is seen to be

~Q1 (N05isl+'+2+21) dQ1 dS.

2r(y~/2)dx

(lf'~—x)'+ (v~/2)'
(69)

(norma, lized. to unity) . Consider an atom initially in the
upper cascade state (level 2) which underwent decay
via level 0 to level 1, accompanied by two photons
successively emitted at Qi' and Q2' (in the atom's rest
frame): The joint probability that the atom had ener-
gies Sx, Sy, and Ss when it was in levels 2, 0, and 1,
respectively, is Ps(x)Ps(y)P1(s). Evidently, the pho-
tons emitted in that event were of frequencies Q2'= x—y
and Q~'=y —s. Substituting Q~' and Q2' into this prob-
ability expression and integrating over all possible
values of y, one obtains the total probability of an

'2 P. Ehrenfest, Nsturwiss. 11, 543 (1923).
~ V. P. Weisskopf and E. P. Wigner, Z. Physik 03, 54 (1930).

change signals in the cascade case, which result pri-
marily from double-quantum transitions between levels
2 and; 1, are in the form of resonant increases, with the
I'z resonance above or&, the O-i center frequency, and.
the I'a resonance below rsi (Fig 3.). In the folded case,
on the other hand, the change signals, which primarily
result from single-quantum transitions between levels
0 and 1, are in the form of resonant decreases, and the
positions of I'a and I'sr are reversed

I Fig. 1 (b)).
This reversal is a purely geometrical eGect arising from
the different way in which the fields couple to the
respective transitions in the folded and cascade cases.
(See Appendices C and D.) Similar conclusions were
also obtained in Ref. 4.

Double-quantum transitions are a phenomenon well
known since the early d.ays of the quantum theory.
Historically, Ehrenfest" was the first to suggest a
model capable of correctly describing sequential decays
among levels. This mod. el was motivated by the
correspondence principle and adiabatic theorem of the
old quantum theory. Results based on the Ehrenfest
model were later found to be in agreement with the
quantum-electrodynamical treatment of Weisskopf
and Wigner. ss These ideas were all formulated with
spontaneous decay in mind. However, in the presence
of an intense Geld and close to the resonance condition
Q~' ——so~ and Q2'= co2, an additional effect becomes
important: The intense Geld can considerably perturb
the usual single-quantum emission rate of a coupled
transition, " an effect comparable in magnitude with
the double-quantum emission rate. Older treatments
have not been concerned. with the former effect;
line-shape behavior of the kind described in this paper
involves an interplay of both types of processes.

It may be illuminating to outline the Ehrenfest
picture. ""Consider the cascade system of Fig. 2(c):
Following Ehrenfest, assume that when an atom is in
level j (energy eigenvalue: SW;), the probability that
its energy lies in the interval between fix and S(x+dx)
is a I.orentzian centered about St/t/; and of width 5y, ,
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atom having successively emitted photons at Q&'

and 02',

1
dy

(~2 f12 y) + (Y2/2)' (&0—y)'+ (vo/2)'

TWO MOOE
LASER SOURCE

~ ~ ~ 0 ~ ~ ~
ai, a~ nI, n~—

DETECTOR

~ ~ ~ ~ ~ 0 ~ ~
SAMPLE GAS WITHIN
TUNABLE SOLENOIO

21

(~i+fli' —y)'+ (vi/2)'

(The unimportant numerical factor has been set equal
to unity. ) Upon integration (which may be per-
formed as in Appendix D) Eq. (70) yields a result
identical in frequency dependence to the lowest-order
expansion of our 2—+1 emission rate, Eq. (60), or,
equivalently, the expression for » obtained from
Eq. (67). I

Equation (60) is written in general form.
See Table II.j

A recent discussion, ' formulated on the basis of two-
photon transitions induced by a weakly saturating
laser Geld, has analyzed the frequency proGle of
spontaneous emission arising from the lower laser
level (Fig. 3). This discussion is presented for the
limiting case y2~~. It is easily seen that in this limit
Eq. (70) involves a 8 function, becoming 8(02'+
0&'—co2—co&) I

J.& I
'; the discussion of Ref. 5 is equiva-

lent to integrating the latter expression over the atomic
velocity distribution for e=+1 and e= —1. In ad-
dition, Ref. 5 states the line-shape result for arbitrary
y;, a result in agreement with the weak Geld limit

(Q 1) of our expression (58) as it applies to spon-
taneous emission for 0.= —1 and ED=0. The latter
result utilizes the Khrenfest model, being obtained by
averaging Eq. (70) over velocities. '

Such an analysis, however, ignores the important
role played by background atoms, Eo, produced in
level 0, discussed above. This background population
can be sizeable, since in practice the populations of
Upper and lower laser levels often diGer by only a small
amount. The extension of Ehrenfest's model to include
this effect does not follow in an obvious way. To
emphasize the signiGcance of the role played by back-
ground atoms in level 0, consider a cascade system in
which only level 0 is populated (i.e., Xi=F2——0).
Then in the rest frame of an atom, an applied laser
Geld at Q2' will diminish the transition rate at Q»',

leading to two holes of width Fg and I'~ superimposed
upon the velocity-averaged emission proGlc- an effect
entirely due to the dependence of the single-quantum
emission rate on the laser Geld intensity.

On the other hand, the analysis of Ref. 4 does include
the influence of these background atoms, although that
treatment does not make explicit the distinction
between single-quantum and double-quantum events.

C. Mode-Crossing Experiments

The narrow resonance 1 ~ is being utilized in a series
of precision measurements of hyperfine structure in

34 H. K. Holt (private communication}.

IO

FIG. 4. Mode-crossing eGect: simpli6ed experimental
arrangement and energy level diagram.

I ~,—~, I (I/c)«y, (71)

where I and y characterize the magnitudes of the most
probable speeds (I s) and the natural widths (y s),

xenon" and g factors in atomic oxygen. " In these
experiments, co~ is close to co2 and FN is considerably
less than I'g. Levels 1 and 2 are a pair of tunable
Zeeman components optically coupled to a common
level, level 0, and the monochromatic fields E~ and E~
are two oscillating laser modes of Gxed frequency
separation determined by the cavity length. As the
Zeeman levels are magnetically tuned, resonant be-
havior occurs when their splitting approaches the
frequency separation between the two laser modes.
We shall therefore refer to this eGect" as mode crossing
(or difference freqlency crossing). Important aspects of
mode crossing have been presented in Ref. 2; some of
these are discussed here, for completeness, together with
additional details.

A simple version of the mode-crossing technique is
shown in Fig. 4: The output of a Brewster-angle gas
laser oscillating in two modes is attenuated (or ampli-
fied) as it passes through a magnetically tunable
external sample cell. The respective laser modes should
resonate with the two coupled Doppler-broadened
transitions of the sample gas. For example, in cases
where the laser levels themselves consist of closely
spaced tunable components the sample cell may be a
discharge tube containing the same gas as the laser
tube. The intensity of the transmitted laser beam is
studied as a function of the level separation. At low
Geld intensities, where saturation effects are negligible,
the attenuation changes slowly as the levels are tuned,
appreciable changes occurring only when the frequency
separation of the Zeeman components varies by an
amount comparable to the Doppler width. However,
when one of the applied lelds (Em) saturates the
transition with which it resonates (2-0), the at-
tenuation of the coupled transition (1-0) undergoes,
in addition, a sharp change when the appropriate
frequency condition is met. The expression for this
behavior is readily obtained from the e=+1 case of
Eq. (50) . Let us specialize to the limiting case, relevant
to mode-crossing studies, in which
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FIG. 5. Frequency stability of mode-crossing resonance. The

frequency separation of the applied fields, +1, remains stable
against frequency drift caused by length changes of the laser
resonator. Thus the resonant condition 021=co21 is maintained,
regardless of drift of the laser frequencies. Note that in an actual
experiment the Doppler profiles may overlap.

respectively. Assuming the velocity distributions are all
Maxwellian at temperature T, the power emitted or
absorbed at 0» in a small length of the sample gas is
given by

XIm (72)
(Q. --.)—(.+v,Q)

'

in which g(Qr) was introduced in Eq. (57), Q2~ ——

02—0» ~»=~2—coj, and the other symbols were de-
fined in Sec. II B. The above expression predicts a
Lorentzian decrease of width I"~=y&+ysQ as the
Zeeman splitting co2~ approaches the mode separation
Qsr. In the limit of weak saturation (Q—+1), (72)
reduces to an expression obtained in Ref. 2.

There are two noteworthy features of this behavior:
first, that the mode-crossing frequency condition
depends only upon the separation between the laser
modes, being insensitive to their individual frequencies;
and, second, that the width of the mode-crossing
resonance is the sum of the widths of the "crossing"
levels (including power-broadening effects), and is
essentially independent of the lower-level width pp.
These two characteristics, which follow from the
approximation of closely spaced crossing levels (71),
have far-reaching implications regarding the required
frequency stability and resolution of the mode-crossing
technique, as utilized in precision spectroscopic meas-
urements. In connection with frequency stability, note
that although the frequencies Q~ and 02 of a free-
running laser may wander over a sizeabl. e portion of the
broad Doppler profile g(Qt) during the observation
time, their separation will remain virtually fixed (see
Fig. 5), thereby ensuring the stability of the observed
signal. In regard to the frequency resolution, note that
in many important gas laser applications the widths of
the upper levels are much narrower than that of
the lower level; the complete cancellation of the latter
width in Eq. (72) therefore makes for a relatively
narrow signal. This prediction is strikingly born out in

mode-crossing studies in xenon' and oxygen, " where
the observed change signals are not only much narrower
than the Doppler width but are also more than an
order of magnitude narrower than the known radiative
widths of the lower level. It is emphasized that these
two simplifying features are characteristic of the ap-
proximation of closely spaced crossing levels, "Eq. (71),
and do not occur in cases where the approximation

cv2 does not hold.
It should be noted that Eq. (72) holds for the case

in which E& is weak and E2 may fully saturate its transi-
tion: The case where both fields are intense is not
included. Nevertheless, the simple behavior of that
expression, as well as Eq. (50), its more general
counterpart, is revealing of the effects of high-order
saturation. It should also be noted that when both
6elds weakly saturate their respective transitions, the
saturated response up to "third order" may be re-
covered from (50) . This may be achieved by expanding
(50) to lowest order in

I P I', and, noting that there
must be symmetry between n and p. Thus, aside from
the usual slowly varying third-order background term,
the third-order response at Qt is just given by (50)
with Q= 1, with an analogous expression for the
response at 02. This result is in agreement with Ref. 2.

As an example, Fig. 6 depicts a mode-crossing signal
observed in xenon at about 20 G.s' The experimental
arrangement was similar to the diagram of I'ig. 4,
except that to enhance the signal-to-noise ratio a small
audio-frequency component was superimposed on the
slowly varying dc axial magnetic field. The detected
signal was fed into a phase-sensitive amplifier tuned
to the modulation frequency, and the output was
recorded as a function of magnetic field. . Accordingly,
the curve obtained in Fig. 6 is actually the derivative

I f f f I f

I 8 l9 20: 2 I 22 23
AX I AL MAGNETIC F IELD (GAUSS)

Fn. 6. Mode-crossing change signal observed in Xe at 3.37 p. The
sample cell is external to the laser resonator {Fig.4).

~ They also characterize a cascade system in which the middle
level lies about half way between the other two levels. (See
Appendix D.)

16 We are indebted to JeQ Levine for supplying this trace.
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of the mode-crossing resonance of Eq. (72). The laser
source was a 3.37-y, xenon laser" with modes separated
by about 50 MHz. The crossing levels were pairs of
Zeeman components of the upper laser level coupled to
a common lower level. The 1-m magnetically tunable
sample cell contained a xenon gas discharge at a
pressure of 11 p, Hg, so that collision broadening was
negligible. The observed g factor is 0.929; the observed
width of —,

' MHz is consistent with estimates" of the
upper level of the 3.37-p transition, and about 30 times
narrower than that of the lower level.

It is sometimes convenient to place the sample to be
studied within the resonator of the laser source, a
technique useful, for example, when the laser transition
itself consists of closely spaced tunable levels. As
discussed in Sec. II C, the standing-wave fields within
the laser cavity produce an additional change signal
of width F&, due to coupling between oppositely
propagating travelling-wave components of Ej and E&,
symmetrically located about the center frequency from
the mode-crossing resonance. (See Fig. 7.) Applying
approximation (71) to the expression for I'g Eq.
(55), one finds I's=yt+ysQ+2ysQ, which can be
considerably broader than the mode-crossing resonance
(of width I'~). The condition for resonance is Qt+
Qs=cet+tes. In contrast to the frequency condition for
mode crossing, this condition is highly sensitive to
the absolute frequencies of the individual modes, so
that a small instability can cause the modes to drift
away from resonance (Fig. 7); consequently, observa-
tion of the latter signals would require absolute fre-
quency control as in I,amb-dip experiments. "

Finally, we note that in mode-crossing experiments
performed vithi' the laser cavity e8ects due to satur-
ation broadening are enhanced. The over-all behavior
of these effects is expected to be similar to Eq. (72),
i.e., to broaden the resonance by the sa/urated widths
of the crossing levels. Indications of such broadening
have been observed in several instances. "For example,
in mode-crossing experiments performed on the xenon
3.37-p transition within the cavity, " the widths ob-
served are generally somewhat broader than that of
I'ig. 6.

D. Spontaneous Emission Line-Narrowing Experiments

The spontaneous emission line-narrowing effect has
been utilized in measurements of isotope shifts" and
linewidth parameters' in neon. At the time of the
initia) observations, a detailed picture of the line-
narrowing effect predicting differing widths for FN
and Fg was not at hand. The width difference was not
observed in these experiments since in the neon transi-
tions studied, F& and F& differ by only a small amount;

'T W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B.
Garrett, Appl. Phys. Letters 1, 85 (1962).

38 F. Horrigan (unpublished) .
~ See, for example, A. Szoke and A. Javan, Phys. Rev. 145,

137 (1966);and Ref. 1.

frequency ~
RESONANT CONDITION

- DRIFT OF
I ASER

Qp FREQUENCIES

its observation requires good laser stability and high-
6nesse Fabry-Perot analysis. The observation of
different widths in spontaneous emission in neon has
recently been reported by Holt. "

E. Concluding Remarks

In concluding, we would like to make additional
comments concerning several aspects of the laser-
induced Doppler line-narrowing effect.

In the present discussions, the atoms have been
assumed to relax by means of radiative decay. It should
be noted, however, that Eq. (41) and its subsequent
average over velocities, Eq. (SG), also correctly
describe relaxation through hard collisions when the
y; are interpreted as phase-disrupting hard collision
rates. In fact, in the treatment of Ref. 10, which
agrees identically with the limiting case of (41) of the
y; all equal, relaxation was introduced via a, single
collision rate. The detailed features of the line shape in
that limit have been fully veri6ed26 in the microwave
region, where Doppler effect is negligible and the
linewidths are entirely due to collision effects.

On the other hand, in situations where soft col-
lisions —collisions in which phase disruption is in-
complete —play an important role, additional details
not considered here further inQuence the line shape.
Treatments such as Ref. 40 may be readily extended to
this problem. Inclusion of such effects is highly desir-
able in view of the fact that the pressure dependence of
the laser-induced Doppler line-narrowing effect is
observable in a number af rather different experimental
contexts. The classical field treatment presented here
seems to lend itself more readily to inclusion of collision
effects, as opposed to quantized Geld treatments.

The line-narrowing effect presented here is also
potentially applicable to high-resolution microwave
and optical studies of inhomogeneously broadened
solids. In gases, the Doppler effect causes the frequency
of an applied travelling-wave 6eld to appear different
for atoms of different velocities. In solids, on the other

4 B. L. GyorBy, M. Borenstein, and W. E. Lamb, Jr., Phys.
Rev. 169, 340 (1968).

frequency ~
NONRESONANT CONDITION

Fio. 7. Frequency instability of the additional standing-wave
resonance which occurs when the sample cell is placed swithin
the laser resonator. The condition for the latter resonance, 01+&=
co1+c», is destroyed by slight fluctuations in resonator length.
(Compare Fig. 5.}
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hand, the frequency of an incident field appears the
same to all of the atoms; instead, inhomogeneity of the
crystalline fields may result in a broad distribution of
atomic center frequencies. The procedure for including
inhomogeneous broadening effects is similar to the
Doppler-averaging procedure employed above. How-
ever, since Axed atoms do not discriminate between
relative propagation directions of the applied fields,
line-narrowing experiments in solids will produce only
a single change signal, the analog of the 0=+1 change
signal observed in a Doppler-broadened gas. Another
important distinction is that the simple form of the
relaxation rates introduced into the Schrodinger
equation is no longer valid, since nonradiative relaxation
mechanisms generally dominate in solids. These may be
introduced in a density matrix formalism as in Ap-
pendix C by considering appropriate decay constants
for the diagonal and off-diagonal density matrix
elements. The inclusion of such effects will somewhat
modify the characteristics of the observed change
signal.

Thus, for an atom produced in either level 0 or level 2,
inspection of (A2) and (A3) reveals

d,"(t; t„k) =0,

d, '(t; t„k) =0,

k=0, 2,

4=0, 2, j=0, 2; (AS)

Eq. (28) of the text follows inunediately from (A3c).
For an atom produced in level 1, inspection of (A2)

reveals

Equations (A2a) and (A2b) are the usual equations of
motion of a damped, two-level system; (A2c) is the
equation of motion of a third, decoupled level. Equa-
tions (A3) describe coupling effects to lowest order in
A.

From (26) and (A15), the boundary conditions are
found to be

d,"(to, tp, k) = d, (tp, t,, k),

d (t„ t„ k) = 0.
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APPENDIX A: SYMMETRY BETWEEN
TRANSITION PROBABILITIES

It is stated in Sec. IIA that
I c;(t; tp, k) I', the

transition probability of an atom produced in level k
at tp to level j at a later time t, is equal to

I co(t; to,j).
the reverse transition probability. This symmetry may
be demonstrated by direct calculation. We begin by
restating the perturbation technique of Sec. II A in a
more formal manner. The equations of motion for the
d, (t; tp, k) are given by (24). To obtain a solution for
all values of p and

I
n I((y, the d; may be expanded in

powers of 0..'

d, (t; t„k)=d;"(t; t„k)+nd (t; t„k)
+n'd;"(t; tp, k)+ ~ ~, (A1)

where, as before, the superscript I designates the
parameters of the uncoupled system (n =0) . We
require a solution complete to O(n); consequently
only the two leading terms of (A1) need be retained.
Inserting these irito (24) and equating coefficients of
like powers of u, one obtains the following sets of equa-
tions:

d00= ip exp(i8 t) d22", (A2a)

d2"——iP* exp( —zbzt) dP, (A2b)

Ch"=0; (A2c)

dp' i(n*/n) exp(i——b,t) d1"+iP exp(ibzt) d2', (A3a)

do' iP* exp( —i8——2t) do', (A3b)

d1'= i exp( ibzt) dp. — (A3c)

Equatioris (A3a) and (A3b) may be combined to
yield

do —zbzdo+ I P I do = (82 b1) (n*/n)d1(to, '
to, 1) exp(zbzt),

(A7)

which may be solved subject to (A4). Then, noting
(A1) and (A6), one obtains dp(t; tp, 1), complete to
0(n):

dl(to tp 1)(82 81) exp(alto)
dp t;t0, 1

sp, (s,—s,)yI p Izg

X{sexp(i81T)+I I P I2/(82 —51))Lexp(iq+T)

exp(iq—T)]+I q exp(iq+2') —
q+ exp(iq T)jI. (AS)

The symbols employed above have been dered in
Table I. Equation (AS) may be rearranged to yield

d, (t; t„1)= (n*/s) d, (t,; t., 1) exp{a,t)

X
~.Lexp(izt T) —1j q Lexp(izt~T) —1j

A9
9+

Inserting (A9) into (A3b) and integrating, and noting
(A1) and (A6), one obtains

d2(t; to, 1) = (P n%) d1(to,' to, 1) exp{ i(81—82) t$

X
~ ~

~

exp(izt~T) —1 exp(izt T) —1
(A10)

I+

Finally, utilizing Eqs. (13), (16), (26), (29), and (30),
the symmetry between the probability amplitudes



LASER-INDUCED LINE NARROWING 557

solutions of interest" are of the form

p 0(t;tp, k)=A (t tp—, k) exp(iQ 't), 022=1, 2 (86)

may be displayed:

ct ci(tp,' tp, 1)
cp t; tp, 1

n cp(tp, t0, 0)

tr*P* ci(tp, tp, 1)
c2 t;t0, 1

rl'P c2(tpf tp, 2)

"P~'(""' "")'j
c,(t t, 2) (A11b)

expL —i(Q2i' —oipi)tpj P (t; tp, k) =tip„p„p(t; tp, k)+c.c. (87)

where the A. are slowly varying decaying functions of
t tp—Fu. rthermore, inspection of the equations for the

X . , ci(t; tp, 0), (A11a) diagonal elements shows that the p;; are likewise"
exp i Qi' —on tp

slowly varying decaying functions of t—tp. /See the
discussion of Appendix C, Sec. 2. These assertions may
also be verified directly by forming the p;;(t; tp, k)
from Eqs. (27), (29), (30), and (A11).j Then, from
(85), the dipole moment induced at frequency Q ' is

Notice that from these probability amplitudes one
obtains

[ cp(t; tp, 1) ~'=
[ ci(t; tp, 0) [',

[ c2(t; tp, 1) )'=
~
ci(t; tp) 2) )',

as anticipated in Eq. (20).

APPENDIX 8: CONNECTION WITH INDUCED
POLARIZATION

In this Appendix, the relationship between induced
polarization and transition rates is examin. ed." As a
convenient starting point, we reformulate the damped
equations of motion, Eq. (11), in terms of the density
matrix p(t; tp, k), with elements

p„(t; tp, k) =iQ '(tip p„p—c.c.)

+Ppp A. exp(iQ 't)+c.c.g. (88)
Because of the slow variations of the A, the second
term on the right-hand side of Eq. (88) may be con-
veniently neglected. 4' Using this fact, the diagonal
elements of (82) may be written in the suggestive
form

Pii(» tp& k) +Vtpn(t tp) k)

= —(1/M, ') p, (t; t„k)E'(s, t), (39a)

i 22(t tsar k) +Y2P22(t tsar k)

=—(1/ttQ2 )P2(t& tp~ k) &'(st t) ~ (89b)

p; (t; tp, k) =e;(t; to, k)e,*(t; to, k). (81) ppp(t to, k)+ppp—(t tp, k)—
In keeping with previous notation, p;, (t; tp, k) denotes
the value of p;; at time t for an atom produced in level
k at a prior time to, and the e s are the probability
amplitudes introduced in Eq. (6). The familiar equa-
tion of motion for p(t; tp, k) follows directly from

(81), (7), and (11):
P'= —

2 Il', P}—(i/&) L&, Pj (82)

= (1/M, ') 72, (t; t„k)E'(», t)

+ (1/M, ')p, (t; tp, k) E'(s, t) (39c).
It is convenient at this point to introduce several

dedriitions and identities. The initial conditions for
diagonal and oG-diagonal elements of p follow from
Eqs. (16) and (7) and may be written

Here I j are coinmutator brackets, I } are anti-
commutator brackets, Next, note that

p;;(tp, tp, k) = tip, tip;.

He=hW, ti;,+V i, (34)

with V;, defined by (10).The expectation value of an
operator, such as the induced dipole moment p, is

(83)
and. H is the total Hamiltonian PEq. (3)j, having
matrix elements

P;;(t—t„k)dt.=
t —p;;(t—t„k)dt,

-m ~

= —p;;(t—t,=O;k) = —S&;, (811)

by virtue of the boundary conditions. Furthermore, as
in Eq. (22) we introduce P "(t), the ensemble-aver-
aged polarization at 0 ' for atoms produced in level k:

p= tr(pp). (85) P„p(t) =Npys p (t;t„k)dt, . (812)
In cases such as the present one, in which the applied

fields couple resonantly to different transitions, the
equations of motion (82) may be cast in another
form. Inspection of the equations for the off-diagonal
elements p~o and p20 reveals that in the present case the

' For a related discussion, see L. R. Wilcox and %'. E. Lamb,
Jr., Phys. Rev. 119, 1915 (1960), Appendix I.

Taking the time derivative of (312) and noting that
~ These solutions are complete except for rapidly varying

pertnrbations which are negligible for
~
u

~
and ( p (&&coq and ru2.

4' This approximation is actually unnecessary and is only made
to simplify the algebra. Had the P (t—to) term been retained, it
would have dropped out upon averaging over to, by virtue of the
initial conditions.
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(811) implies p (tp., tp, k) = 0, one obtains

t

P„"(t)=ippyp p (t; tp, k)dtp. (813)

Let us inspect Eq. (89a) as it applies to atoms pro-
duced in level 2(k=2). Multiplying both sides of
(89a) by rhpypdtp and integrating from —pp to t using
(811) and (813), one obtains

the applied fields. This identification leaves J2O as the
contribution arising from single quantum exchanges
with E2'.

Equations (816) and (818) were derived for atoms
produced in level 2. Similar manipulations may be
readilv extended to the other possible initial conditions.
One then obtains the general relations

pn (t—hp) 2) dtp —— Pi'(—t) E'(s, t) /RQi'

= —(1/50i') (Pip(t) Ei'(s, t) )g

+ (rapidly varying terms) . (814)

In this equation the notation ( )i has been introduced.
to denote the time average. On the right-hand side of
(814) we retain only the dc term —the remaining
terms are not significant, and we have systematically
ignored contributions of this order. 4' Recalling the
expression for the k—+j transition rate introduced in
Eq. (18),

m= 1, 2 (819a)

(819b)

)Note that Eqs. (819) have been derived under con-
ditions where both fields may fully saturate their
respective transitions. ) Combining these equations for
m=1 and using (23), one finds that the net power
emitted at Q~' is

Ie(Ill ) fifll $N2J21+%Jpl iil(J12+Jlp) ly (820)

which is identical to Eqs. (19) of the text.

(814) yields

Jlcj—QPj p;;(t; tp, k)dto, (815) APPENDIX C: CALCUI ATION OF POLARIZATION
USING ENSEMBLE-AVERAGED
DENSITY-MATRIX FORMALISM

n,Jpi —(1——/kn, ') (Pi'(t) Ei'(s, t) ),. (816)

The quantity appearing on the left-hand side of (816)
was formerly obtained by considering the probability
of finding an atom produced in level 2 at Io in level 1 at
a later time t, due to transitions induced by the applied
fields. The right-hand side of (816) is the rate at which
energy is emitted at frequency Q&' in units of hQ&' for
atoms produced in level 2. Accordingly, J» represents
the rate of photon emission at Q~' per atom produced in
level 2.

Next, consider Eq. (89c) for k=2. A procedure
similar to the above results in the expression

imp Jpp (1/Mi——') (PP (t) Ei'(s, t) ),

+ (1/Mp') (Pp'(t) Ei'(s, t) ),. (817)

Combining (814) and (817), one obtains

np(Jpi+Jpp) = (1/SQp ) (PP(h)Ep (s h) )i. (818)

The quantity appearing on the left-hand side of (818)
was formerly obtained by considering the probability
of finding an atom produced in level 2 at fp in either of
the other levels at a subsequent time, due to induced
transitions. The right-hand side of (818) is the rate
at which energy is emitted at Q&' in units of 502' for
atoms produced in level 2. Accordingly& Jpi+ Jpp

represents the net rate of photon emission at Q2' per
atom produced in level 2. Noting that J» is associated
with emission of photons at &i' (see Eq. (816)) and
also contributes to photon emission at Q2, this emission
rate evidently involves exchanges of two quanta with

This Appendix rederives the results of Sec. II A
of the text by means of the ensemble-averaged density-
matrix formalism and extends those results to the other
coupling configurations. Section C 1 establishes the
connection between the time-dependent wave functions
and the ensemble-averaged density-matrix equations
of motion. In Sec. C 2 these equations are solved for
the "inverted-V" configuration, Fig. 2(a), and the
ensemble-averaged, polarization obtained; the same
level system was treated in the text by means of the
transition-rate approach where an equivalent result
was, of course, obtained. In Sec. C 3 the method of
Sec. C 2 is extended to the other level configurations.

p,;(r, t) = Q equi, (C1)

LNote that as we have defined them here, the elements
of p(t; tp, k) are dimensionless, while the elements
of p(r, t) have the dimension of number of atoms. )
Using the relationship

p;, (t; tp, k) chp

(C2)

and the fact that in the moving frame II, the total

1. Equations of Motion

The elements of the ensemble-averaged density
matrix corresponding to Eq. (81) of Appendix 8 are
defined by
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Hamiltonian, is independent of to, (82) leads to the
familiar differential equation44

p(r, t) =-'}(p' p)—, I'}—(i/5) I H, p). (C3)

Note that in (C2) the appropriate boundary conditions,
from (12), are

p;, (tp to, .&) =Ra@;, (C4)

so that in Eq. (C3),

portance are the coeKcients of the p@ on the left-hand
side of Eqs. (CSb). These are associated with the
resonant behavior of the induced polarization. The
only important frequency components of the p;; are
those which can reduce the magnitudes of their coef-
6cients to the y;; for particular values of Qj' and Q2'.

In other words, a nearly exact solution of Eq. (CS)
can be obtained by assuming the following form for the
off-diagonal density-matrix components:

(C5)

with e; the steady-state background population of
level j. Using Eqs. (BS) and (C1), the ensemble-

averaged polarization is

ppi ——A. exp (—i01't),

p20
——x exp (+iQ2't),

p21
——D expI +i(02' —01') t),

(C10)

tr[jup(r, t) j.
2. Ensemble-Averaged Polarization:

"Inverted-V" Configuration

(C6)
in which X, A, and D are constants. Inserting (C10)
into Eqs. (CS), one obtains a set of five simultaneous
linear equations:

jjV
rlo rip + P02P20 + I

—+ —
Iptopoi

vo &vi vo&

r20 r20
piopoi 1 1}+ —+ IP02P20

—c c.
Vo Y2 +0~

Ke proceed to calculate the ensemble-averaged

response of a particular velocity band of atoms whose
level structure is in the form of an "inverted-V" con-

figuration, as shown in Fig. 2(a). From Eq. (C6), the
polarization induced by Ei'(z, t) in the moving frame is

2 Re(poipio) = Re}x(v, 0) 221(z) exp(i01't) }, (C7)

which defines y (0, 0), the complex susceptibility for the
atoms moving with axial velocity component e.

In the steady state, the p;;=0 except for population
fluctuations which are entirely negligible when the
50,'))(tiE'). Under these conditions the density-
matrix equations may be compactly rewritten in the
following form:

P t1 I&-i(rip —rio ) = ——X+
I

—+ —InA—c.c.,. (C11a)
vo &vo

n 1 1&
+i(r20 —r20P) = ——A+ —+ —

IPX —c.c., (C11b)
VP Vo V2/

—L1A= n*ri p+PD,

L2X=P*rsp+nD,

R*D=n*X—P*A.

(C11c)

(C11d.)

(C11e)

The symbols employed here have all been defined in
Sec. II A.

A solution to this set of equations for all values of
E2' and for weak Ei'(i.e., I

n
I «v) can be obtained by

means of a simple perturbation technique. In the
absence of coupling through n, the system reduces to a
simple two-level system, and the off-diagonal matrix
elements ppi and p» vanish. Setting n=0, (C11) yields
the unperturbed solutions

+plpol (E /ti) (tiolr10+ p02P21)

@20P20 + (E /ti) (p20r20+tilOP21)

+21P21= —(E /ti) (psopoi tioip20) . —
(CSb)

vo (poo
—220) +vi(pii —Ni) +v2 (p22

—02) =0; (CSa) X"= rpppp*L2*/2,

rm"= r,p' —2(v2p/vp) I p I'r20'/A,

r20" ——rsoo
I

L2 I2/A.

(C12)

In the latter equations, E'=Ei'+E2' is the net im-

pressed field as seen in the atom's rest frame; we have
also introduced the operator

2,;=i(d/dt) —(W; W,)+iv;, , (C9)—
and have written r;-= p; —p;; and r; =m; —e .

This set of equations may be solved by inserting E'
in complex form. The various Fourier components of
Jt' drive the off-diagonal elements p;, . Of special im-

L1A'= n*r,o"+PV, —
R*D'=n*X —P*A'.

(C13)

In (C12) the superscript N has been introduced to
designate the parameters of the uncoupled system.
The presence of coupling through E~' does not affect
the unperturbed parameters X", rjo", and r20" to lowest
order in 0.. Thus, the first-order coeScients A' and D'
are determined by the erst and third off-diagonal
equations, (C11c) and (C11e):

44 W. E. Lamb, Jr. , aiid T. M. Sanders, Jr. , Phys. Rev. 119,
19ot (196p)

' ' ' ' '
Equations (C13), together with (C21), (C10), and
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TABS,E II. Extension to other level configurations.

Equation

(36a), (36b)
(36c)
{37)
(35a)
(35b)

x(y~ yo) = i (oor —ooo)
[t oo ['

Extended definition

Lt(y;) =y;+ip;o
&(y~ yo) = (y~+yo) —isa

b, - =0 —co.I j
A (yo) =

I A(yo) I'+ (4yoo'/voto) [ tt I

B(y~» yo) = —~(y~ yo) I~*(y~)+ I tt ['
o(v, x) ~ „~ ~,

1 t&1 —2( „A,)of&, , x)[
B (y~, yo)

' '
A (yo) B(y~, yo)

Equation

(25)

(C14)
(C14)

Quantity

pm

p20

P21

$1

g2

P

x(o, o)

x(y» yo)

"V" [:Fig 2(b)]
A exp (iQ~'t)

X exp (—iQo't)

D expL i (Q—o' Qx'—)t]

+b,g'

tuoA 1 /tt

toooAo/)1

to&oA/Ar

x(-»'~ »')
= —x'(t4'i —»')

Level configuration

"Inverted-V" [ Fig. 2(a) ]
Z exp( —sn 't)
X exp (iQo't)

D exp[i(Q, '-Q, ') t]
+Ay'

toloA f /tt

toooAo*/t't

toogAo/Ag

x(»') -~o')

Cascade [ Fig. 2(c)]
A exp( —iQ&'t)

X exp( —tQo't)

D exp[ —i (Qo'+Qo') t]
+BI'
+g I

togoAr/tt

g~oAo/tt

too(A /Ag

x(»', »')

(C7), yield the complex ensemble-averaged suscepti-
bility complete to first order in 0t:

The time-averaged power emitted at Q~' is

I„(f)t') =-',at'
I 2At ~' Imx(t, e); (C15)

the present result is thus in full agreement with Eq.
(39) of Sec. II A.

3. Extension to Other Level Configurations

The developments of the previous section may be
adapted to the other level configurations in a simple
and straightforward manner. The configurations of
interest are illustrated in Fig. 2. In terms of the rela-
tive position of the common level, level 0, they are the
"V" con6guration, level 0 lowest )Fig. 2(b) j; the
cascade configuration, level 0 between levels 1 and 2
LFig. 2 (c)j; and the "inverted- V" con6guration,
level 0 highest /Fig. 2(a)]. The equations of motion
(CS) differ in the various cases only in the relative
signs of W;—8', which enter into the 2;„Eq. (C9).
These sign changes lead to diferent choices for the
resonant contributions to the o6-diagonal density
matrix elements (C10) which, in turn, necessitate
other changes. The modifications of Sec. C 2 necessary

for its extension to the other level configurations are
summarized in Table II. Inspection of the final results
(noting the definitions of 6t' in Table II) reveals that
the susceptibility for the cascade and "inverted-V"
configurations are the same, except that in the latter
case 62' is replaced by —6&' wherever it appears.
Furthermore, the susceptibility for the "V" con-
figuration is the negative of that for the "inverted-V"
con6guration, a result expected intuitively.

APPENDIX D: VELOCITY INTEGRATION IN THE
DOPPLER LIMIT

This Appendix presents in detail the velocity-
integration procedure outlined in Sec. II B. As seen in
the text, Eq. (41), the expression for the Doppler-
shifted response of a particular velocity band of atoms
viewed in the laboratory frame, is a rather complicated
function of velocity. Moreover, the convolution of such
an expression with an atomic velocity distribution
G, (s), Eq. (47), depends, in general, on the speci6c
form of the latter distribution. In the fully Doppler-
broadened limit y/kg«1, however, it is possible to
perform the averages without recourse to the details of
the G s. Furthermore, a number of cancellations occur
in this limit, resulting in a rather simple final expression
for the velocity-averaged response.

1.Velocity Integration

As shown in Sec. 3 of Appendix C, the expressions
for the ensemble-averaged response for the various
level configurations of interest are closely related to
one another. It is worthwhile to perform the velocity
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averages in a general form, applicable to all of these.
Referring to Table II, the susceptibilities for the
"V" and "inverted- V" level conigurations, Figs.
2(b) and 2(a), respectively, differ only in an over-all
sign; accordingly, the corresponding velocity averages
may be performed identically. Furthermore, the latter
expression may be readily extended to the cascade con-
figuration, Fig. 2(c):Following Eq. (46), the expression
for the Doppler-broadened power spectrum may be
written

1~(oli 0) =2flfll
I

o. I' Im n. (v; 0)dvi (D1)

the subscript 0 has been added to denote the "inverted-
V" level configuration (0=+1), treated in the text,
and the cascade coniguration (0= —1). As in Eq.
(40) and Table II,
$.(v; 0) = (rpl —220)E(o)/8

,, L2(o) —2(V20/Vo) ~(o)+ 122—no P'
with

~=IL2(o) I'+(4~op/v») IP I'

8= —E(o.) Ll*+I p I'.

From Table II, the appropriate generalization of Eqs.
(36) is

Ll —~l +i710

L2(o) o~2 +&|'20)

(DSa)

(D5b)

o =+1:"inverted-V" (see text),

0=+1:Z, II Z„
0-= —1:cascade,

I.g ——lg —kgb,

L2= l2+ ook2v)

E=r—Ev;

X=ky —Otk2j

ll ~1+i710

(D6a)

(D6c)

(DSa)

l2 = O'A2+ 2+20) (DSb)

r = (61—o r4) —iy21, (DSc)

with 6;=0;—co;. To expedite the decomposition, note
that

8 '=g 'I (klv+b )
—'—(klv b) —')—(D9)

E(o) = (61'—ob,2') —iy21. (D5c)

To perform the averages, S.(v, 0) is decomposed into
its partial fractions. In addition to I;=S,G;(v) Lsee
Eq. (47)j, S, is velocity-dependent through Ll, L2,
and E, Eqs. (DS). Explicitly,

in which

and

Also,

where

g= L((Z/k, ) l,*—r)'+4(Z/k, ) I P I'j" (D10)

b, =-'2(kl/ii) t g~((&/kl) li'+.)j. (»1)

1
(D12)

2y20Q m +ookov rN++ookpv

rip l2——iy—20 (1+Q) (D13)

and Q is the factor by which the saturated levels of the
0-2 transition are broadened,

Q= L1+4 I P I'/vov23"'.

Inserting Eqs. (D9) and (D12) into (D2), the partial
fraction decomposition leads to expressions of the form
of Eq. (48) of the text,

H,~(v) =G;(v) fI (co+i')+kv]L(oo'+iy') ak'v]I ',

(D15)

(D14)

in which co, co', y, and y' are real and y and y&0. As
stated in Eqs. (49) of the text, in the limit y/ku«1,

—(20ri/k') G, ((0/k)

(co+i') + (k/k') (00'+ iy')

and

H+(v) dv=0. (D16b)

A proof of Eqs. (D16) will be given at the close of this
Appendix. Thus, in the velocity-broadened limit the
question of whether or not a particular partial fraction
term of the type (D15) contributes to (D1) is entirely
determined by the signs of the imaginary portions of its
corresponding factors. Many of these are, in turn,
controlled by the sign of E LEq. (D7)). We shall
con6ne our attention to the important case in which

E&0, always valid if either k~&k~ or Oe= —i. The
complementary case in which E&0 can be obtained
similarly.

It follows from their definitions that when E)0,
lm(+b~) )0. Using these facts, the velocity-averaged
partial fraction components of I, may be combined to
yield

I.(n„o) = 2~5c
I
~ I2L&ol(&1/kl)

+2(k/k. ) (IP I/~.Q) ~-(~./k. ) I P(-)j, (»7)
in which

tn, ,(v) =X;G,(v) —X,6;(v),

F(oo) = (1/g) I r+oo(E/k2) ns..—i(qp/2) (1+ooQ)j
yL(—oo(kl/k2) 2N„+b )-'—(—oo(kl/k2) rw..—b+) 'j,

(D18)

(D19)
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reduces to
(D20) ['r+oe(IC/ks) rN„i —(yo/2) (1+oeQ) j

Lr+ao(E/ks) m„]Dr*+os(kt/ks) m j—I 0 I"
(D21)

Also, in evaluating the G s in (D17) the approxim

~ P ~'&&y(ku) has been made.
The first term of (D17) will be recognized as the

power emitted by an unsaturated Doppler-broadened
two-level system. The second term may be simplified
by utilizing the identity (D9) with —oo(kr/ks)m„
substituted for ktv. Then using (D4) and (D6), (D18)

which may be further simpli6ed by noting that, in-
serting (D14), the numerator is a factor of the de-
nominator. Replacing k&/ks by ~or/&as, slight rearrange-
ment yields

I, (Q 're) = 2vhc
)

rr [ I inm(&r/kr) —2(au/coo) (~ P [ /7oQ) tuos(hs/ks)

XIm[L+1 e(&t/&2) +2] i{710+ (tot/&2)'Y20Q s70(1+oeQ) $ I I (D22)

kG, (v) dv

m (s)+iy)+kv
(D23)

in which s& and & are real, p&0, and G;(v) is a slowly
varying, even function of e, of width characterized by
u. In the limit y/ku«1,

(oo+iy+kv) '~I'(&o+kv) —'—i(v/k) b((cu/k)+v),

(D24)

where P denotes principal value, and (D23) becomes

"G (v)dv
Z;((o,ku) = I' '

im-/G;(co/k), —
~ a)k+v

q/ku«1.

(D25)
For compactness, we shall write

Z;(co,ku) =Z (&o,ku) iZ/" (to,ku)—,

a remarkably simple result. For o =+1 this expression
reduces to Eq. (50) of Sec. II B.

2. Proof of Equations (D16)
Consider the integral

with Z, ' and Z;" the real and imaginary parts of (D25)
respectively.

Consider now the function H~(v), Eq. (D15):
Decomposing HP(v) into partial fractions and then
using (D23), (D25), and (D26), one finds that in the
Doppler limit,

(1/k') LZ;(co', k'u) WZ; (at, ku) 7
(a)T (k/k') a)')+i(y T(k/k')y') '

y/ku«1. (D27)

The only significant contribution to (D27) arises from
the immediate vicinity of ooW(k/k')oo'=0. Under the
stated assumptions the Z; vary slowly over this small
region; consequently, it is permissible to evaluate the
numerator4' at co= &(k/k') ~'. Making use of the fact
that Z and Z,"are odd and even functions of co, respec-
tively, this substitution leads directly to Eqs. (D16).

"When the denominator of (D27) becomes small, one should
instead expand Z(&o', O'I, y') about the point (co, ka, y). Equation
(D16) follows directly.


