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The soft x-ray emission spectrum of metals is studied using a diagrammatic many-body perturbation
theory to account for the interactions between electrons. On the basis of a one-electron model, the emission
spectrum gives a direct measure of the Fermi energy and is simply related to the conduction-electron
density of states. In actual metals, however, the spectra are strongly modified by electron interactions, and
these relations are no longer valid. A low-energy tail is introduced in place of a sharp emission threshold,
and a satellite band appears which is associated with plasmon excitation in the metal. The first-order
theory described here shows that certain interference terms play an important role in determining the
emission intensity. For sodium, a satellite band is obtained with maximum intensity between 1% and 2%
of the parent band, in agreement with observations by Rooke. The low-energy tail has a similar strength in
the region of the satellite. The first-order theory, however, breaks down in the region of the parent band
spectrum.

I. INTRODUCTION

OFT x-ray spectroscopy is a useful tool for obtaining

~

~

~ ~ ~

~

information about the conduction electrons in
metals. ' ' This information has usually been interpreted
in terms of a one-electron model, though it is recognized
that significant corrections must be made for many-
electron effects. This paper is the erst of several in
which we employ many-body theory to study system-
atically the new features which electron interactions
introduce into the emission spectrum of a metal for
which the free-electron approximation is valid, such as
for the alkali metals. In particular, the present article
contains a description of the formalism to be employed
and a calculation of the L2,3 emission spectrum of sodium
to first order in the effective interaction. As will be seen
below, the erst-order theory encounters certain diver-
gence difhculties when applied to the "main" or "parent
band" portion of the spectrum, and the second article
of this series' will describe a renormalized theory from
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which the divergences are eliminated. However, the
erst-order theory is useful for gaining insight into the
structure of the theory and the physical processes which
contribute to the emission. It will be seen that several
early treatments ' of many-body effects in emission
were incomplete and neglected important interference
terms. When these terms are included, one obtains an
emission spectrum for the low-energy tail of the main
band and for the "plasmon satellite" band which are in
good accord with experiment.

Soft x-ray emission occurs after a localized electron is
somehow removed from an energy level below the
conduction band of the metal, (say by x-ray or fast-
electron bombardment). An electron in the conduction
band can then drop into the localized hole state, giving
up its energy as x radiation. The elementary theory of
this process, ' ' "which is based on a one-electron Bloch
model, is illustrated in Fig. 1. The radiation intensity
depends on the rate of electron transitions induced by
the electromagnetic 6eld. If the field is treated semi-
classically, it couples to the electron through the
momentum operator n p, where n is a unit polarization
vector in the direction of the vector potential. Then
(with fr= 1) the emission intensity is proportional to

Is(cc) =(oc/t) QB(co+sf e )~ (sv, I
n p I v'') l', (I)

i,f
where one sums over all possible Anal states and averages
over initial states, l being the number of initial states.
The initial state is a hole in a localized bound level about
one ion in the metal. If there are several levels close
together in energy, then an average is necessary (as for
Ls,s emission) . In this model, the final state is a hole in

r P. T. Landsberg, Proc. Phys. Soc. (London) A62, 806 (1949).
8 J. Pirenne and P. Longe, Physica 30, 277 (1964).' R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956)."F.Seitz, The Modern Theory of Solids (McGraw-Hill Book

Co., New York, 1940), see pp. 350-352.
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any one of the normally occupied conduction states in
the Fermi sea. Since the8 function in Eq. (1) conserves
energy, the sum over final states becomes proportional
to the conduction electron density of states N(E) times
a sum over squared matrix elements P(E) for final
states with energy between E and E+dE. Here E is
related to the x-ray frequency &o by E= fio&+Ez, where
Ez is the discrete (negative) energy of the low-lying
state measured from the bottom of the conduction band.
For a metal with a spherical Fermi surface, N(E) is
proportional to E'" from 0 to the Fermi energy Ep, and
vanishes elsewhere. Symmetry considerations" indicate
that for metals where the conduction electrons have
mostly s-wave character near the ions, the leading term
of P(E) is proportional to E for transitions to an even-
parity state (E-shell emission) and is constant for
transitions to an odd state (L-shell emission) . Thus the
spectrum is expected to exhibit E'~' or E'I' behavior,
respectively, with onset at E=O and a rapid fall at
E=Ep. Thus, according to the one-electron model, the
spectrum gives a measure of the width of the conduction
band. In addition, the energy dependence of the emis-
sion intensity gives information about the density of
states of conduction electrons with the appropriate
symmetry about the ions.

Experimental emission spectra' " '4 resemble the
spectra of the one-electron model, but also exhibit
qualitatively different features. We will not concern
ourselves here with lattice eBeets which modify
N(E)P(E) but which can still be included within a
one-electron description. These features even appear for
metals such as the alkalis for which lattice effects on the
conduction electrons are negligible. The I. emission
spectrum of sodium is shown in Fig. 2(a) (after
Ref. 13). Note that there is a low-energy tail which
obscures the E=O onset. This tailing appears to be a
common feature of all such spectra. ' In addition there is
a. structure at the high-energy end of the spectrum,
though this feature did not appear in the spectrum
found for sodium by Cady and Tomboulian. '4 Rooke"
has observed a weak satellite band shifted down
in energy by about 5 eV from the band shown in Fig.
2(a). Rooke has not yet published his sodium result,

EF

FIG. 1. One-electron model of the soft
x-ray emission process.
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but an analogous satellite for aluminum is pictured in
Fig. 2 (b) (after Ref. 15).

It is apparent from Fig. 1 that a purely one-electron
description cannot explain any emission intensity for
E(0. The tailing a,nd the low-energy satellite must
therefore be cooperative effects due to transitions in
which some of the energy of the radiating electron is
retained by the metal, and taken up by other conduction
electrons. Two earlier treatments have shown how
interactions can give rise to the tailing. Landsberg~
noted that the initial electron hole in the bound state
and the final hole in the conduction band are not really
well-defined states. Because of electron-electron scat-
terings these states have a finite lifetime or width.
Consequently, the 8 functions in Eq. (1) should be
replaced by suitable I.orentzian distributions which
round the spectrum and supply a tail. It can be shown
that the width of the bound state is not very significant
in this case. Electromagnetic self-energy processes pro-
vide a bound-state width in sodium on the order of
10 eV, while even the more important Coulomb self-
energy processes provide a width of only 10 ' eV. The
width of a conduction band state, however, depends on
its energy. At the Fermi energy it vanishes, but towards
the bottom of the conduction band it grows to almost
1 eV. As a result there is a substantial tail introduced on
the low-energy side of the spectrum, with little effect on
the high-energy side, in qualitative agreement with
experiment;. A second mechanism which gives rise to a
tailing was discussed by Pirenne and Longe. ' It is based

45 50 55 60 eV

FIG. 2. Experimental soft x-ray emission spectra: (a) L emis-
sion spectrum of sodium after Ref. 13, showing the main or parent
band and the low-energy tailing. (b) The tailing and plasmon
satellite band in the spectrum of aluminum according to Rooke,
Ref. 15.
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on the observation that the initial state, with a hole in
the ion core, appears to the conduction electrons as a
localized charged impurity. After the transition the
localized impurity disappears and the conduction band
hole can move rapidly away through the crystal. Thus
the fields seen by the electrons change suddenly and so
do their wave functions. As a result Auger processes can
occur during the emission of the x-ray, leaving additional
holes in the conduction band and electrons in excited
levels above the Fermi level. Since these electrons
require energy to be excited, there is less energy left
for the x-ray and a low-energy tail results. They Gnd

that this process is of the same order of magnitude as the
Landsberg process. Both calculations are carried out
using a static screened Coulomb force between electrons.
When the screening length is taken as 0.68 L, as sug-
gested for sodium by the Thomas-Fermi model, they
Gnd good agreement with experiment. The strength of
the tailing predicted by the combined Landsberg and
Pirenne-Longe processes seems to be of the correct
order of magnitude when compared with the experi-
mental spectrum of Fig. 2. However, neither of these
theories explains the presence of the low-energy satellite
band observed by Rooke. '5

The existence of such a satellite band was predicted
by FerrelP on the basis of Bohm-Pines theory. A more
detailed application of Bohm-Pines theory was reported
by Brouers, '6 and more recently Ferrell'~ used a semi-
classical approach. The calculated strength of the
satellite is found to be in good agreement with Rooke's
observation, provided one accounts for a strong can-
cellation between a term in which the plasmon is
coupled to the initial hole in the localized bound state
and a term in which it is coupled to the final hole in the
conduction band. '8 ' Thus, plasmon excitation can also
be interpreted as a result of the sudden change in the
charge distribution seen by the other electrons as the
localized bound-state hole suddenly changes into a
conduction band hole. Since plasmon excitation requires
a certain minimum energy, the satellite emission band is
shifted by a corresponding amount below the main
emission band.

While the above calculations seem to contain the
essential features needed for a qualitative description
of observed I,-shell emission spectra, it would be desir-
able to develop a much more unified and systematic
treatment of the problem. Recently, some attempts
along these lines have been reported. """Here we

6 F. Brouers, Phys. Letters 11, 297 (1964); Phys. Status Solidi
22, 213 (1967).

'7 R. A. Ferrell, University of Maryland Technical Report No.
485, 1965 (unpublished) .

» A. J. Glich and P. Longe, Phys. Rev. Letters 15, 589 (1965) .
'9 F. Brouers and P. Longe, Phys. Letters 20A, 119 (1968).
~0L. Hedin, Solid State Commun. 5, 451 (1967); and in Pro-

ceedings of the Conference on Soft X Ray Spectroscopy and th-e

Band Structure of Metals and Alloys, 1tr67 (Academic Press Inc. ,
New York, to be published).

s' R. G. Rystephanick and J. P. Carbotte, Phys. Rev. 166, 607
(1968).

present the details of the method sketched in Ref. 18
along with corrected results. The calculations are based
on Green's functions and many-body perturbation
theory. The results obtained with these methods should
also be of interest as a check on many-body theory as
applied to real metals and to a case where not only
electrons near the Fermi surface, but electrons through-
out the whole conduction band, contribute.

In the next section, we present a general formulation
of the problem from a many-particle point of view and
in the third section details of the calculations are
presented. The last section contains a summary of the
results and a discussion of the difhculties which must
still be resolved.

II. GENERAL FORMULATION

A. Emission Intensity

When the metal is considered as a many-body system,
the emission intensity takes the form

1(~)= (~/t) 2 6(~+&1—a) I &+1 I 2 n Ps I +') I'

(2)

where the notation is similar to that of Eq. (1) except
that the energies E; and Ey and the corresponding states
+; and %y are solutions of an E-particle Schrodinger
equation, where the Hamiltonian H contains the inter-
action between electrons as well as with the nuclei.
Since 0'; and 4'y are not ground states of the system,
they have a finite lifetime to radiative decay. However,
since the coupling to the radiation Geld is weak, we can
treat it in linear approximation and obtain a transition
rate of the type shown above in Eq. (2).

For later application, it is convenient to rewrite
Eq. (2) using a representation of the 6 function in terms
of the real part of an integral over a parameter f

8(co+Br—E;)= (1/rr) Re dt expL i(or++f E—)tj. '

0

With this expression, Eq. (2) becomes

I(or) = (or/rrtt) ReF((o)
with

~(~) = 2 «e '&+'I tl'(t)
I +1)&+1 I 0(o) I +'»

i,f p

where
0 (1) eirr tge irrt—

e= Pn p, .

Applying closure to the sum over 6na1 states, wc
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obtain

In this form there is no more reference to the Gnal states
which are implicitly contained in the l correlation
functions

The function F(ot) will be calculated below with the aid
of diagrammatic many-body perturbation theory.

B. Nonuniform System

These techniques must be applied to a nonuniform
system. Translational invariance, which is usually
invoked when studying a system of conduction electrons,
cannot be assumed here because the initial state con-
tains a localized excitation corresponding to the missing
tightly bound core electron of the one-electron model.
However, using the methods of Hubbard, "we will be led
to a form of the theory which is formally the same as for
the uniform system. Ke separate the Hamiltonian H
into two parts

Fio. 3. Particle scattering by the
simplest II part. The passive closed
particle loop is equivalent to a sym-
metrized Hartree field.

~ ~ ~ dxvx —x H x (9)

normally occupied in the reference ground state. There
also are passive particle lines whose end points are
always associated with the same Coulomb interaction
line and hence with the same instant of time.

I et us Grst consider the diagrams without any V
points. These diagrams can contain what Hubbard"
calls "H parts. "These are parts of the graph which can
be detached from the graph by cutting a single inter-
action line. A simple example of this type is the passive
particle loop or bubble attached to a vertex by a Coulomb
line as shown in Fig, 3. This term reduces to the sym-
metrized Hartree Geld. When the contribution of these
graphs is calculated, one Gnds that the B parts enter as
a factor of the form

&'=-,'Q n(xa —xa ) —Q Vs.o.(xa),

where H(x') represents the term resulting after the
integration over any variables inside the H part of the
graph. In the uniform-Geld case, with a uniformly
smeared out positive charge background, one has

where U(xq) represents the Coulomb interaction be-
tween an electron and the E/Z nuclei, s(xq —x~ ) is the
Coulomb interaction between electrons, and Vs.c.(x~)
is the potential energy of a self-consistent Geld which
must be determined. The Hamiltonian Hp provides a set
of one-electron states which satisfy the wave equation

I (p'/2m)+U(x)+Vs. c.(x)jl;(x) =E'I (x) (8)

Then H' can be taken as a perturbing Hamiltonian
which gives rise to electron transitions which are
represented in terms of Feynman-type graphs. As
usual, one distinguishes between two types of lines in the
diagrams —the directed line representing a particle in a
state and the line of Coulomb interaction. These lines
meet at vertices which consist of two particle lines, one
coming in and the other leaving the vertex, and one
interaction line which terminates at the vertex. In
addition, to describe the second term of Eq. (7) one can
introduce the "Vpoints" at each of which an interaction
line terminates. Using the convention with time Qowing
upwards, the instantaneous interaction lines will be
horizontal and the particle lines are directed upward or
downward depending, respectively, on whether they
describe an electron in a state which is normally un-
occupied in the E-particle ground state of Ho, or whether
they describe an electron missing from a state which is

'r J. Hubbard, Proc. Roy. Soc. (London) A244, 199 (1958).

Since all points of space are equivalent, H(x') cannot
depend on position and it must be constant. Thus all
terms of the form (9) must vanish. In other words, the
H parts are irrelevant to this case. For the nonuniform
case it is useful to distinguish between the "improper
H parts" which can be separated into another H part
and a polarization part, and the "proper H parts" for
which such a separation is impossible. Let us denote the
contribution of such a proper H part by H~, (x).
Hubbard showed that by setting Vs.o.(x) equal to an
integral of the type in Kq. (9), where H(x) represents a
sum of all the H„,(x), there are exact cancellations
between the H part and the V-point contributions.
Consequently, one can discard from the beginning all
diagrams which contain any H parts or V points. One
is thus led back to a formalism identical to that of the
uniform case except that Eq. (8) is now used to de6ne
the one-electron states.

III. DETAILS OF THE CALCULATION

A. One-Electron Wave Functions

Thus Vs.o.(x) as introduced by Hubbard appears as
a generalized Hartree Geld. To a good approximation,
however, it should be sufhcient to keep only the simplest
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H part, which is the passive particle loop of Fig. 3.
Then one has

Vs.o.(x) = dx t (x—x') p (x')

with

Seitz cell. However, when the state is orthogonalized it
regains its appropriate 3s character near the ion centers.
It thus appears that the orthogonal plane wave (OPW)
is particularly suitable for describing the conduction
states. Thus we write

2—1 N/Z

OCC

p(x)= &lu, (x) I,
uq(x) = (1/QQ)e'" —g g u, P(k);tun(x), (13)

where the sum is only over the states occupied in the
ground state of Ho. Then Eq. (8) becomes the usual
Hartree equation where, however, the self-consistent
potential is symmetized, and the same for all particles
in the system.

For the core states, the solution of Eq. (8) is not
dificult. Since we will be considering only the alkali
metals, we can use the tight-binding approximation and
also neglect the overlap of wave functions associated
with diGerent ions. Thus we will write the wave func-
tions of level i for the ion situated at 1 as

u;P(x) =uP(x —1), (12)

'3 J. C. Slater, Phys. Rev. 30, 57 (1930).
s4 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);46, 509

(1934)."E.g., for atomic solium, the Slater shielding length for the 3s
valence electron is 1.36 a.u. and the radius of the signer-Seitz cell
of metallic sodium is 1.12 a.u.

where the uP(x) are the simple atomic wave functions.
These functions will be constructed using Slater's
method" of shielding constants. The Schmidt ortho-
gonalization procedure will be used to make them
orthogonal as they should be because the Hartree 6eld is
symmetric. As we will see below, their energies do not
enter the calculation explicitly. Even the energy separa-
tion E~ between the conduction band and the core level
which is empty in the initial state always appears in the
combination hco+E& and hence only fixes a convenient
origin for frequency.

At first sight, it would seem that it would be adequate
to use plane waves for the conduction states. In fact, the
conduction wave functions are practically plane in the
region where the u;P(x) are negligible, which for the
alkali metals is a major part of the metallic volume 0
(more than 90% of the volume for sodium according to
Wigner and Seitz'4). However, x-ray emission is a proc-
cess which occurs in the immediate neighborhood of an
ion and, as has been shown by Jones, Mott, and Skinner, "
even in the simple Sloch model the core part of con-
duction wave function plays an essential role. This core
part arises as a consequence of the orthogonality of the
wave function to the core states rather than as an eBect
of the ionic potential. In fact, if one considers the non-
orthogonalized Slater wave function of the valence
electron of an isolated alkali atom one finds that the
inverse of the shielding constant is larger than the size
of the Wigner-Seitz cell." In the metal this function,
therefore, becomes practically constant in each Wigner-

where the sum is over all core states and the u;P (k) are
the Fourier transforms of u;in(x) with the property

u;P(k) =e '~'u~(k)

If the Fermi surface is far from the boundaries of the
first Brillouin zone it is not necessary to superpose on

Eq. (13) any other terms like uz+s(x), where g is a
reciprocal lattice vector. The correction for the normali-
zation of the wave function is also negligible since the
core states of the alkali metals are so strongly bound.
We have compared ui,~(x) given by Eq. (13) for
sodium with the same wave function calculated by the
method of Wigner and Seitz'4 and the agreement is very
good. Fixing the energy zero at the bottom of the
conduction band, the energies of the conduction state
u(x) become simply E& k'/(2m) . No——te that the OPW
functions of Eq. (13) are not orthogonalized among
themselves as would be required by Eq. (8). However
there is little error introduced by this approximation.
Indeed the core and conduction wave functions appear
in matrix elements of the type (u, I

A
I

u,'). When the
two wave functions in this matrix element refer to con-
duction states, one has an integral which extends over
the entire volume 0 of the metal. In this case the domain
of nonorthogonality, i.e., the volume occupied by the
core wave functions is negligible in comparison with the
entire volume of integration. Indeed, one can simplify
still further and replace the OPW functions of the
conduction states by plane waves Lsee below Eqs.
(15a), (15a')]. If, on the other hand, one of the two
wave functions describes a core state, then the orthogo-
nality is crucial, and the full OPW function must be
used.

For completeness, the explicit expressions for the
u, (x) for sodium are given in Appendix A.

B.Diagrammatic Expansion

The function F (co) defined by (5) can be expanded in
the usual way" in terms of the interaction between
electrons. Each order of perturbation theory can then be
represented by a set of Feynman-type graphs. For a
system with Coulomb interactions, it is useful to
rearrange the series in terms of V(k, co), the effective
interaction between electrons. V(k, co) contains the
modification of the interaction due to polarization or
dynamic screening by other electrons in the metal.

In this paper, we will limit ourselves to diagrams of

s' See, e.g. , J. Hubbard, Proc. Roy. Soc. (London) A240, 539
(1957) or A. J.Glick, in Lectures on the Many Body Problem, edited
by E. Caianiello (Academic Press Inc. , New York, 1962).
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order 0 and 1 in the effective interaction. The rules for
calculating the contribution associated with each dia-
gram are similar to those in Ref. 26; except for obvious
modifications connected with the presence of core
states. For convenience we will enumerate the rules in
Appendix B.

The general diagram to be determined is shown in
Fig. 4. In this figure and the ones which follow, the
double line (always pointed downward) represents the
missing electron, or hole, in any one of the core states.
For present purposes, however, we need not consider all
of the core states. Recall that we will be considering a
particular emission band, the L2,3 band of sodium. This
band is associated with the excitation of an electron
from the highest core level below the conduction band,
i.e., the 2p level. Lower-lying states contribute to
emission bands at higher energies, but the tails of these
spectra will be negligible for the frequency range of
present interest. In addition, the interaction between
conduction electrons and the deep lying states should be
a very weak effect, so that it should be possible to neglect
all the core states except the three nearly degenerate 2p
states. Thus from here on the double line and uP(x)
will refer only to the three wave functions (A1c), where
i =1, 2, 3 indicates the three spacial directions.

Also present in the diagrams are single directed lines.
These lines always refer to a state in the conduction
band. To represent a state which can be either a core
level or in the conduction band, we use a single line
accompanied by a dashed line as in Fig. 4. The two
wavy lines, one entering and one leaving each term in
Fig. 4, represent the interactions with the radiation
field which occur at times 0 and t, with the convention
that time increases upward. The line of bubbles repre-
sents the effective interaction between electrons.

The black box with the two wavy lines on the left side
of Fig. 4 represents the operator Ht(t)8(0). Its mean
value is calculated for a state containing one core
vacancy which is represented by the double lines which
enter and leave the box. The right side of Fig. 4 shows
all of the graphs which contribute through order 0 and 1
in the effective potential.

The essential difference between the usual diagram-
matic rules and those for the present problem are
associated with the presence of the bound states and the
consequent loss of momentum conservation at the

I
I
I

+0
I
I
I
I

ka a j b j

FIG. 5. Basic vertex parts: (a) -(d) vertices for interaction with
the radiation field; (u')-(d') vertices of electron-electron inter-
action.

vertices. In effect, the vertex contributions take either
the form (u; I

+in V
I uI') for the case where a radia-

tion line (entering or leaving) is connected to the vertex,
or the form (u; I

exp(&ik„x) I
u;.) when the vertex

contains an interaction line (entering or leaving).
Momentum is practically conserved only when both of
the states j and j' are conduction states, because, as
pointed out in the previous section, one can then re-
place the OP% functions by plane waves. Then one has

(u&. I
+in 7'I». ) +n k.&&. ,&... (15a)

(ui,. I expwik„x I ui,. ) bi,.~i,„g. . (15a')

In the case where j and j' are both bound states, we
write

(up I
Win V IuI's)=0, (15b)

(u4n
I
exp+ik x„) I u;s)=gy(&k„). (15b')

The zero in Kq. (15b) is a consequence of the selection
rules. One can thus immediately discard any diagram
containing vertices of that type. In the case where there
is one conduction state entering and one core state
leaving, we write

(u;s
I
win v

I ui,.)=—k,;(k.), (15c)

(uP I exp(haik„x) I ui,.)=f;(k., ak„). (15c')

If, on the contrary, the core state enters and the con-
duction state leaves the vertex, one has

(ui,. I
win V I uP)—=wh, ;(k.), (15d)

(». I exp(+ik„x) I uP)= f;(k„&—k„). (15d')

In these expressions, (15a)—(15d'), the states on the
left and on the right side of the brackets are represented,
respectively, by the lines leaving and entering the
vertex, as shown in Fig. 5.

Choosing the Oxg axis along the unit vector n and
substituting Eqs. (A1) and (12) into (15b'), (15c),
and (15d') one finds

0 A B C C 0 0' g,;(k) = (2P)'— 6k k;
16

(k'+4p') 4 (k'+4p') '

FIG. 4. The general diagram representing the x-ray emission
process expressed to Grst order in the effective interaction between
electrons.

ks;(k) = (32/QQ) (7rP') '"
ks+Ps 8

8;IH(k), (17)—k,k3
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ooaQx~ooo ——-—&---- +

effective potential will almost preserve translation sym-
metry, i.e.,

V(x, x') =V(x—x'),

FIG. 6. Integral equation which defines the effective interaction
between electrons. The last term is small, and when neglected we
regain the effective interaction of the Lindhard approximation
(random-phase approximation) .

with

a4(2n —PQ) Q(k2 —3P')
H(k) =

P(rr+P) 4(k2+n2)' 24(k'+P')' '

2D~+P)/2Pl' 3L&~—/(~+P) J'.
2L( +P)/2Pj'- (3P/2 )L2-/( +P)j"

f, (k., k„) =2-P(k.- k„)

g (28
I exp( i—kx, ) I

I' )u (k,) (18)

The term f, (k„k„) is particularly cumbersome; how-

ever, it is not necessary to express it explicitly. One can
show that this function, associated with the mixed
vertex c' (or d') of Fig. 5 has an effect which is about
30 times weaker than the Kronecker 8's and g,; associ-
ated with vertex a' and O'. Consequently, we will be
able to neglect diagrams containing these mixed
vertices. The smallness of f;(k„k„) is due to the
orthogonality of the OP% wave functions and the
bound states. If k„were zero, then Eq. (15c') or (18)
would vanish. In fact, the effective potential V(k„, o/„) is
associated. with a screening constant k2 r ——(4ko/2r/22) '"=
0.78 a.u. which is considerably smaller than P (and u) as
given in Sec. IIIA. To estimate the relative contributions
of vertices c' and. f/' one can expand (15c') and (15b') in
powers of k„/P and k /P ks/P, where ks= 0.48 a.u. is the
Fermi wave number.

From Eq. (18), the lowest-order term in f, (k„k„) is

f 5(2r/QP8) "'—(ik„,/p) . .

When summing over states, the g;; sum is only over the
polarizations of the p states while the sum over the k,
in f, (k„k„) goes over the Fermi sea. An estimate of the
relative magnitude after summation is given by

gii' &r

and hence possess a Fourier transform of the form

V(k, ol) =2/(k)/e(k, o/),

where e(k, ol) is the Lindhard dielectric constant. To
see this property more clearly, consider Fig. 6 which
represents symbolically the integral equation which
defines the effective potential V. The third term con-
tains two mixed vertices. It is therefore weaker than the
second term by a factor of about 10' and can be neg-
lected. In this case Fig. 6 reduces to the equation
defining the

effective

interaction in the I.indhard
approximation. Since the Fourier transform of the
effective potential is associated with a single momen-
tum vector, we can attribute this momentum k, to the
lines of effective interaction (bubble lines).

C. Diagrams Describing Emission

Each of the diagrams of order 0 and 1 on the right of
Fig. 4 represents a sum of diagrams described in Fig. 7.
In the latter figure we have omitted diagrams containing
vertices of type b in accord with rule (iii) of Appendix A
and for simplicity we have not drawn the diagrams C'
and D' for which the contributions are the same as for
the corresponding nonprimed diagrams.

It is useful to estimate the relative magnitudes of the
contributions before attempting detailed computations.
Ke will see that among the diagrams of order one, the
essential contributions come from A~, Bj, and C~. As
discussed above, vertices of types c' and d' are small. Of
the terms in Fig. 7, only A~, B~, C~, and Di have no such
vertices; diagrams 82, C3, D3, and D4 have one d' vertex
each; and the other diagram. s have two c' and d' vertices
each. Thus we expect that only the 6rst term of each
series will be significant. To further check this pre-
sumption, we should make certain that the contributions
from the dominant graphs do not cancel over certain

+mr +r +4

0 Oi A Ai A~

f.(k k )2)1/2~I
I g/(22r) 8]f2&rrk 8}l/2

&a&&O

but ko'= 3x'e, where e is the electron density, and since
e is the inverse of the volume v, of the Wigner-Seitz cell,
one has

L Q f;(k., k )2$'/2
I (0/22, )f2f/2=0. 14k,/P

&aMo

~0.14k2 2/P =0.03.

I ~ + +
'rr r ~l

I
r
I

C) Cp C3

) )p.) 5

D Q, D 0 0

An important consequence of smallness off, is that the
FIG. 7. Nonvanishing contributions to each of the

Grst-order terms in Fig. 4.
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regions of the spectrum. In the case of cancellation, the
graphs with vertices c' and d' could become important.
Indeed, just such a cancellation does occur for the
satellite band, as has been remarked. previously. ' '
Notice 6rst of all that the only graphs contributing to
the satellite band are diagrams Ay, Bj,B2, B4, Cy, and C3,
because these are the only ones giving rise to a final
state consisting of a hole in the conduction band plus
particle-hole excitations. According to our calculations,
the sum of diagrams A~, Bj, and C~ turns out to be about
10% of the separate value of any one of these graphs over
the satellite band. Thus graphs B. and C3 containing
only one vertex d' could be important. However, we can
see that these two diagrams are actually down by a
factor of 100 and remain negligible. This important
factor of 100 arises from the fact that B~ and C~ differ
respectively from B2 and C3 not only by the occurrence
of a vertex d', but also by an internal particle line. For
the former terms one has a double line (bound state)
and has an energy denominator which follows from
rule (iib) of Appendix A of the form (EB+Ny EB)—

Eg. The latter terms have this line replaced by a
free particle and the corresponding denominator becomes
(EJS+co„—E/,)~EIs, where ~, is the frequency trans-
ported by the bubble line. The factors Ep and —E~ are
in the ratio 1:10. Thus one can neglect B~ and C3 in the
satellite region, as well as 84, which contains the two
vertices c' and d'. Thus we will be able to neglect all of
the diagrams containing vertices c' and d' in the spectral
region of interest and it only remains to consider
diagrams A~, B~, C~, and Dj as well as O~.

Now we must consider the problem of divergences.
One can easily see that diagrams Dj and also D2 diverge.
This results from the second internal line which, accord-
ing to rule (iib), gives a contribution i(Edd EJS iX)— —
which diverges when the adiabatic switching on of the
interaction is pushed to the in6nite past. This difhculty
is a consequence of our approximation method for which
the initial state is not an eigenstate of the interacting

e' '

i
err

a

r

kb"

e''
I,

e"

e''' e'''
e

FIG. 8. The important contributions of zero and erst order,
showering the labeling of lines used in the text.

Hamiltonian. Once the interaction is turned on, the
quasilocalized state can decay at any time and the
probablility that it survives to the present becomes
negligible. However the fact that the soft x-ray spec-
trum is observed requires that it still exists or at least a
memory of it exists at the time of the emission process.
In practice, the emission is observed within a brief time
interval after the initial state is created. For our pur-
poses, therefore, it is physically more correct to treat the
creation of the initial state as occurring at some initial
time T and then allowing the state to evolve under the
action of electron-electron collisions. Since the interac-
tion eGect is strong, it is necessary to go to high order.
In the limit as T-+—~, one Ands that, in effect, the
energy of the bound state is shifted and the state is
given a lifetime. As mentioned in Sec. III A, the shift in
E~ only changes the frequency origin and we can assume
that the E~ observed in nature is the renormalized value.
The state width is found to be small, about 10-' eV. It
will be neglected in this article, but we will return to this
point in the second article of this series. Therefore for
present purposes we can put aside diagrams D~ and D2.

D. Frequency Integrals

Applying the rules of Appendix A and using the nota-
tion shown in Fig. 8, one obtains the following contribu-
tions to P(&u) from graphs Oq, A2, Bq, and C2.'

F (N) = —(i/2%)gdco'/. (N' Nymph) 7 g—SP(k, EIs+N') g j h„„(k,) (',
kryo

P«(rr)= —[(2 )«Q] ' [d /( rr+r))]f'drr '—gQ V(lr„,.r)[S (lE«+r«d)]r««r
ky k~, kg

XSp(k„Es+(d'+or„)(II)...),~),„g ~
h, ,(g) ~', (20a)

Err( ) = [(2 ) 0] 'f[d /( ' —'«+r'2)] 'dr«, g g Y(lr„«,) [S«(E«+rr )]' (lrS, «E«+rd+, )
ky kg

X g ~ g h, ;(k )g„(k„) ~, (20b)
e i

ky ks, kg
V ( krrl (drr) Ss (EJd+(rr)rr) Sp ( krrl E/d+(r2 +(ddrr) Sp ( k(rl Edd+(rr) )

Xh), .),E+),„gg '(k )h, (k )h, (k() ~ (20c)

Term Fo(co) contains an extra factor of 2 to account for the two graphs Cq and Cq'.
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Using the explicit forms given in Eqs. (B~) and (83) for the particle propagators, and designating by V+(k, cu)

and V (k, &a) the two parts of V(k, a&) analytic, respectively, in the upper and lower half of the complex frequency
plane, we can carry out the integrations on co' and co„. The V+(k, &o) have the properties

V+(k, o)) =V (k, —a&),

Im V~(k, (u) =0,

Im V (k, co) = ImV(k, o)),

Im V~(k, (a) = ImV(k, co),

Im V (k, a&) =0,

After integrating, and substituting into Kq. (4) one obtains

for %+0~

for or&0.

(21)

(22a)

(22b)

Ib(ar) = b~co g g,&8((a+Ed —Eg) Q ~
hn, ,(k,) ~', (23)

8 I I'I ()=l (-1/fl) 2 2 ' I II V.(k., —-E.+E.)
ky kg, kb ~Eb E&+EB Ebl

8"o(bb+En Eb)—+3"gb& Lg,& ReV+(k„—a&—Es+E,) —g.& ReV+(k„—~ E~+E,)j—bk. ,kb+k„g ~
Ib, ,(kb) ~',

e

(24a)

8 ( I'
Is(~) =-'~(—1/~f1) Z g~.& I ~ImV+(k„, —~—E,+E.) g ~

gh. ..(k.)g„(k.) ~,
re% 4&+Ea KJ— (24b)

Im V+(k„, —~ Es+E.)—
P

b((a+Ed —E.) ReV+(k„, 0)
E~+EB Eb

7l.gb(6 (M+Es —Eb)
Lq.& Re V+(k„, E.—Eb) rl.&V (k.,—E. Eb) 7 8k. ,k—b+k. g g„(k,) h „(k.) h„,,(kb). (24c)

E,—Ey e, i

Some care must be taken in obtaining IB(~) above, and
to avoid the appearance of an indeterminate term of the
form $BV+(k, cv)/Bco]„b The d=e.rivative is not defined
for co=0 since ImV+(k, ~) increases linearly for co&0
but vanishes for negative frequencies. In Appendix C,
it is shown that the correct prescription is to take this
term equal to zero.

However, even with this prescription, term Is(ar)
remains the most troublesome term of the theory. As
we will see, this term diverges logarithmically in the
region

~
E~

~
&~&

~
E~

~
+Er, that is, in the region of

the so-called parent band. Thus, with the first-order
theory one can only attempt to describe the low-energy
features of the spectrum, namely the low-energy tail
and the plasmon satellite band. To exhibit this diverg-
ence we separate off the factors

(where the principle-value symbol I' is actually ir-
relevant, as shown in Appendix C) . When the volume 0
tends to infinity, the sum goes into an integral which can
be represented as

(2m) '"
(1/~l) Z~ &" -~

n-- 2(2~)'

X d(angles) dE QE, ~ ~ .

Then Eq. (25) becomes

dE.QE.
Im V+ (k., (o E&.'s+E,) . ——

(or+Es —E.) '

Using the properties of Im V+( k, co) around co= 0,

ImV+(k, o)) =0, for co&0

ImV+(k, cv) ~co, for (u&0

X ImV+(k„&u Eg+E~) (25) then —the —lower limit of the integral gives contributions
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0.015- - L

Fxo. 9. Calculated re-
sults for the soft x-ray
emission spectrum of so-
dium. The main band re-
gion of the lower curve is
taken from the zero-order
(one - electron) theory,
while the tailing and satel-
lite band are given to 6rst
order in the effective inter-
action. The curves on the
expanded scale to the upper
left show the plasmon satel-
hte band by itself and also
as added to the low-energy
tail. The arrow on the
bottom curve marks the
high-energy threshold of the
satellite. The open circles,
black circles, and triangles
on the main band curve
indicate the position of the
observed main band of
Crisp (Ref. 13) if the ratio
of the intensities of the
satellite band and main
band is, respectively, 1%,
2%, or 3'%. Roose (Ref.
13) finds a ratio of 2&1%.
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of the form

dE.QE.
max(s, m+Ea) Ea (o/+EB)

E I/s —(o/+En) &/s

E 1/s+ (~+E ) t/2

for Is+En) 0

)1/2
2E,'/s 2( Io En) '/—' tan—' ~—

&
—o/ —Eal s.~

for o/+Er/&0

which diverges logarithmically for o/+En)0. In a
subsequent paper' we give a more physical explanation
of the origin of this divergence and use a renormalized
theory to treat the eEects of interaction over the whole
frequency region. It will also be shown, however, that
the conclusions of the Grst-order theory, in regards to the
low-energyportion of the spectrum, retain their validity.
Since the erst order theory also has the virtue of
simplicity, we proceed with the calculation and restrict
ourselves to the region o/+En&0. The term Is(o/) of
zero order, will be retained, however, to provide a
reference for comparing the intensity of the low-energy
features with that of the parent band.

The restriction to o/+E/s&0 simplifies the evaluation
of Eqs. (24). Note that the only parts of Eqs. (24)
which must be retained are those containing ImV+. The
other terms with ReV+ can be eliminated because they

contain the functions il(o/+En —E,) and E, is always
positive. In addition we can ignore the principal-value
restrictions 8, as well as the index + on Im V+(lr, co) as
a consequence of Eqs. (22).

We have been able to carry out analytically all of the
integrations over the remaining momentum variables
in Eqs. (24) except for the two relating to the arguments
of ImV+. These last two integrals were performed
numerically with the aid of the IBM 7094 computer of
the University of Maryland. The results are given in
Fig. 9. To the left of the vertical axis there is the curve
Ig(~)+In(o/)+Io(o/). This curve could not be given
to the right of the axis, i.e., in the region where Is (ts) WO,

as a consequence of the divergence in I/s(oI) .

IV. SUlVCMARY AND DISCUSSION

The results shown in Fig. 9 can be compared with the
experimental spectra indicated in Fig. 2. The experi-
mental plasmon emission satellite of sodium has not yet
appeared in the literature, but Rooke' claims its form
is similar to the satellite shown for aluminium, and its
maximum intensity as a percentage of the intensity at
the corresponding place in the parent band is 2&1%.
The plotted points appearing in Fig. 9 have been put in
as a measure of this relative intensity. The points
reproduce the Crisp and Williams spectrum for the
parent band drawn to three scales such that the plasmon
band is 1, 2, or 3% of the parent band. It is seen that
our results indicate a staellite band of about 1.5%.
However, this conclusion must be quali6ed by the fact
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TABLE L Contributions to the soft x-ray emission intensity I/mao from the important graphs of the Grst-order theory.

w= (co+Es)/4EI Ag
Tailing

Bl C1 Total B1
Satellite

C1 Total Total

—0.70—0.65—0.60—0.55—0.50—0.45—0.40—0.35—0.30—0.25—0.20—0.15—0.10—0.075—0.05—0.04—0.0256—0.0144—0.0064—0.0016
0

0
0.0016
0.0064
0.0144
0.0256
0.0400
0.0900
0.1225
0.1600
0 ' 2025
0.2500

)0.25

0.3206
0.4492
0.5792
0.7004
0.7885
0.7956
0.8380
0.9359
1.0748
1.2657
1.5294
1.9170
2.5842
3.1687
3,3952
3.4871
3.6511
3.7909
3.9721
4.0442
4.6311

Main BD.
(0 order)

0
3.594
7.170

10.710
14 ' 198
17.617
25. 755
29.553
33.138
36.492
39.601
0

0.8184
1.0755
1.3190
1.5390
1.7109
1.7921
1.9497
2.2081
2.5560
3.0191
3.6293
4.4579
5.7006
6.6153
7.9065
8.6534

10.0094
11.5808
13.3849
15.4426
17.3720

—0.9176—1.2484—1.5633—1.8433—2.0440—2.0835—2.2120—2.4625—2.8023—3.2470—3.8145—4, 5533—5.6164—6.3785—7.4399—7.9562—9.0282—10.2723—11.7080—13.1921—13.5844

0.2214
0.2762
0.3349
0.3961
0.4555
0.5042
0.5756
0.6815
0.8286
1.0377
1.3442
1.8216
2.6685
3.4055
3.8619
4.1845
4.6323
5.0995
5.6492
6.2947
8.4188

0
0.0378
0.1934
0.6217
1.8040
6.0141
8.7247

10.3722
10.7306
8.3643
0

0
0.0726
0.3411
0.9942
2.5420
7.0609
9.6414

10.9522
10.9053
8.3196
0

0—0.1036—0.5032—1.5324—4.1686—12.7516—17.9032—20.7580—21.1079—16.4490
0

0
0.0069
0.0312
0.0835
0.1774
0.3233
0.4630
0.5664
0.5279
0.2349
0

the satellite vanishes for
w &—s, (1+s.) = —0.6954

w)-', —(has„/4') = —0.2198 a

0.2214
0.2831
0.3661
0.4795
0.6329
0.8276
1.0387
1.2479
1.3565
1.2727
1.3442

See total
tailing

~ See Ref. 12.

that the parent band in Fig. 9 is the zero-order result,
since the 6rst-order theory, used for the satellite band,
could not be extended into this region. The plasmon-
band threshold is shifted down in energy by the expected
fr~„ from the high-energy edge of the parent band. This
energy is the minimum which must be left behind in the
metal in order to set up the plasmon excitation. The
shape of the satellite is broader and its peak is shifted
to lower relative energy than that of the parent band.
These changes are primarily due to the wave-number
dependence (dispersion) of the plasmon frequency, and
a cancellation between terms of the perturbation theory,
as discussed below. Hedin' has recently suggested that
the satellite has additional structure introduced by a
mode which he calls the plasmaron. The erst-order
theory does not contain this eBect, but there is some
evidence for it from the renormalized theory. '

The order of magnitude of the tailing and its slope
can be compared with that of the main band and the
plasmon satellite. The tailing comes from the continuum
of one-electron excitations which cari be set up in the
metal. In the region of the plasmon satellite, the
theoretical tailing intensity is of the same order o'f
magnitude as that of the satellite. It would be of interest
to make a detailed comparison of these features with the

experimental curves, but it will erst be necessary to
obtain more reliable data from which one can separate
ofI' extraneous background intensity.

In determining these spectra it has been found that
there is a strong cancellation among the contributions to
the erst-order theory. As shown in Table I, the cancella-
tion is strongest for the plasmon satellite band in which
case it reduces the maximum intensity by a factor of
about 20. Term At of Figs. 7 or 8 accounts for the
interaction between electrons in the conduction band.
As such, this process can be associated with Landsberg's~
treatment, discussed in the Introduction. The present
treatment is more general in that Landsberg used a
static screened potential which does not allow for
plasmon production. Term Bj of Figs. 7 or 8 describes
the excitation of a conduction band electron by the hole
in the core state. The hole acts as a positively charged
impurity in the metal which can excite conduction band
electrons virtually. When the x ray is subsequently
emitted, it has a lowered energy since some energy is
left behind to make the virtual excitations real. This
process is not unrelated to that considered by Pirenne
and Longe in a static approximation. In their treat-
ment the virtual excitation is interpreted as a component
of a conduction electron wave function which is modided
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prior to the x-ray emission by the presence of the core-
state hole. The symmetry of the graphs A~ and 8~ about
their intermediate state [the final state in the sense of
Eq. (2) $ shows that these terms are positive definite.
The terms C~ and C~', however, do not have this sym-
metry. They are interference terms made up of a cross
product between a matrix element for core excitation of
the conduction band and one for interaction between
conduction electrons. These terms are strongly negative
and are very important for reducing the plasmon
satellite intensity to the correct order of magnitude.
Ferrell'~ showed that cancellation causes the satellite
spectrum to behave like E'I' measured down from its
high-energy edge. This behavior though analytically
correct, may be dificult to observe, since our numerical
results show a faster rise even quite close to the edge.
The cancellation is not so complete for the spectrum of
the tailing, but Table I shows that the interference
term is nevertheless of major importance. It seems to
have been overlooked in previous treatments of the
emission process.

The major shortcoming of the present theory is that
it cannot be extended into the region of the parent band.
It was shown in Sec. IIID that term B~ diverges
logarithmically over the whole parent band, and it can
also be shown that terms C~ diverge at the high-energy
edge. In addition, even if these terms were finite, the
low-energy threshold of the zero-order term would lead
to a discontinuity of slope in the combined zero- and
first-order theory. The discontinuity is probably not
physical, and appears due to the limitations of per-
turbation theory for treating phenomena near thres-
hoMs. Higher-order terms can be expected to diverge at
this point. Consequently, the calculated tailing spec-
trum may not be reliable close to the edge and probably
increases more rapidly than the actual spectrum.

These difFiculties can be removed by going to a
renormalized theory in which the basic electron states
and the core hole are replaced by quasiparticles which
are always considered along with their clouds of inter-
acting particles. Some eGects of this kind have been
considered by Hedin' and others and will be described
more fully in a subsequent article. e It will be seen that
the renormalization introduces additional structure
into the spectrum. However, several basic features of
the result are already apparent in erst order. These
include the imprtance of the interference between
terms due to core excitation and conduction-band
interaction, the relative order of magnitude of the tailing
of the spectrum and the plasmon satellite band, and the
structure of the satellite band in comparison with the
parent band from which it originated.
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APPENDIX A: u;(x) FOR SODIUM

Using units of inverse Bohr radii (i.e., a.u.), Slater's
rules" provide shielding constants of the form (Z—s) /e~.
Here Z= 11. For a 1s state, e*=1 and s=0.30, which
provides a shileding constant n = 10.2. For the states 2s
and 2P, one has x*=2 and s=0.85X2+0.35X2=4.15,
which gives a screening constant p=3.425. The corre-
sponding core wave functions then become, after
orthornormalization,

uiP (x) = (n'/~) 'I'[e—"j,

(n+P)4 3(2n)'
u~P(x) = [re e']— — [e ~"] (A1b)

(4vrD) 'I' (47rD) '~'

with
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APPENDIX B:DIAGRAMMATIC RULES FOR F((g)

1.Rules for External Lines

—(i/2n ) ((o'—a+i'), )
—'.

2. Rules for Internal Lines

(31)

(i,) The two double lines are associated with the
same state index j as well as the same energy E&. The
two wavy (radiation) lines are associated with the same
frequency co'.

(ib) The combined contribution from all of these
lines to each graph is a factor

~
l). The incoming and outgoing states can be either a

conduction-band state so that
~ m) = ~k ), where

~
k )

is given by Eq. (A3) of the text, or a localized state

I
~)=

I
8 ), where for sodium

I
8 ) is the N2 ~(x) of

Eq. (A1c). The sign of the exponent in Eq. (36) is
chosen in accord with the direction assignment of rule
(ii,) so that the positive sign is for k, directed into the
vertex.

(iiib) For a vertex of interaction with the radiation
field, where the incoming particle state is

~
nz) and the

outgoing state is
~ l), there is a factor

(l(an p(m),

(ii,) The internal particle lines are each associated
with either a distinct discrete state index for each
double line, or with a momentum, for a single directed
line. Similarly, the interaction lines (lines of bubbles)
are assigned a momentum and a direction. Each internal
line is associated with an energy (or frequency with
h= 1) in such a way as to conserve the energy entering
and leaving each vertex.

(iib) The internal lines contribute the following
factors

For a single line with indices (k„~) (i.e., with
momentum k, and energy co), a factor

where p is the momentum operator A,V/i and n is the
unit polarization vector of the electromagnetic field.
The sign of Eq. (37) is chosen positive if the radiation
is emitted and negative for absorption.

4. Rules for Sums Over States

(iv,) Integrate all frequencies except cv over the
domain (—~, ~).

(ivb) Sum over all discrete indices of the bound states
and sum over all momenta of the conduction states and
interactions. The latter sums can be changed to integrals
in the usual way with

for a double line with indices ( j, co), a factor

Si) ((a) = i/(co Eii iX);— —

for an interaction line with indices (k„,ca), a factor

(2~iQ) 'V(k„, co), (34)

vrhere 0 is the volume of the system. The single-particle
energies for the conduction band are taken as E,=
k,'/(2m), and X is a positive infinitesimal. The )1's are
the step functions

APPENDIX C: DESCRIPTION FOR FREQUENCY
INTEGRAL OF Ii)((u)

After integrating on eu' in F])(co) as given by Kq.
(20b), the next step is to carry out the integral on ~„
and extract the real part in accord with Eq. (3). The
frequency integral then takes the form

Re( —2 e)fdic.ee&)e(k .)[S (E +..)].
and

fol Ea+Eg

for E &Ep,

gaC ~ gaP

(35)
X5(k„Ei)+co+co„)

8 V+(k„e)—V+(k„, —s)—Es+E )= lim (2m)'g. ( Im—
86 cg+Eii—E,+ e—9

3. Rules for Vertices

(l ) exp(+ik, x) ) m), (36)

(iii,) For a vertex which terminates an interaction
line with indices (k„, co) there is a factor

B= lim (2n)'g &
—P
BE.

ImV+(k„, e) —IrnV+(k„, (o Ea+E,)——
X

(d+EB Eee+ 6

where the incoming state is
~
m) and the outgoing state where e is a real parameter. The passage to the limit
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appears to give an indeterminant for form since

B ImV~(k„o)/Bo

sents a simple bubble with two vertices and is given by

B(k. ~) =(2/~) Z Bbb,b.+~.
ky, kc

is not defined at &=0. However, we will show that this
derivative can be taken to have zero value at this point.
Going back to the definition of V, as shown in Fig. 6,
we can write

lb( gc&'gb& 'gc('~
(C3)

~o Eb+—E,—iX co Eb+—E,+9,j
The function B(k„, bo) has analytic properties which are
similar to those of V( k„, co) including those of Eqs. (21)
and (22), and has an angular point at bo= 0. Substituting
B(k„,co) for V(k„, or) in Eq. (81), i.e., using the Grst-
order term of Eq. (C2) for V, enables us to perform the

where, in the Lindhard approximation, B(k„,co) repre- co, integral explicitly, with the result

Ao g~(

(co„zX)'(co„+—bo+Ezz E, zP )—&~„—Eb+E, —zX bo„—Eb+E,—+A j

=(Sn'/Q)[z(k„) O' Q ebb b~b.Im, . (C )
Eb E,—zX ' —(o+Eii E, Eb——E,—zX

The g functions show that always Eb/E„and one can set X—b0 in the factor (Eb—E,—iX) '. It is precisely the
redundant X which causes the difficulty in Eq. (C1). Using Eq. (C3), one can rewrite the result in Eq. (C4) as

(2zr) 'zz,( ImL —s (k,)B(k„co Eiz+E,—)w (—k„)]/(bo+ Eii —E,) '.

In second and successive orders, we can also carry out the integration in terms of the B(k„co) s. Comparison with
Eq. (C1) shows that we get the same result if we simply set the term ImV+(k„o) =0. Equivalently, we can
replace Eq. (C1) by

8 I
(2~) zzz,( Im V+ (k„—bo —Eiz+E,)—

BE, (a+ Ed Eo—


