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Anisotropy in Two-Center Exchange Interactions*
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The exchange interaction between electrons on two difterent centers is developed in a bipolar series of
angular momentum operators. In contrast to the isotropic Hamiltonian commonly used to represent this
interaction, we 6nd that all forms of anisotropic terms are needed, antisymmetric as well as symmetric ones.
The degrees of the anisotropy assume all values commensurate with the angular momenta of the electrons.
Beside the Dzyaloshinsky-Moriya term S&XS2, two-center exchange interactions contain antisymmetric
anisotropies of higher degrees. For ions with strong orbital contributions to their magnetic moments,
anisotropic exchange does not enter merely as a perturbation, and we Gnd that the magnitudes of the
symmetric and antisymmetric anisotropies are as large as the isotropic part of the exchange interaction.
Explicit expressions containing radial integrals are derived for the coefFicients representing the anisotropy
in the exchange interaction. These anisotropy coefficients are related to the more conventional exchange
constants; we also find the number of independent parameters needed to describe two-center exchange
interactions for various situations. The coefdcients of anisotropy representing the exchange interaction
between ions with E equivalent electrons are related to the coefIjtcients for the interaction between ions with
one electron. Although anisotropic superexchange is not considered in detail, both the form of the
Hamiltonian representing this interaction, and also the number of independent parameters in the
Hamiltonian, immediately follow from the Hamiltonian for the two-center exchange interaction.

I. INTRODUCTION

N the original derivation of the exchange forces bc-
' - tween electrons, Heisenberg considered only the case
of orbitally nondegenerate s-state electrons. ' Dirac'
showed that this interaction, although electrostatic in
origin, could be written as a scalar product of the spin
variables of the two electrons JtsSt Ss. This interaction
was readily extended and applied by Van Vleck' to
exchange interactions between atoms in molecules and
solids. It was realized that in cases of orbital degeneracy
the Dirac—Van Vleck form JtsSt Ss is incomplete and
that the spin-orbit coupling of an electron gives addi-
tional anisotropic contributions to the exchange inter-
action. 4 In most of the situations analyzed, the orbital
angular momentum of the electrons was partially or
totally quenched; in these cases anisotropic contribu-
tions to the exchange Hamiltonian are very small com-
pared to the isotropic term and the degree of the aniso-
tropy is low, like dipolar or quadrupolar anisotropy.

However, more recent studies have concentrated on
the exchange interactions between ions with strong
orbital contributions to their magnetic moments. For
these ions, orbital degeneracy remains; the spins are
coupled to the orbit, and major deviations from the
simple Dirac-Van Vleck Hamiltonian are to be expected.
The possibility that orbital degeneracy could create
highly anisotropic interactions was mentioned by Wolf, '

*This work was supported in part by the Air Force Ofhce of
Scienti6c Research, Ofhce of Aerospace Research, United States
Air Force, under AFOSR Grant No. 1258-67.' W. Heisenberg, Z. Physik 38, 411 (1926).

s P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).' J. H. Van Vleck, The Theory of Etectric and Magnetic SnscePti
hitities (The Clarendon Press, Oxford, 1932), Sec. 76; Phys. Rev.
45, 405 (1934).

4 J. H. Van Vleck, Phys. Rev. 52, 11/8 (1937).
'Highly anisotropic exchange due to the orbital degeneracy of

the electrons was mentioned by W. P. Wolf, Proc. Phys. Soc.
(London) 74, 665 (1959).

and a striking illustration of this effect was soon pro-
vided by Wickershiem and White' from the anisotropy
of the exchange splittings of the lowest doublets of the
Ps/s and P7/s states of ytterbium (Yb'+) in ytterbium

iron garnet (YbIG). Also, Baker et al. r have recently
found direct evidence of strong highly anisotropic in-
teractions between cerium ions in the lanthanum
trihalides.

The idea that different orbital states have different
exchange constants was used by Van Vleck' to show that
the exchange interaction between s and p electrons on
different centers is anisotropic, and that the strength
of the anisotropy is proportional to the difference in the
exchange constants for the different orbital states. This
concept was applied by Levy' and Roster and Statz"
to extend Van Vleck's example to rare-earth —iron ex-
change in the garnets. More recently, Klliott and
Thorpe" discussed the form of the exchange interaction
when both electrons are in orbitally degenerate states.
They used symmetry arguments to find the appropriate
form of the anisotropic exchange Hamiltonian. Also,
Hartmann-Boutron" has recently made an explicit
calculation of the anisotropic superexchange interaction
between two d' configuration ions in octahedral
environments.

'K. A. Wickersheim and R. L. White, Phys. Rev. Letters 4,
123 (1960); 8, 483 {1962);K. A. Wickershiem, Phys. Rev. 122,
1376 (1961).

r J. M. Baker, R. J. Birgeneau, M. T. Hutchings, and J. D.
Riley, Phys. Rev. Letters 21, 620 (1968).

J. H. Van Vleck, Revista de Matematica y Ffsica Te6rica,
Universidad National de Tucum6. n 14, 189 (1962).

e P. M. Levy, Phys. Rev. 135, A155 (1964)."G. F. Koster and H. Statz, in Proceedings og the First Interna-
tional Con erence on Paramagnetic Resonance, Jerusalem, edited by
W. Low Academic Press Inc. , New York, 1963), Vol. I, p. 362."R. J. Elliott and M. F.Thorpe, J. Appl. Phys. 39, 802 (1968)."F.Hartmann-Boutron, J. Phys. (Paris) 29, 212 (1968).
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We do not find in any previous treatments of direct
two-center exchange an ab initio development of the
exchange integral J~2, in terms of orbital angular rno-

mentum operators, which explicitly gives the depend-
ence of the interaction on the orientation of the electron
orbitals relative to the line joining their centers. "
Exactly this expansion was given by Racah' for the
exchange interaction between two atomic electrons on
one center. For atoms, the total orbital angular mo-
mentum of the electrons is conserved and the exchange
Hamiltonian is a scalar product of orbital operators":

3P-=' —2 G'(&.f. ttsls) «.II(='"Il~ )'

Xgl rJ'"W(l.(sr/isis&)L&&'i(1) X &'"'(2)fi"

+( +2sl ss) (1)

LThe dot over the equal sign means that the equality
only holds for a restricted set of states, e.g., in Eq. (1)
for states in the manifolds e,l, and Nsl, .f

In this paper, we derive an analog of Racah's expan-
sion for two centers. For one center the orbitals de-

scribed by spherical harmonics are orthonormal; how-

ever, they are not naturally orthonormal when referred
to two diferent centers. To simplify our derivation, we

consider the electrons in orthogonalized orbitals. This
simplification in no way alters any of our results con-

cerning the form of the anisotropy; however, it does
not give good results for the magnitude and sign of the
exchange integral. "We overcome the major difficulty
in extending Eq. (1) to two centers by using an expan-
sion which expresses the orbitals on the second center
in a complete set of orbitals referred to the first center.
After finding the expansion of the exchange interaction
for two electrons we derive the Hamiltonian for any
number of equivalent electrons per ion.

In previous work on this problem, ' " the form of
the exchange interaction was found by symmetry argu-
ments. Our derivation provides an expression for the
anisotropy coefficients which could, in principle, be
evaluated if one solved for the radial integrals involved.
In the analysis which follows, we show that when we

consider the angular momentum l of each electron con-

stant, the two-body electrostatic exchange interaction
contains only symmetric exchange. However, the gener-
ality of our expansion allows us to show that when

"The exchange integral for indirect exchange via s electrons has
been discussed by T. A. Kaplan and D. H. Lyons, Phys. Rev. 129,
2072 (1963); T. Kasuya and D. H. Lyons, J. Phys. Soc. (Japan)
21, 287 (1966); and Yu P. Irkhin, Zh. Kksperim. i Teor Fiz. 23,
3/9 (1966) t English transl. :Soviet Phys. —JETP 23, 253 (1966)g.
V. V. Druzhinin, Fiz. Tverd. Tela 9, 2463 (196/) /English transl. :
Soviet Phys. —Solid State 9, 1938 (1968)g, calculates the reduc-
tion in the Slater integral F~ due to the direct exchange interaction
between electrons on an impurity ion and the surrounding ligands,
and does include the anisotropy in the exchange interaction."G. Racah, Phys. Rev. 62, 438 (1942).

"The meaning of the terms in Eq. (1) will be de6ned in Sec. II.
~~ For a good discussion of the exchange integral for nonorthogo-

nal orbitals see P. O. Lowdin, Rev. Mod. Phys. 34, 80 (1962).

crystal-field eGects are important, antisymmetric ex-
change is also present. We derive formulas for the
number of independent coefficients in the exchange
interaction, and we find the relation between these
coefFicients and the exchange constants like J~2. We
consider in detail some very simple cases of anisotropic
exchange, in order to show explicitly the form of the
anisotropy present in these interactions. Finally, we
note that the form of the expression for two-electron
two-center exchange can be applied to cases where
superexchange is the dominant mechanism. In these
cases the coefFicients are no longer given explicitly;
they must be determined empirically.

We demonstrate that it is a gross oversimplification
to represent the exchange interaction between two ions
with orbital degeneracy in the form of an isotropic in-
teraction. Nonetheless, when we consider the staggering
number of independent parameters necessary to de-
scribe these interactions faithfully, we understand why
such an approximation has become so commonplace.
A summary of our results has been published. " In a
future paper we will consider the application of our ex-
pansion to exchange interactions in magnetic insulators.

II. DEMVATION OF OPERATOR FOR
EXCHANGE INTERACTION

Consider two one-electron ions a distance E. apart.
When we use properly antisymmetrized wave functions
for the two-electron system, we find that the average
value of the Coulomb interaction energy of the two elec-
trons e'/rts has a direct and an exchange term. The
direct contribution

(0' (1)lt &'(2)
I
e'/r» Il .(1)l s(2))

corresponds to the interaction energy of two charge
clouds; the exchange term is written as

—Q, '(1)fs'(2)
I e'/rts lgs(1)f, (2)),

where

=—R„t @ (Q„s,),
0,—=0;, and P, are the polar angles of the ith electron.
As a further simplification we have neglected the small
orthogonalization terms in the wave function P . The
E„g's represent the radial part of the wave function,
and the spherical harmonics V~ are normalized accord-
ing to the convention of Fano and Racah, " i.e., P~ *
=(—)' J't . The minus sign in front of the exchange
integral enters because the wave function of the two
electron system is antisymmetric with respect to the
interchange of the two electrons. The label o.= a, b refers

"P. M. Levy, Phys. Rev. Letters 20, 1366 (1968).
' U. Fano and G. Racah, Irreducible Tensorial Sets (Academic

Press Inc., New York, 1959).The phase convention for the spheri-
cal harmonics is given on pp. 24-26.
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to the center to which the wave function is referred, and
i= 1, 2 refers to the electron.

There are two ways of evaluating this integral. One
can expand the operator 1/ris in a bipolar series; in this
case the coordinates of one electron are referred to cen-
ter A while the coordinates of the other electron are
referred to center 8 Lsee Fig. 1j.The bipolar expansion
appropriate for overlapping charge distributions is given
by Buehler and Hirschfelder" for 0', &

——@,&=0' (see
Fig. 1): FIG. 1. Orientation of coordinate axes about the

two centers A and B.

fy2 lkgtLmfS
second, and simpler, method is to refer all wave func-
tions to a common center and to use the one-center
expansion

The E„areLegendre polynomials, and the expansion
coefIicients B„ggj-j for overlapping charge distributions
are very complex functions of n&, e2, and m. The radial
integrals in these coeKcients depend on the spatial
quantum number m; this dependence prevents us from
finding a closed expression for the angular part of the
Coulomb interaction. There is no particular advantage
in using the bipolar expansion to derive the dependence
of the exchange integral on the angular variables, be-
cause the integrals over the angular variables contain
wave functions that are not referred to the same center,
e.g.,

(P,'(1)IB„,„,~ ~(rtrs, R.s)P, (cos8i)e '"e'Ilf s(1)).

C[si(1) .C[si(2)
g 0 p

Ii+1
(4)

where

C, 'sl (i)= L4ir/(2k+ 1)g'~'I'„,(0;)

and r& is the lesser and r~ the greater of r~ and r2.
The objective of our derivation is to rewrite the ex-

change integral Eq. (3) so that the operators and wave
functions involving an electron are all referred to the
same center

To evaluate this integral it is necessary to expand the
orbital fs in a series of harmonics referred to center A.

For exchange integrals it is always necessary to ex-
pand the orbitals about another center; therefore the

where 8~2 is the operator which interchanges electrons
1 and 2 amongst the orbitals P, and Ps By pla.cing the
one-center expansion for 1/rts, Eq. (4), in the exchange
integral Eq. (3), we find

—es g g (—) s+'&(lt, '(1)fs'(2)
I
Lr~s/r~" +tjC,&sl(1)C ls'(2) Ilf s(1)lt,(2)) .

To evaluate this integral we do not take advantage of the fact that the expansion of 1/r» is in terms of scalar in-
variants of the two-electron system. For one center, this could be used to evaluate the exchange integral in a repre
sentation I.MI, in which the orbital angular momenta of the electrons are coupled. "However, for a two-center
problem the total angular momentum of the two electrons 1.(1-+1) is not conserved, and it is somewhat meaning-
less to evaluate the exchange integral in this composite representation.

If we assume that the expansion of 1/r» is given in terms of operators referred to center A, it is necessary to
reexpress the wave functions about center 8, in terms of harmonics referred to center A. This expansion has been
given recently by Silverstone":

"R. J. Huehler and J. O. Hirschfelder, Phys. Rev. 83, 628 (1931).The expansion coefficients, in the region of overlap that we
consider, are given in an addendum, ibid. 85, 149 (1952).

'o See Ref. 18, pp. 91—94.
»H. J. Silverstone, J. Chem. Phys. 47, 537 (1967); see Eq. (20). We have rewritten the expansion so as to make it clear that

the composite symmetry of the two harmonics Yz &(0,&) and Y& (0;,) is still given by Yl.~(Q;&).



PETER M. «V~
where

r.,= r;,—R.b,

J„(yg.b) g, (kr;.)]l (& & d~U lba&(r'a&
(7)

00

y 2dy o--(p) 4~ Z„,(r;b)S,(kr;b r'b ' ~

0

„pg)are sphericalR h anti are similar to ~'g
h ts n~ D]=2l+1. Byu»ng

V mbols a«de6ne p '
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[lb]=2lb+ 1.
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2' See Ref'. 18, Eq.
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To rearrange the terms entering the V symbols so that orbitals referring to the same center are together, we must
perform two recouplings. The simpler one involves the orbitals on center A, and is equivalent to a recoupling of four
angular Inomenta which form a scalar invariant'4:

Q (—)&V(ll, 'k; m —m, 'q) V(l,l'k; m, —m' —q)

4'+4 4
(—) + Lkt)W(lglg kr/li'k) V(lglg'kt) mg m—g'qr) V(ll'kt m'—m —qi)

~l I la —lar ql~If'1

The W' symbol is a symmetrized Racah coeKcient. s' The recoupling of the orbitals about center 8 is equivalent to
one involving four angular momenta which do not form a scalar":

os)tffsg'mm'
V(Xllb, mbm m—b) V() '17b, mb'm' —mb') V(U')i"; —mbmb'mb") V(ll'kr; m —m' —qi)

—( )V+K "+&+4
$y'+$y kg

[ks]X(X"kskr/Xlbl/) 'l'bl') V(kiksV'; qtqsmb") V(lb'lbks. , —mb'mbqs) .
»-I tt, —&y) qg—»

The X( / / ) is a 9-j symbol. "We now express the V symbols containing the orbitals l (n= a, b) as matrix elements
of new operators by using the Wigner-Kckart theorem"

v(l 'l k;; —m 'm. q;) = (—)"—""(1'm 'Ig„lb»Il m )/(l 'IIul"lIIl ),
where i= 1, 2. We define these operators by specifying that their reduced matrix elements are"

(l 'IIulb'lIIl )=—(—1)&&'
'—'

Upon placing the recoupled V symbols and the operator equivalents in Eq. (10), we find that we can write the in-
tegral over the angular variables as

ky»'A"

XV(l, 'lk; 000)V(Pl, k i 000)V(V ') "i 000)W(l, l, 'kt/ll'k) X(X"kskt/)ilbl/) 'l bV)

X(l,'m, 'l mbII bu& »(b1) Xu& »(b2) XC&""l(Q, )]lb'l
I l,m, lbmb) . (12)

To demonstrate the symmetry of the interaction, we have written the triple product of the two operators Nq, &&s&

and the spherical harmonic as an invariant":

u„'b»N„""(:b '""V(ktks) ";qtqsmb") =
I
u "»Xul"lX Cl"ill'l.

q1 q2m'~

The matrix element over the spin variables in Eq. (8) can be written as

(mrna mob I (s+2si ss) Imeamsb)

by using the well-known Dirac identity. When we replace the transformed matrix elements Eqs. (12) and (14) in
Eq. (8) and compare the result with the desired form of the matrix element, Eq. (5), we write the entire exchange
integral as

&a'+&a &S'+&0 4+@S

(y, (1)gb (2) I p Q Q —Fb, b,b(n l, nb lb, n, l„nblb)
kg-) t '—4l »-I &&'—&&I ~ I &&—»I

x [u''»(1) xu'"'(2) xc'"(&.b) j"'(s+»t ss) I p.(1)pb(2)), (15)

'4 See Ref. 18, Eq. (11.18).
~' See Ref. 18, Chap. 11."D. M. Brink and G. R. Satchler, Angular 3IIomeufum (The Clarendon Press, Oxford, 1962), p. 119. We have rewritten the ex-

pression, given in terms of 3-j symbols, in terms of 7' symbols.
s7 See Ref. 18, Chap. 12.
ss See Ref. 18, pp. 76-79.
"This definition assures us that the operator N«t ~ has the proper transformation properties under complex conjugation.

See Ref. 18, p. 80. Et should be noted that for l 'Hl (u«lb'&)+=( —)'~' '~b~ «u „lb&&.
' See Ref. 18, pp. 48-50.
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where, from Eq. (3), P (i)=—~
t m ) ~-', m. ), and

F. ~ s=—(—) '+'"+""+'~"(e/4~)'[ki][ks][~]([t.'][t.][ts'][I ])'"

k, l, l' 0 X [ltd—l( k' (ltd' —l')
(—) '[t][t']P][V]V(t.'tk; 000)V(t't.k; 000)V(t,tz; 00P) V(t't, 'g'; 000)V(yy'g; 0PP)

XW(t.t, 'ki/tt'k) X(Akski/Xt r t/V t s't') i (ri)U iissis(t'i R~s)Rs i (rs) U i x ss is (rs R s)ri t's dridt's,
y I[,+1

This equation is our main result. By comparing it
with Racah's result for one center, Eq. (1), we find that
in contrast to the one-center problem, where angular
momentum is conserved and the product of the two
operators is a scalar invariant, the spherical harmonic
in the triple product of the two-center expansion re-
quires that the irreducible products of these operators
be nonscalar. Therefore, the expansion contains aniso-
tropic as well as isotropic terms. The terms of rank A.

greater than zero represent the orbital anisotropy pres-
ent in the two-center exchange interaction. The radial
integrals in the coeKcient I'k, I,2~ are the analog of the
Slater G~ integrals for one center. Once these coefFicients
are evaluated, our result, Eq. (15), gives thematrix
element of the exchange interaction for any spatial
orientation of the electron orbitals p .

Our result also can be written in forms more amenable
to direct evaluation by decoupling the triple product in
Eq. (15). The orbital part of the exchange operator"
is written as

operators u„.[""(i) is referred. The irreducible-tensor
operators u„[s'[(2)are related by rotation matrices"
to the operators u„[s"(2') referred to axes at angles
$8$ with respect to the original;

u [ks[(2) —Q ~,[ss] ([t,gy)u, [ss[(2~)
q2/

By placing this operator in Eq. (15') we 6nd that the
orbital part of the exchange operator appropriate for
nonparallel coordinate systems is

—F [s'i(1,2') [u["'i(1)Xu[ "[(2')]„[s'i, (16)
kIk2A'm'

where

I' [ '&(1,2')=Z (P '][A.])' I' [ i(1,2')

X P V(kik&; qiqsm) X)„„["i*([t«P)
qlq2q2

X V(kik&'; qiqs'm') .
The expression for the rotated spin operators is readily—F [ '(1,2)[u[""(1)Xn[s'[(2)] [s[, (15') found from the above formula by setting F&,&,s——V3,

I[;Ik2Am k~ =k2= 1, and A= m= 0:
where

and as

where

[s[(1 2)—[g]—1/2F C [A] e

si&su [&i[(1)u [&sl(2)
~11['2qlq2

I'„„""=—P Fs,s,gC [si V(kiksh. ; qiqsm)
L,m

(15ll)

In our derivation of the expansion of the orbital part of
the exchange integral, we assumed the coordinate sys-
tems to be parallel (see Fig. 1).However, there are cases
when other interactions must be taken into account, e.g.,
crystal-field. In these cases it is either inconvenient or
impossible to have both coordinate systems parallel.
To obtain an expression that is valid under these con-
ditions, we must rotate through the Eulerian angles
$8&ss the coordinate axes to which one of the orbital

si.ss——V3[s['&(1)Xs['&(2)]['&

,w'1[sfil(1) Xs[il(P)],[&'1

A~-0, 1,2 m~

where

5„.['i=—[A']'" p (—)'-srS, ['[V(11'.' qi —qsm')
q1q2

It is immediately apparent that, where other interac-
tions require us to use nonparallel coordinate systems,
the form of the exchange interaction is changed, e.g.,
the product of the spin operators is no longer a scalar,
but contains erst- and second-rank irreducible tensor
products (4'=I, 2) representing antisymmetric and
pseudodipolar anisotropies, respectively.

For situations in which it is best to work in a jm;
representation, we couple together the spin and orbital
angular momentum operators in Eq. (15):

[u'"'(1)Xu""(2)XC'"]"'s(1) s(2) =v3[~] '"Z C-'"*Lu""(1)Xu'"'(2)]-'"[s'"(I)Xs"'(2)]"'.

"The expression inside the matrix element in Eq. (15) is called the exchange operator.
32 Sec Ref. I8, pp. 2i—23 and 29—30.
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Therefore, this coupling is equivalent to a recoupling of four angular momenta'3

+3[n[kzl(1) Xnf»l(2) j [kl[s[U(])Xs[i[(2)g[sl

@I+1 k2+1
=V3 p p ([A)[rij[rsj) '"X(kiksh/110/rtr2A) [[U[k»(1)X8['[(1)]["'&X [U[k'[(2)Xs[t[(2)g ["2[]~[k[

r1=t k1—&I r2=l@2—& I

=2 (—) "'+"~'+'([rij[r21) '"II'(kik2~/rsri1) [I'""(1)Xi[""(2)1-[k',
r1r2

where
[~d= [n[4[Xs[ilj,[~'l

In the coupled jm, representation the spitz depezzd-elt part of the exchange integral, Eq. (15), is written as'4

(g;.'P, b'~ Q Q —I", , "'"'[i[""(I)Xi[""(2)XC["(Q.b)$[s'
~ y;P;,),

k11[:2h r1r2

where
I'k, k

k"'"2=—(—)k'+ "2+'k+'2([rig[rsj) '[2W(k 2k 2k/r 2r21) I'k, ksk

and p;.—= ~ j m,.). The spin-independent term is the
same as in Eq. (15).

When we decouple the triple product, this operator
can be rewritten as

I'- - "'"'(kik2)i- '""(1)i- '"(2) (17')
I[:1~2 rlr2mlm2

where

(klk2)=Q I k k k "'C '"I (rir2+ mim2m) ~

Am

When it is necessary to refer the exchange interaction
to nonparallel coordinate systems, we follow the same
procedure used to arrive at Eq. (16); we find that the
spzzz depezzdezzt -part of the exchange integral is written
as

I- ['[(1,2')[j["i(1)XI["[(2')j "[, (»)
rlr2 ~11['2~ m

where

I- ' (1,2') -=Z ([~'3[~])'"I-'(1,2)

X p V(rtr&; mimsm) L), ; " *($8&)
m1m2m2

XV(r~rsh. ; mim2'm'),

I'„['[(1,2)=—[Aj—'"I', , "'"'C [k[*(Q. ) . (18')

This completes the derivation of the various expan-
sions for the two-center two-electron exchange integral.
We now proceed to discuss some properties of these ex-
pansions and relate the expansion coef6cients F~,1,2g to
the matrix elements of the exchange interaction, i.e.,
to the exchange constants J(m, 'mb', m, mb).

"See Ref. 18, Eq. (12.11).
' In the de6nition of the coefficient C,„~'~(lIl2,jIj2,E) in Ref.

1'7, the phase factor (—)'&+'&+'+' was erroneously omitted. We are
indebted to Dr. G. M. Copland for pointing this out to us.

and
~t.'—t. ( &k;&t.'+t.

lki —ksl &~&kt+k2.

(19)

The label o. refers to the quantum numbers specifying
the wave function of the electron, and the label i refers
to the electron.

The matrix elements of the exchange interaction form
a Hermitian matrix, as can be seen by taking the trans-
posed. complex conjugate of the matrix element, Kq.
(8). However, the operator in Eq. (15) is zzof Hermitian
in the manifold of states spanned by the orbitals P .

The Hermitian adjoint of the triple product follows
from the definitions of the operators zz„.[k", Eq. (11),
and the spherical harmonic C [k' (see Refs. 18, 29):
[n[kd Xn[k2[X Q[kl j[oli

—( )4' 4+Eh zb[n-[ki[Xn[k2] X C[ki][0[ (20a)

The complex conjugate of the coeKcient I'k, k,k, Eq. (15),
ls

I k&ksk (sata zzb lb &zzat,a+btb)'
= (—) + kkIk'k, ksk(zz 't, 'zzb'tb', zz, t,zzblb) . (20b)

Combining these two parts, we see that the operator in
Eq. (15) is not Hermitian. Hut this is to be expected
because the coefficients I'~,~,~ depend on the radial part

3' It is sufEcient that l 'Wl, but it is also possible for the prin-
cipal quantum numbers to diGer.

III. PROPERTIES OF TWO-CENTER EXCHANGE
INTERACTIONS

Ke now use the explicit operator expressions Eqs.
(15)—(18) to discuss the properties of two-center ex-
change interactions. In the most general situation pos-
sible, we have o6-diagonal matrix elements between
states whose orbital angular momenta l diBer, i.e.,
t '4/ ."For this case, the only restrictions on the ranks
of the operators entering Eq. (15) are that their magni-
tudes are limited by the angular momenta of the states
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of the wave functions. If, in addition, we take the
"trarbspose" of the coeflicient I'b, b,b, we find

I brbsb(rba ta +b 'tb
&
+a't» +b'~b)

( ) la' b—&+i b' lb—+b&+br+bI&
kgkgA

X (n, l,nblb, n, 't, 'nb'tb') . (20c)

Combining the three operations in Eqs. (20a)—(20c), we
find that the operator expression in Eq. (15) is Hermi-
tian for manifolds spanned. by the wave functions &P,
Eq. (3), but not for the orbitals Q . For this reason, we
refrain from calling the operator in Eq. (15) for l 'Wl
a Hamiltonian.

An operator is time-even or time-odd according to
whether the time-reversal transformation gives the
Hermitian adjoint of the operator or its negative. "The
time-reverse of the operator N, ~~' is"

8 'N, ibl8= ( )&I—l"= ( )"—'~b—l, ibit, (21a)

and that for the spherical harmonic C ~~& is

e-i(, [big= (—)»&( [bl = (—)b( [bl@ (21b)

By using these relations we 6nd that the time-reverse of
the exchange operator Eq. (15) is equal to its Hermitian
adjoint. Therefore, the operator and the exchange inter-
action are invariant under time reversal, as all electro-
static interactions should be.

So that we can discuss the nature of the anisotropy
present in two-center exchange interactions, we give
the following de6nitions. When the rank A. is zero, the
ranks of the operators representing the anisotropy k~

and ks are equal, and the interaction is isotropic. This is
exactly the form of Racah's result for the one-center ex-
change interaction, see Eq. (1). When A. is nonzero the
interaction is amisotropic. When the ranks ki and ks
are equal, the anisotropy is symmetric or antisymmetric
depending on whether the rank A is even or odd;" when
the ranks are not equal, we de6ne the anisotropy as
asymmetric. " For the case considered above l '/l,
the three types of anisotropy are present.

When we consider a manifold for which the orbitals
for the two electrons are identical, i.e., e 'l '= e~'l~' and
m, l =e&l&, the two-electron system has a center of in-
version, and we 6nd that only ence values of the rank
A are possible. This restriction arises from the properties
of the V symbols in I'b, b, &, Kq. (15), so that they do not
vanish. 23 In addition, when the ions are identical the
coeKcients 1 g„y,g and 1 ~,q,q are related. It is dificult to
ascertain the relation from Eq. (15) because in the ex-
pansion of the exchange integral Lsee Eqs. (6) and. (8))
the two centers are not treated on an equal basis. How-

"See Ref. 26, pp. 59—63, and A. Abragam, lecture notes on the
use of angular momentum operators in crystal-field theory
(unpublished) ."See Eq. (11),and Ref. 9, Eq. (B3).

'g The definitions of symmetric and antisymmetric exchange
follow from the change in sign of the triple product Eq. (13),used
to represent the anisotropy, when the two operators are inter-
changed. See Ref. 18, p. 51.' All asymmetric exchange can be classified as symmetric or
antisymmetric; therefore, this category does not define a new
symmetry class.

ever, we arrive at the relation by equating two indis-
tinguishable matrix elements:

&.. ..(~.'~.)=- (~.'(1)~.'(2)
&& li'b&butyl:u""(1)&«'"'(2)&& c'"(f) b)3'" l&.(1)& (2))

and a similar expression for Jj„~,g. The two matrix
elements are equal, and by using the definition of the
triple product, Kq. (13), we Gnd the desired relation
between coeKcients

Ibsbrb ( ) Ib b &t

= (—)»+b'I'b b,&t (h. even) . (22)

The condition that A must be even rules out antisym-
metric exchange interactions (ki=ks, kt+ks+A. = odd),
as can be seen from Eq. (15').However, if other interac-
tions are present and must be taken into account, the
sites occupied by the two electrons may not be equiva-
lent. "No simple relation between the I"s exists and
now, when the exchange integral Eq. (15) is written in
the coordinate axes suitable to other interactions, anti-
symmetric exchange is possible because the rank A.

' in

Eq. (16) need not be even.
If we conflne Eq. (15) to situations in which inter-

atomic forces are small compared to the intra-atomic
forces, e.g., in the rare-earth salts, only one l,s manifold
need be considered, so that e '/, '= m 1 . The conditions
on the ranks in the V symbols in I"»b, b require that the
allowable values of the rank A be even. Another condi-
tion is obtained by setting n '1 '= n t in Kq. (20c); we
find that the sum of the ranks kt+ks+A. must be even
so that the coeKcient I'I„~,~ does not vanish. Under
these cond. itions, the operator in Eq. (15) is Hermitian
Lsee Eqs. (20)$ and the coeflicients I'»b, b are real Only.
symmetric exchange is possible under these conditions
Lsee Kq. (15')$. However, if other interactions require
us to choose coordinate axes for the two electrons which
are not parallel to one another, we see from Eq. (16)
that antisymmetric exchange enters even when each
electron is in a definite orbital (t '= l,).

When we consider ions for which the states of the
electrons are described in a jm; representation, we ascer-
tain from the conditions already determined for the
ranks k~ and k2 what the conditions will be on the ranks
rt and rs entering Eq. (17).For t '= t, but for different
total angular momentum of the states of each ion j '@j,
there are no conditions on the ranks of the operators
representing the anisotropy r& and r2. When we con6ne
our attention to one j manifold for each ion, i.e.,
j '=j, the matrix elements of the operator j&"" vanish
unless the sum k,+r;+1 is even. 4' As the sum of the
ranks k~ and k2 must be even, this condition on the r;

0 When other interactions are taken into account we no longer
have true two-center exchange. However, the form of the exchange
operator Eq. (16) is still valid. Only the coefircients I' lbl are
changed; they are not related to the radial integrals as in Eq. (15).

4' This condition is arrived at by evaluating the reduced matrix
element of the operator il"l —=Lni"l Xsl'lpl "~ in aj state. See Ref. 18,

(15 4), (tsjllC«'lXs ' 3 'll»j) =Lj3Lr7"(tlln ' lit)(sile ' ll')
XX(ltd/ ', q1/j jr) By per-muting .the two identical columns, we
Qnd that the 9-j symbol vanishes unless k+v+1 is even.
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requires that the sum of the ranks rz+rs be even. To-
gether with the condition that the rank h. must be even,
only symmetric exchange is possible. When other inter-
actions require us to choose nonparallel coordinate axes,
we see from Kq. (18) that the rank A' is not restricted
to even values and that antisymmetric exchange is
possible, even when the electrons are in definite j states.

So far we have given the matrix elements of the two-
center exchange interaction, Eq. (2), in terms of the
coefficients FI„I„q.For these coeKcients to be of maxi-
mum usefulness, it is necessary to relate them to the
conventional exchange constants, which we de6ne as
the matrix elements of the orbita/ part of the exchange
interaction in Eq. (15)

J(it', 'it' '; P,it' )=(P,'(1)g '(2)
I Z F„„,(n.'t.'n, 't, ',n.t.nsts)[ui''i(l)Xu&''i(2)XC&»(n. ,)ji'i ly. (i)$ (2)). (23)

In the present context, f —=n t m and p =—l,m .
Hereafter, we suppress the labels n / in designating
the exchange constant J. Sy using this de6nition, we
can write the exchange interaction in a more conven-
tional form as

—J(m.'ms', m ms)(-', +2st ss) . (24)

Most of the work on two-center exchange integrals is
presented in the form of exchange constants. To find
the value of the coefhcients I'~,~,~ from these constants,
we have to invert the relation between the two, Eq.
(23). We start by uncoupling the triple product and by
evaluating the matrix elements of the operators N~,.~~'&.

Then we use the unitary transformation properties of
the V symbols in the form4'

P V(ktksl; qrqsm)V(ktksl'; qtqsm') =[1)—'hyped (25)

and the sum rule for spherical harmonics43

Z IC-i il =1.

The resulting expression is recoupled into a triple prod-
uct, and we 6nd that the coefficients are given in terms
of the exchange constants by the following relation:

Fs,s,s(n, 'l, 'ns'ts', n, l,nsls) = [ktj[ks][A]
J(m. 'ms', m.ms)

77sa'mg' ma77sb

x(y.'A'I [ l" ixui'ix«»(f}. s)3i'i14.ys)*. (26)

Now the preceeding discussion of the properties of
the coeS.cients I' can be used to determine the properties
of the exchange constants J. Most important, we can
obtain from the above relations the number of inde-
pendent parameters necessary to describe a two-center
exchange interaction. 4' The relations Eqs. (23) and (26)

's See Ref. 18, Eq. (10.17).
4' See A. R. Edmonds, Ref. 22, p. 63. The above sum rule is

derived from Eq. (4.6.7) for e=e' and p=4V, so that cos~=1 and
E~(1)=1. This sum rule has the same form in the phase conven-
tions of both Edmonds, and Fano and Racah."If we evaluate the radial integrals in the coeKcients I'q, y„g
Lsee Eq. (15)j there are no undetermined parameters. However,
unless nonorthogonal orbitals are used it is unrealistic to evaluate
the exchange coefficients from Eq. (15). Therefore, we consider
the diGerent coefBcients as independent parameters to be em-
pirically determined.

provide a one-to-one correspondence between the co-
eKcients Fs,s,s and the constants J(m 'mb', m, ms);
therefore, the number of independent constants J equals
the number of diferent coePcients F. This number is
readily found by counting the diferent combinations of
the three ranks of the operators in Kq. (15) subject to
the conditions given in Eq. (19) and any further restric-
tions when the interaction is evaluated in certain
manif olds.

In the most general case of two-center exchange where
the angular momenta of each of the electron states differ,
i.e., l '//, the number of coeKcients is

ea oy It1+kg

E(l,'ls', t ls)= Q Q Q 1
a~-Sa 12=Sf, ~-I I I—I 2I

=-', 8.(b.—1)(8,—3o s—2)+-', o s(o s+1)(3o.—o s+1)

+(.-~.+1)(.-b '+1), (»)
provided the ranks k~ and k2 have some values in com-
mon, and l ~ is greater than or equal to /&&. In this
formula 8 = t t ~, —o =—t—&+/ ~; t & is the larger of
the angular momenta l ' and l of the states of the ion
n, and l ~ is the smaller of the two. If the angular mo-
mentum /~~ is greater than l & we reverse the labels on
the 8's and o's in Eq. (27). If the angular momenta of
the states are such that the ranks k~ and k2 have no
values in common, and if / &~/q, the number of co-
efBrients is

N(Lg'ls', lolls) = (o. 8+1)(os'——8s'+2o.s+1). (22')

For l ~&/~~, the labels on the 0's and 0's are reversed.
The total number of exchange constants J is found by
counting the diferent combinations of the four spatial
quantum numbers m, ', vs~', m, and m~. This number is
simply

ly'

Z Z Z Z 1=[t.'3[ts'1[t.j[tsj (28)
dna' L&' nay'~lh' tea la mh ly

When we actually evaluate these numbers, Eqs. (2'7)
and (28), for several cases, we are readily convinced
that the number of coefEcients —and hence the number
of independent exchange constants —necessary for two-
center exchange, Eqs. (27), is considerably less than the
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number given by Eq. (28). As we will see in the last sec-
tion, by relating the exchange constants J(ns 'tns', m, tns)
to the coeKcients F&,&,& we considerably reduce the
number of constants necessary to describe an exchange
interaction.

When we confine the states of each ion to one t mani-
fold so that t '= 1, the rank A and the sum of the ranks
k~ and k2 must be even. Under these conditions the
number of coefficients is:

2l& 2l g kg+km

X(l,ls) = g P P 1 kt+k, = even, h.= even
hi=0 12=0 h.=) ki—Scg

= 1)(i(+1)(2i(+1)—si((2t(' —5)+1, (29)

where 1& is the greater of the angular momenta l, and

lq, and l& is the smaller of the two. If the ions are
identical so that l,= ls, the number given by Eq. (29) is
further reduced because F&,)„& F&,&,&,

——see Eq. (22)
(k&+As is even for this case). When other interactions
are taken into account cases may arise in which the
ions are identical, l,= l~ but the sites are inequivalent so
that FpiA, 'gp@ Fk2JQgp and there is no further reduction of
the number given by Eq. (29).

teraction between electrons on well-separated ions by in-
cluding only the identity and single-pair permutations '

where

V=Vt+Q V„,P,
r(s

P„=—t-', +2st ss}.

(3o')

The first term Vy gives rise to the direct Coulomb inter-
action, while the second term is the conventional ex-
change interaction.

When we have only one electron per ion, Eq. (30)
terminates because it is impossible to interchange more
than one pair of electrons; for this case the above ex-
pression Eq. (30') is exact. However, for X electrons
per ion the conventional exchange interaction is an
approximation which is valid for systems where the
overlap between the orbitals is small.

Derivation

In the approximation where we neglect both higher-
order permutations, and the nonorthogonality of the
electron orbitals, the Coulomb exchange interaction be-
tween the electrons on di6erent ions is'~

IV. HAMILTONIAN FOR N-ELECTRON
EXCHANGE INTERACTION

Na Ny g2

X,.=—P P P;, . — (31)

It was Dirac' who first showed that when we calculate
the perturbation due to Coulomb forces the whole per-
turbation matrix, including the permutation degeneracy
of the electrons (P,+

~

V
~

P b+), is equal to the matrix of
the operator pp VpP. 4s The summation is over the n!
permutations I' of the e electrons amongst the orbitals
of the unperturbed system. In a manifold spanned by
these orbitals the perturbation V can be written as

V='Q VrP=Vt+Q V„P„,

+higher-order permutations, (30)

where the operator I'„interchanges a single pair of
electrons amongst the available orbitals. If the orbitals
are orthogonal, all higher-order permutations give zero
matrix elements because the Coulomb interaction is a
two-particle interaction. "However, for nonorthogonal
orbitals the magnitudes of the matrix elements of the
Coulomb interaction for the higher-order permutations
are proportional to the overlap of the orbitals containing
the interchanged electrons. ' For materials in which the
magnetic ions are well separated, the overlap of the
orbitals is small. Therefore, Eq. (30) can be viewed as
a perturbation expansion where overlap is the srnaB

parameter, and we approximate the true Coulomb in-

"The extension of Dirac's result to several orbit. al conhgura-
tions is given by R. Serber, Phys. Rev. 45, 461 {1943).

46 See article by C. Herring, in Magnetism, edited by G. T. Rado
and H. Snhl (Academic Press Inc. , New York. 1966), Vol. IIB,
Secs. II and III.

j=l j=l g ~ ~

u

Since we are interested in the interatomic exchange in-
teraction, we are evaluating the exchange energy be-
tween states 4 (i) that have been properly antisym-
metrized with respect to the E equivatt, 'et electrons on
the ion. Also, since we assume that overlap is negligible,
the interatomic forces are small compared to the intra-
atomic forces, and we confine our derivation to one
orbital con6guration, i.e., / '= l for all E electrons. In
the following derivation, we only consider cases where
intra-atomic electrostatic interactions are greater than
the spin-orbit couplings of the electrons so that the
Russell-Saunders coupling scheme is valid, i.e., the total
orbital angular momentum P; l;= L and the total spin

P, s;= S are good quantum numbers. With this condi-
tion, and the assumption of negligible overlap, it is un-

necessary to consider the matrix elements of the ex-
change interaction between atomic states of different
L and S; however, we will do so in the derivation so
that our results are complete.

The exchange integral we consider is

( sr~ Ks cs

I
+.'(&)& '(2) —r, 2 —~' +.(~)&~(2)), (»)

l \ i=I j=1 g ~ ~u

4' There is no need to restrict the sums over the electrons be-
cause the Geld of numbers fi) which refer to electrons on ion A,
does not overlap with the set (j},which refers to electrons on ion
8. Also, we now call the operator expression, Eq. (31), a Hamil-
tonian, because we are restricting its use to manifolds of definite
orbital angular momentum, i.e., l '= l .The operator is Hermitian
in these manifolds.
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where

and
C ='jl ~.L MI. S Ms, ).

This wave function is centered about ion n and is anti-
symmetrized with respect to the 3~ equivalent electrons
on the ion. Although the operator e'/r;, is a two-electron
operator, it operates on two different antisymmetrized

sets of states. Therefore, with respect to each ion, the
interatomic exchange operator is a one-electron opera-
tor. A method has been developed by Racah4' for evalu-
ating the matrix elements of one-electron operators in
antisymmetrized states of E equivalent electrons. The
idea behind his method is to fractionate one electron
from the total wave function for theiV electrons and
then to evaluate the matrix element of the operator
Eq. (31) between the fractionated states. By following
this approach, the wave function C is written as

j[l N L Mz,.SMs.)= Q (l,~ '(L 'S '), / L S ji ~.L S ) )I ~. '(I. 'S ')—
,1 L Mz„S„MB),

La'Sa'
(33)

where (i ~ '(L 'S '), t L S P ~ L S ) is a coefficient of fractional parentage. The state

)ir
~ '(L 'S '), / L Mz S M8 )

is antisymmetrized with respect to the Ã —1 electrons; the last electron is coupled to the Ã —1 electrons to form
I. 5, but it is ~ot antisymmetrized. The matrix element of the exchange interaction between the fractionated states
is exactly that given by Eq. (15), where now zz 'i '=I i . Therefore, by following Racah's procedure we find that
the matrix element of the exchange interaction Eq. (32) can be rewritten as

t' &a &s 8z

( Kg Ns
=I C,'4r, ' p p —F~,i,~(zz.l,zzrlr)I ur"](z)Xur'mr(&')XCr"](Q. i)7r'rX(-', X2v3Lsr'&(i)Xsr'](&')7r'1) C.C& I. (34)

i, j=l kl~2~

The coeKcients F&,z,z(zz t„zz&lb) are the same for all X equivalent electrons, and the operators in this matrix ele-
ment act on one of the electrons in the multielectron wave functions. We want to rewrite Eq. (34) in terms of opera-
tors of the same rank and component as the one-electron operators, but which act on the entire antisymmetrized
and coupled multielectron wave functions. The relation between the two operators is found by using the Wigner-
Kckart theorem for double tensors4'

(l ~ L 'S 'II+;ur'i(i)srx&(i) IIi
~ I.,S )

I, r~(i)s, rx(ri)= p r&l(a)p rxl(a)
(L.S. IIgrwgr rIIL.S.)

(35)

where E=0, 1.The operators s'" and Sr'r are defined by their reduced matrix elements LS 7"'88..s.. The operator8,"& is the same as the conventional spin operator when S '= S, but, for off-diagonal elements in which S 'AS,
we define the operator by its reduced matrix element

(S 'IIS "illS )= ( 1)-', rs —8 —i& (36)

The operator U, r~' is defined in the same way as the operator N, r~r
I see Eq. (11)7.Although the orbital and spin

angular momenta are not coupled together in the sense of an irreducible product, they are related by the anti-
symmetrization of the multielectron wave functions. Therefore, it is not possible to factorize the reduced matrix
element

(PL'S'I I+;ur'r (i)srx& (i) IIPLS) (37)

into separate orbital and spin reduced matrix elements. However the reduced matrix element in the denominator
of Eq. (35) can be factorized immediately because the operators U(n)'"' and S(n) rx' act on the total orbital and
spin angular momenta. "By using the Wigner-Eckart theorem in the form of Eq. (35) we can write the exchange

'8 G. Racah, Phys. Rev. 63, 367 (1943); 76, 1352 (1949).
49 The concept of double tensors was introduced by G. Racah, see Ref. j.4.
50 To these operators the composition of a state is immaterial; only the total orbital and total spin angular momenta determine

the value of their matrix elements.
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integral Eq. (34) as"

(C'.'C'o'I —P g r,io.g&x&(L.'S.'L,'S,',L.S.L&S&)CU(o) ["'XU(b)"s[X«"(&.o) J[ol
kykgk X O, l

where
X('s&tro+2&ziS(tt) 8(b)) I

O',Co), (38)

(l N L S II+,N u(s)[s ]s(i)[K]lll N L S )
ro, s,a[x'= r—s,r,s II—

(L.'S.'ll U['-[P[x[IIL.S.)
and k =k~ for o,=a, and k~ for n=b. If we consider states still within the Russell-Saunders coupling scheme for
which the spin-orbit coupling is appreciable, it is best to couple the operators U" l(n) and +[xi (n) in Eq. (38) as
we did in Eq (1.7). In the LSJMJ representation the exchange integral is written as

I e,.'e„'— p g r„„"xC3(E,e)["[x3(E,b)["'lxc['l(Q. ))['[ cz.cp, I,
r ~

olk2ar1rs r

or, in an equivalent form,

r„~"~x(k,ks)3 [»(E tt)3„["»(Eb).
kxk2K nrs~ama

(39)

(39')

The wave function C'J,= I
J 3fg,), the coefficient

rsto, s"'"' = (—) '" + (sezo+28tri)(Crt)Crsj)'t'W(kiksA/rsr[E)rs, o,t[[ &,

the coeKcient

r„,„,""'x(kiks) —=Q ro, o,q""xC„[s'(Q,o)V(rirsA; trtimsrN),

[ra[(E ct)
—

CUÃsl (n) X S &1 (ts)] [ra[

The reduced matrix elements are evaluated by the methods outlined in an earlier paper. ' "The result is

(PL'S'IIX; '"()" x( )lsli IS)=( )'+'+~—~

~xmas

(—)~ (elle)(ejle')(CL'jCLjCS 1CS3)»s

X (lllu[" lll)(-', Ijs[x'll-', )W(L'L&/llI )W(s'SE/-'-'8) (37')

8= PLS, 8'= PL—'S', 8=PL,S—. —

The coeKcients of fractional parentage (8P) for all d~ configurations have been tabulated by Racah" and those for
f~ configurations by Nielson and Koster. '4 Racah" has also related the reduced matrix elements Eq. (32) of iona
with more than half-filled shells to those for ions with less than half-filled shells. "

By collecting the results for the reduced matrix elements in Eq. (35) we obtain explicit expressions for the coeK-
cients rs, o,a[x&. When we consider matrix elements of the exchange interaction between states of different orbital
and spin angular momenta, we find

r......=-(-:II"II-:) r..... ZZ (-) -' -" -~-(CL. XL-~CS-'jCS-j) "(s-'ll&. Ils-)-
a=e, b

XP ( )~~s (8 (8 )(8 I[et
—')W(L 'L E /l l L )W(S 'S E/-,'-,'S ), (40)

where k =k~ for 0,= a, and k~ for n= b. For matrix elements between states in an LS manifold we can replace the
operators U, [s &(a) by angular momentum operators which transform in the same way as the irreducible tensors

5~ Only the spin-dependent part of the exchange interaction Kq. (34} is relevant for strong crystal 6elds; however, when spin-orbit
coupling is strong this is no longer true.

ss Also see B. R. Jndd, OPerator Techrtjgles irt Atomic SPectroscoPy (McGraw-Hill Book Co. , New York, 1963), Chaps. / and 8."G. Racah (I943), see Ref. 48."C.W. Nielson and G. F. Koster, Spectroscopic Coefftcjertts for the p", d" artd f" Cortfigttratiorts (MIT Press, Cambridge, Mass. ,
1963); also G. Raeah (1949), see Ref. 48."G. Racah (1942), see Ref. 14.

'~ Other relations among the reduced matrix elements have been given by P. M. Levy, see Ref. 9; and by S.R. Judd, see Ref. 52,
Chap. 8.
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U,.is~'. These are called operator equivalents, and have been tabulated by Smith and Thornley. "In terms of
operator equivalents, the spirl dep-endent part of the E-electron exchange Hamiltonian

l
see Eqs. (31) and (38)1

takes the form
—g F„„,(L.S.,L,S,)lo (L.)xo'*( )xc (a.,)j s() s(b), (41)

where now

s»s'"—=—s»ss~ II (—)" ' ' "' -l: 3f( .—-) ( S-+ )/( L+ -+ )!S-(S-+ ))'"

Xg ( )r~—s-l (e.(tJ.) l
sW(L.LJ./l. l.L.)W(S.S.1/~sss. ) .

&a

The operator equivalent 0„.'s'i(L) is defined by its reduced matrix element "
(—) i' (2L+k +1)! -',

(2L—k,)!
When we conhne our attention to the matrix elements of the exchange interaction between states having the same
total angular momentum J, we replace the operators 3&"l by the operator equivalents Oi" l(J ) and Eq. (39) is
written in the following form:

where

g —F„„A,l.oi"'i(J )Xoi"'l(J s) XC&si(Q, s)ji'l,
f J,f 2J&s.

r1+& rg+X

(43)

I A= Q (s &&Ko+28irt) p p (—)s'+"~~+'I rt]l rs)(s llsix lls)'W(king&/rsr&E)
X~0,1 &g lay-E'I 4 I7g-XI

&g+I«'g even

XFs,s,&&(N,E„Isis)g (—)i&s~"~x&(—)&~~ ~' &2" 1V LL jl S ]LJ j((2J —r )!/(2J +r +1)!)'"
a~, b

XX(L L,k /S S E/I I r )P (—)~~s l(8 ll'&7 )l'W(L L ls /l l L )W(S S E/ ,' sS ). --

Only those operator equivalents enter whose ranks r
are such that the sum k +r +E is even; this can be
seen by interchanging the two identical columns in the
9-j symbol and noting that the sign of the 9-j symbol
is the negative of itself when &&, +r +E is odd.

This completes our discussion of the appropriate
Hamiltonians which are used to represent two-center
exchange interactions for various conditions on the
orbital and spin angular momentum manifolds. In this
derivation we assumed that the radial integrals are
identical for all E equivalent electrons. Consequently
no new parameters enter over those in the two-electron
exchange interaction Eq. (15),i.e., the Fs,s,&&, and all the
properties of the two-e&ectron exchange interaction dis-
cussed in Sec. III, also apply to the E-electron interac-
tion. For example, the number of independent param-
eters in the Ã-e1.ectron exchange interaction is still that
given by Kqs. (22) and (29).

V. CONCLUSIONS AND DISCUSSION
OF RESULTS

To obtain an idea of the anisotropy present in ex-
change interactions we evaluate our result, Kq. (15),for

&&r D. Smith and J. H. M. Thornley, Proc. Phys. Soc. (London)
89, 779 (1966). To conform to the conventions adopted by Pano
and Racah, see Ref. 18, the reduced matrix elements of the
operator equivalents O~~~~ must be de6ned with a phase factor
(—l)-&t&s&». Therefore the operator equivalents given by Smith
and Thornley should be multiplied by (—1)&'"&".

several cases. The simplest case possible is the one con-
sidered by Uan Uleck, ' that of the exchange between an
s and p electron on different centers. The s electron is on
the center 8 ls' ——Ls

——0, and the p electron is on center
2 1,'= l,= i. The only operator that can fit in themani-
fold l~'=1~=0 is one of rank zero. Therefore, kg=0.
Similarly, the operator of rank k1 must Q.t in the mani-
fold l '= l, = 1.Therefore, k1= 0, 1, 2. In order that the
triple product in Eq. (15) form a scalar invariant, the
rank of the sperhical harmonic A must equal k1. As ln'
=l, we have the further condition that the rank k1
must be even, and there are only two coefficients Fop0
and Fs&&s.ss The Hamiltonian for the sPie dePer&de&st-
part of this exchange interaction is"

3.'. =—2 Q I' (p,s)l ni»(a)XCi" (Q, s)gi'is. s&&,

kM, 2 (44)
or

3:,„=—2 g F,i'lg, i'l(a)s, ss,
kq

where

F is&=—P)-»sFsssC &'l*(Q.s).
58 We could also arrive at this number of coe%cients by using

Eq. (29).
~ The spin-independent term will not give rise to a coupling of

the magnetic momenta for s-p exchange. Therefore it is not further
considered.
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I'ooo= (1/v3) [J(00,00)+2J(10,10)],
I'sss= (10/+6)[J(00 00) J(10 10)]. (45)

To arrive at these relations, we use the condition that,
for two-center exchange,

J(—10, —10)=J(10,10).

Written in terms of the exchange constants the s-p ex-
change interaction, Eq. (44'), is

K, = —2{-',[J(00,00)+2J(10,10)]
——,'[J(00,00)—J(10,10)](3l,'(a) —2))s, ss. (44")

The validity of this expression is immediately verified.
For m =0, we find

—2J(00,00)s. ss,

while for ns, = ~1 we find

—2J(10,10)s. sb

We note that the isotropic term is the mean value of
the different exchange constants, and the coefFicient
representing the anisotropy depends on the difference

"See Ref. 26, p. 19, Eq. (2.11).In accordance with the conven-
tions of Fano and Racah, a factor (—1)&~ is added to the spherical
harmonics. This accounts for the factor of (—1)~."Here, the phase factor of (—1)&"'&" has been absorbed in the
numerical coefBcients; the operator equivalents are as given by
Smitb pnQ Thorn1ey, see Ref. 57.

When all other interactions are neglected, we can
choose the orientation of the coordinate axes so that
the Hamiltonian is in its simplest form. For this, we
choose O, s ——0' [see Fig. 1), because C, 's'*(0,$)= (—)"
Xh(q0)."The operators u, '"' can be written in terms of
the operator equivalents of Smith and Thornley" by
using the Wigner-Eckart theorem":

nisi —(1/3) fQ lsl —(r )i /s

u l» = —[2/(30)&]0,l»,

and specifically, for l.= 1,

us'» ———(30) '"(3l '—2)

With these operator equivalents we can write the
Hamiltonian in its simplest form (O, s

——0') as

K. = -(2/V3)
X[I'soo

—(1/5&2) (3t,'(a) —2)I' o ]s, ss. (44')

The two coefficients could be explicitly evaluated from
the expression in Eq. (15). However, the true wave
functions for ions in solids are not accurately known,
and also the calculated values of the coefficients would

be unrealistic because only orthogonalized orbitals were
considered. Therefore we consider these coefficients
as parameters to be determined empirically. As the
exchange constants J(m, 'm&', m, m&) are usually quoted
rather than the coefficients Fe,e,g, we relate the two

by using Eq. (26). For the s-p exchange interaction,
we find

between the exchange constants. As Van Vleck" men-
tions, anisotropy in two-center exchange interactions
occurs because the overlap of orbital charge densities
depends on the relative orientation of the charge densi-
ties with respect to the interatomic axis. This depend-
ence accounts for the difference in the two exchange
constants in Eq. (44").

If the direct Coulomb interaction, Eq. (2), between
the s and p electron is much greater than the spin-
orbit coupling of the p electron, or if other electrostatic
interactions, e.g. , crystalline field, cause one orbital
configuration of the s-p molecule to be much lower in
energy than the other (compared to the spin-orbit
splitting), the exchange will be nearly isotropic. In
these cases the effective exchange constant is the expec-
tation value of the orbital part of the Hamiltonian, Eq.
(44") evaluated in the state of lowest energy, as de-
termined by these interactions. Anisotropy enters as
a perturbation only when we consider the effect of the
intra-atomic spin-orbit interaction in coupling the
orbital ground state to the excited ones. Therefore, in
this limit anisotropic exchange is small compared to the
isotropic part of the exchange interaction.

If, however, the intra-atomic spin-orbit coupling is
much greater than the direct Coulomb and other elec-
trostatic interactions, the orbital and spin angular mo-
menta are strongly coupled and we rewrite Eq. (44)
in a jm, representation as in Eq. (17):

@+1

~ex 2 P I ksk
k=o, 2 r=t k—i[

X[[u&i'l(a)Xs"l(a)]l"lXsl'l(k)XQ'sl(f), s)]isi (46)

where

I'sos"'= (—)' '2([r]/[k])'"I'sos

Since k2= 0 is the only allowed rank for an orbital opera-
tor representing an s electron, r~=1. The values of r~

range from ~k —1~ to k+1, which for a p electron
(k= 0, 2) gives r= 1 for k=0 and r= 1, 2, 3 for k= 2. If
we restrict the Hamiltonian to a manifold where the
total angular momentum J is a good quantum number,
the sum of the ranks k,+r,+1 must be even. For our
case, this condition restricts the values of r to be odd
because k is even. If we further confine our attention to
the 'P&~s state of the p electron, the only operators that
can act on the manifold j,'= j =~ are those of rank
r= 1."For this state we can write the operator j&"& in
terms of the total angular momentum operator jt"j de-
fined by Levy, ' by using the Wigner-Eckart theorem":

[ufsl X slil]lil =' —(I/3v3) jlil

[nl» X siil]l&l =' (2/3v3) jlil

"Operators of rank r =0 could also act on this manifold; how-
ever, for the case under consideration they are excluded by the re-
quirement that r be odd.

63 To arrive at these "operator equivalents" we have to evaluate
the reduced matrix element of il'l. See Ref. 18, Eq. (15.4).
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and

[j[i]X s[i]][o]= (1/~)j. s

[3 ]Xs l]o[]=(1/+6)(j s—3j,z,).
Also, the coefFicients Fk0k are related to the exchange
constants as in Eq. (45). With these substitutions, the
exchange Hamiltonian assumes a form similar to the one
first given by Van Vleck'.

K, = (2/9)[J(00,00)+2J(10,10)]j, so

+(4/9) [J(00,00)—J(10,10)]
X(j. —3J*( ) .(b)) (46")

From this example, we conclude that anisotropic ex-
change does not enter as a perturbation when spin-orbit
forces are greater than the electrostatic forces. The
magnitude of the anisotropy is proportional to the differ-
ence between the exchange constants, and it can be as
large as the isotropic part of the exchange interaction.
Therefore we expect that exchange interactions between
ions with strong orbital contributions to their magnetic
momenta will be highly anisotropic.

In the above example we find only symmetric ex-
change. For the 'P3~2 state, asymmetric exchange
[j['](&)Xs["(b)][s] is present, as well as the symmetric
exchange [j["(a) X s["(b)][s].However, it is not possible
to obtain antisymmetric exchange for r&= r2, as was
done in Eqs. (16) and (18) by rotating the axes of
quantization, because one of the electrons has no orbital
moment and therefore no preferred set of axes of quanti-
zation. The lack of an orbital moment for one of the
electrons does produce this essential qualitative differ-
ence between exchange interactions in which both elec-
trons have orbital moments and those in which one elec-
tron is in an s state.

Situations do exist in which the crystal field is much
greater than the exchange interaction but less than the
spin-orbit coupling of the electron, e.g., rare-earth —iron
exchange in the garnets. In these cases, antisymmetric
exchange does exist and it can be as large as symmetric
exchange. " To account for the effects of the strong
crystal field, it is necessary to project the exchange
Hamiltonian Eq. (46) onto a crystal-field level, and to
rewrite the resultant Hamiltonian in terms of fictitious
angular momenta. The study of exchange interactions
in crystal-field states (where one or both electrons have

"See Ref. 18, Eq. (7.10).
oo K. W. H. Stevens, Rev. Mod. Phys. 2S, 166 (1953); R. M.

White and R. L. White, Phys. Rev. Letters 20, 62 (1968); P. M.
Levy, ibid. 20, 1366 (1968).

The Hamiltonian for 'Sj ~2-2P~~2 exchange in its simplest
form [t]~ii=0', C, '"'*= (—)"8(q0)] is written as

~.-= sl o-[j ' (~)X"(~)] 'l

+(4/15) I'sos[3[ '(a) X s"l (b)]o[" (46')

The irreducible products can be expressed in terms of
conventional angular momentum operators by using
the definition of these products":

orbital moments) for cases of strong spin-orbit coupling
will be discussed in a future paper.

The above example is the simplest one possible, and
it is not necessary to use Racah's algebra to arrive at
the results Eqs. (44) and (46).However, in more realistic
situations when we have d or f electrons, and in cases
where both electrons have orbital angular momentum,
it is very dificult to arrive at the proper form of the
exchange interaction, Eqs. (15) and (17) without em-

ploying the techniques developed by Racah and used in
this paper. To illustrate the usefulness of this technique,
let us consider the exchange interaction between two

p electrons. In this case, 3 '= 3 = lo' ——ls= 1, ki, ks ——0, 1,
2, A =0, 2, 4 (only even values of A and of the sum ki+ ks

are allowed), and the exchange interaction Eq. (15') in

its simplest form (e„b=0) is

2

x, = —P
2 4

[A] '"I'a, s,~
k1=0 k1+k2=e&en k2=0 h=0 h=e&en

X[u[s'](g) Xn["&](b))o[s](ts+2so so) . (47)

When we go over to a jnz, representation the possible
values for ri and r&, Eq. (17), are ri, rs=0, 1, 2, 3.When
we want matrix elements between states of different
total angular momentum j, there are no other restric-
tions on the ranks r~ and r2.

However, within a state of definite jvalue the restriction
is that k;+r;+ Emust be even. When both electrons are
in definite j states, the foregoing restrictions lead to the
extra condition that the sum rt+rs must be even.

When we consider exchange between p electrons only
in 'Pt~s states, we Gnd that the form of the anisotropy is

the same as that for the 'S~~2-'P~~2 exchange interaction
Eq. (46"). As in the former case, no antisymmetric ex-
change is possible for 'P~f2-'P~f2 exchange. As we have
considered a case where 1 '= 3, only even-rank opera-
tors can describe the direct Coulomb interaction or crys-
tal field. The degeneracy in the 'P&/& state is not split
by these interactions, and the orientation of the coordi-
nate axes is arbitrary. Therefore, we cannot have any
antisymmetric exchange as in Eq. (18).The same holds
true when only one electron is in a 'P3f2 state. However,
when both p electrons are in 'I'3/s states we can have
antisymmetric exchange if the other interactions, which
must be taken into account, have nonparallel coordi-
nate axes at centers A and B."When the exchange in-
teraction is much greater than the other interactions,
but still less than the spin-orbit coupling, the zeroth-
order Hamiltonian is Eq. (47 ), and antisymmetric ex-
change enters only as a perturbation. However, when

3 1

3('-= 2 2 2 (—)"+"(—l~xo+2~xt)
klk2h &1 &2=0 +=0

X([ri)[rs]/[&])'"&(ktks&/rsrll]. )l'k s A

X [[n[&i]Xs W']] [~&1X [ul&s] Xa[xi][nl]o [&l (47')
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other interactions a,re stronger, the zeroth-order Hamil-
tonian is like Eq. (18) but includes the spin-independent
term, and antisymmetric exchange is of the same order
of magnitude as the other anisotropies. '~

The total number of exchange constants is given by
Eq. (28) and for p electrons (I '= I = 1) this gives 81.
Of these, many are equal to one another as we have
shown for the s-p exchange constants. Whereas there
were only nine possible constants for s-p exchange, we
see that as the angular momenta of the states in-
creases, the number of these constants rapidly rises.
For this reason it is very helpful to use the one-to-one
correspondence between these constants and the co-
efficients I'b, b,b, Kqs. (23) and (26). The number of these
coeKcients is invariably much less than the total num-
ber of constants, Eq. (28), and it also represents the
minimum" number of dpi'erenow exchange constants. For
two-center exchange between two p electrons, the num-
ber of different coefficients as given by Eq. (29) for
l&= I&= 1 is eight. If, however, the two p electrons are
on identical sites, the coefBcients 1 ()22 and 1 202 are equal,
and there are seven diferent coefficients. If we treat
these coeKcients as empirical parameters, we notice
that even for the case of two p electrons we have con-
siderably more unknowns (7) than for isotropic ex-
change (1).As there are seven different coefficients, we
know immediately that only seven of the 81 exchange
constants are different for two-center exchange. These
seven are, for e,b=0' (see Fig. 1)

J(oo,oo),
J(11,11)=J(—1—1, —1—1),
J(10,10)= J(01,01)=J(—10, —10)=J(0—1, 0—1),

J(1—1, 1—1)=J(—11, —11),
J(1—1, 00)=J(—11,00)=J(00, 1—1)=J(00, —11),

J(10,01)= J(01,10)=J(—10, 0—1)=J(0—1, —10),

J(1—1, —11)=J(—11, 1—1) .

Sy our choice of e,q= 0' we have eliminated 62 of the 81
matrix elements for which Am= m'+m—b' m m—b is—

66 We could express the exchange Hamiltonian for 'P]/2 'Z3/2
and 'P3/2 —'P3/g exChange in termS Of the COnVentiOnal tOtal
angular momentum operators, as we did for the 'SI/2 —'P1/2
interaction. However, due to the high rank of the irreducible
products that enter, e.g., [jl'l(o) Xjl'l(b) jol'l, the expressions would
be long and not very informative.

6v Moriya considered the case where the crystal Geld was much
greater than the exchange and spin-orbit interactions. He found,
by using second-order perturbation theory, that the first aniso-
tropic exchange term is antisymmetric. Our results are an exten-
sion of his calculations to cases where spin-orbit coupling is large
compared to the exchange interaction and crystal Geld. See T.
Moriya, Phys. Rev. Letters 4, 228 (1960); Phys. Rev. 120, 91
(two).

6s Two-center exchange interactions are described by a mini-
mum number of coefBcients. As soon as we consider superexchange,
the number of coeKcients increases; however, the number is still
considerably less than the total number of exchange constants, Eq.
(28).

nonzero. Of the remaining 19, only 7 are different. 's

From the definition of the exchange constants Eq. (23),
and from the complex conjugation properties of the co-
efficients I' and the triple product Kqs. (20), we verify
that the J(m 'mb', m, mb) are real for e,b=o' as long as
we consider orbital states within a manifold of definite
angular momentum, i.e., 1 '= 1 .~

When the exchange interaction between magnetic
ions in a solid is direct, we can apply the above formulas.
However, most exchange interactions between magnetic
ions in insulators are not direct, but take place through
the intervening nominally nonmagnetic ions. Our deri-
vation does not apply to these multicenter exchange,
or superexchange, interactions. Nonetheless, we know
the form of the Hamiltonian for the most general super-
exchange interaction just from considering the spatial
and time symmetry requirements of this interaction. ~"
Provided that we consider only single pair interchanges
between ions, 4' the form of the anisotropic super-
exchange Hamiltonian is identical to the operators Eqs.
(15') and (17') for direct two-center exchange. r' The
difference is that for superexchange interactions we
consider coeKcients like

and

I' ibi(ktks, n, 'I,'rbb'4', n, l,eblb)

I'„il (ktks, rtrs)

as empirical parameters, whereas for two-center ex-
change we can evaluate them in terms of radial integrals
by using the definitions of I' ill and I'b, b,b I see Eqs. (15),
(15'), and (18')].The properties of these parameters for
superexchange are readily derived from those already
determined for the coeKcients ll„~,g by using the
definition of I'„ill,Eq. (15').For example, if we consider
matrix elements only for l '= 1, the complex conjugate
of the parameters follows from Eq. (20b) and the phase
convention of Fano and Racah for the spherical har-
monics 's and we 6.n

(48)

X(~.'~b'II.u" (I)&«'*(2)j-' I~.~b)*. (49)

"We arrive at the number 19, which is the maximum number
of parameters for axial exchange for p electrons, by placing
l =l =1 in Eq. (27). This is the number we obtain when there
are no restrictions on the ranks kI, k2 and A., other than those given
by Eq. (S9).

7'For O, f, &0', the spherical harmonics introduce a complex
phase factor into the expression for the exchange constants; see
Eq. (23}.

~' The superexchange interaction as represented in the form Eq.
(15"), is essentially the same as the expression given by R. J.
Elliott and M. F. Thorpe (see Ref. 11).

Also, the relation between the parameters I' &~' and
J(m, 'mb', m mb) is found from Eq. (26);

I' ib'(ktks, e,'I, 'eb'lb', e,l,l bib)

=
I k,%kent Z J(m.'mb', m.m,)
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Although our formalism does not provide explicit
expressions of the coeflicients I" &~t for superexchange
interactions, it does tell us how many independent pa-
rameters are needed to describe fully the interaction,
i.e., the number of different coefficients I' t»(kreis). In
general, when the angular momentum of each magnetic
ion changes, i.e., l '/l, and when we do not consider
any restrictions on the spatial quantum number m due
to symmetry about the pair axis, the number of param-
eters is

This equals the total number of exchange constants J.
Therefore, when no symmetry exists about the axis con-
necting the two magnetic ions, we have the maximum
number of independent parameters for the super-
exchange interaction. Usually some symmetry does exist
about the pair axis, some values of ns are not allowed,
and the number of independent parameters is reduced.

When we confine the angular momentum states of
each ion to one 3 manifold, so that l '= 1, the sum of the
ranks k~ and k2 must be even. If we do not consider any
further restrictions on the spatial quantum number m,
the number of independent parameters is

N(l, ls)= g P 1 Ist+ks even——
kgk2A ae

=2I&(I&+1)LI&j'+ s (D&j+LI&j)D&'j (51)

where I& and l& have the same meaning as in Eq. (29).
If a center of inversion exists between the two magnetic
ions, antisymmetric exchange is ruled out, " and only
even values of the rank A are possible. The number of
independent parameters for this case is

N(l, ts) = g P 1 kt+ks=even, A=even

=2I&(I&+1)(1&+1)(2«+1)+I&(I&+1)

+-s, l&(2l&'+6l&+7)+1. (52)

Again, there are fewer parameters if some symmetry
exists about the pair axis. Also, if the electrons (l,= 4)
and. the two sites are identical, we can reduce the num-

ber of parameters by noting that the following relation
exists between the coefBcients:

eters in the absence of any symmetry is 45 LEq. (51)].
If the two sites containing the p electrons are identical,
we use the above relations, Eqs. (52) and (53), to find
that there are now only 27 independent parameters.
VVhen the pair axis has C2, or higher, symmetry there
are even fewer parameters. For example, when there is
axial symmetry about the pair axis, as in two-center
exchange, only m= 0 is allowed, and there are only seven
independent parameters. For superexchange interac-
tions involving d electrons l&——l&=2; there are at most
325 parameters, Eq. (51), and at least 22."For f elec-
trons (t&=l&=3) there are at most 1225 parameters,
and at least 50.~' From these illustrations we conclude
that the necessary number of parameters to describe
fully exchange interactions between ions in solids is very
large. Nevertheless, there are situations for which one
can make further approximations to reduce the number
to as few as one. We will consider this in greater detail
in a future paper.

We can say, in summing up, that contrary to the
common assumption of isotropy, all forms of anisotropy
are present in two-center exchange interactions; anti-
symmetric exchange occurs as well as the more common
symmetric exchange. The degrees of the anisotropies are
limited only by the angular momenta of the magnetic
electrons. Besides the Dzyaloshinsky-Moriya term
S,)&Ss(Ql'1(a)&(3i"(b)7 "l), higher-degree antisym-
metric exchange interactions are also present. For ions
with strong spin-orbit coupling, anisotropic exchange
does not enter as a perturbation, and the symmetric and
antisymmetric anisotropies are of the same magnitude
as the isotropic component of the interaction. The
number of independent parameters needed. to describe
these exchange interactions is prohibitively large; ap-
proximations must be made which drastically reduce
the number to be commensurate with the available
empirical data. The coefficients for interactions involv-

ing any number of equivalent electrons are related to
those for two-electrons, so that no new parameters are
needed. Although anisotropic superexchange was not
considered in detail, we have been able to predict both
the forms of the anisotropy present in these interactions,
and also the number of independent parameters needed
in the Hamiltonian to represent the interaction. Appli-
cations which illustrate the usefulness of these results
will be made in subsequent papers.

This relation is found by using arguments similar to
those used to arrive at Eq. (22).

For superexchange interactions involving two p elec-
trons l&=l&=1, the number of independent param-

's I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958); T.
Moriya, see Ref. 67.
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r' This number is arrived at by using Eq. (29) and the relation
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