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A Mossbauer source that executes ultrasonic vibrations with decaying amplitudes has a center-line fraction
that increases with time; the center line of the emitted radiation can be even narrower than half the natural
width. The nth band fraction has its maximum when k%(x?)=~#?;sidebands can be either narrowed
or widened ; narrowing can take place with large initial amplitudes that decrease or small initial amplitudes
that increase. Random fluctuations in ultrasonic amplitudes might explain the narrow side bands in Cran-
shaw and Reivari’s ultrasonic experiment as a superposition of widened and narrowed lines.

1. INTRODUCTION

T was theoretically established by Nussbaum and
Dash! that the simultanous decay of the state of
excitation of a localized lattice vibration mode and of
the Mossbauer nucleus narrows the Mossbauer line
beyond its natural width. They showed that such
narrowing can take place in an extremely short-lived
Méssbauer source that did not reach thermal equilib-
rium. Harris? performed a quantum-mechanical deriva-
tion of this nonequilibrium situation and established a
line narrowing of 369, under the most favorable
conditions.

In this paper, line narrowing caused by ultrasonic
vibrations with decaying amplitudes will be analyzed.
This narrowing can be regarded as an ultrasonic analog
of the cooling source, where the amplitude of a localized
lattice vibration mode decays. The important advan-
tages are as follows: (a) The simplicity of the conditions
enables the consideration of all higher-order terms. (b)
Not only the center line but all sidebands can be
analyzed. (c) Line narrowing caused by ultrasonic
vibrations with decaying amplitudes might be experi-
mentally verified.

An important distinction is the low frequency of the
ultrasonic vibrations, compared to the high frequencies
of localized lattice vibration modes in the cooling source.
Very many small quanta of ultrasonic energy have to
be added coherently; a classical description is as natural
to the problem as a coherent quantum-mechanical one.
During the average Mdssbauer nuclear excited-state
lifetime, the ultrasonic mode is lowered by very many
quanta. Restrictions on line narrowing established by
Harris? for the lowering of the localized lattice vibration
mode by one quantum do not apply to the ultrasonic
analog. Line narrowing of more than 509, with a line
depth of the order of 19, is in the realm of possibility.

This percentage of line narrowing applies to the
spectral distribution of the radiation leaving the source
but not to the observable, which is the radiation trans-
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mitted through the absorber. In most Méssbauer studies
the distinction is of small importance because usually a
thin absorber only increases the linewidth from I's to
I's+TI'4 without changing the line shape. Here the sub-
scripts .S and 4 mean source and absorber, respectively.

In the presence of ultrasonic vibrations with decaying
amplitudes the fraction of the radiation belonging to the
nth band, f.(¢), is time-dependent; if f,(f) increases
during the average Mossbauer nuclear excited-state
lifetime the line is narrowed; if f.(¢) decreases the line
is widened. The presence of the absorber does not
influence the time dependence of f,(f) but changes the
time interval that has to be analyzed; in cases where
the slope of f.(f) changes sign during the average
Moéssbauer nuclear excited-state lifetime it is possible
that the linewidth at half-height of the radiation leaving
the source, I's(eff) >T's, but that the linewidth of the
observable, I'(eff) <T's+T' 4. Tops of such lines are much
wider but wings narrower than the Lorentzian shape.

2. REVIEW OF ULTRASONIC
MOSSBAUER STUDIES

In 1960, Ruby and Bolef® experimentally established
the presence of sidebands at the Doppler-shifted fre-
quencies Qg—#nw from an ultrasonically vibrating Méss-
bauer source. Here Qg and w are Méssbauer vy-ray and
ultrasonic frequencies, and # can be any positive or
negative integer or zero. Their source was thin with
respect to the wavelength of the ultrasonic vibrations;
therefore, they assumed c.m. motion but only negligible
deformation of their source and derived their bands by
assuming all Mdssbauer nuclei in the source vibrate
with the same ultrasonic amplitude, a¢. Ruby and
Bolef’s nth-band fractions are

n{RB} < J,2(m), m=Kk-a. (1

Here J ,(m) is a Bessel function of the first kind. The
wave propagation vector k was parallel to the ampli-
tude a in Ruby and Bolef’s experiment. The fractions
are oscillatory functions of both # and #; for instance,

the center-line fractions approach zero when m ap-
proaches the values 2.4, 5.5, 8.6, - -.

3S. L. Ruby and D. I. Bolef, Phys. Rev. Letters 5, 5 (1960).
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Also in 1960, Abragam* derived quantum-mechani-
cally the n#th band fractions for a source that is not thin
with respect to the wavelength of the ultrasonic vibra-
tions; he assumed an abnormally large number com-
pared to equilibrium values of ultrasonic phonons
present. Abragam’s nth band fractions are

fo{AY=eL(y), y=k ). )

Here (x?) is the projection of the mean-square dis-
placement of the Mdssbauer nucleus in the direction of
the v beam, and I.(y)=I_,(y)=(—9)"J.(iy) is a
hyperbolic Bessel function.

In 1964, Abragam?® showed that his Eq. (2) can also
be derived classically from Ruby and Bolef’s Eq. (1)
by assuming a Rayleigh distribution

P1(a)=(a/(+*)) exp(—30*/(+*)) ©)

of amplitudes of ultrasonic vibrations.

In 1967, Cranshaw and Reivari® analyzed the side-
bands of an ultrasonically vibrating absorber that was
not thin. They state that in such an absorber c.m.
motion is negligible but that standing and running
waves are set up which are reflected back and forth in
various directions. Their data, reproduced in Fig. 1,
show an excellent fit to Abragam’s predicted intensities.

In 1968, Mishory and Bolef” derived quantum-
mechanically the intensities of the bands for the cases
in which the ultrasonic relaxation time is very short
and very long. Their rigorous calculations reduce to
Abragam’s Eq. (2) in the former, and Ruby and Bolef’s
Eq. (1) in the latter case, after they show that quantum
effects are negligible. Experimentally they were able to
verify Abragam’s equation with the help of an ultra-
sonically vibrating source that was thick with respect to
the thickness of the ultrasonic transducer. Their data
is reproduced in Fig. 2.

An important feature of their experiment is the
correlation of the line depth of the center line with the
ultrasonic driving voltage; they were able to prove
excellent linearity. Very interesting is their theoretical
explanation and experimental verification of the reduc-
tion of the self-absorption of their source in the presence
of high-amplitude ultrasonic vibrations.

3. ULTRASONIC VIBRATIONS WITH
DECAYING AMPLITUDES

Assume an ultrasonically vibrating source that is not
thin with respect to the wavelength of the ultrasonic
vibrations and whose Co® nuclei are electroplated on a
very thin top layer. It is weak enough that coincidence
measurements between the 123-keV photon that

4 A. A. Abragam, Compt. Rend. 250, 4334 (1960).

5 A. A. Abragam, L’Effet M 6ssbauer (Gordon and Breach Science
Publishers, Inc., New York, 1964).

6 T. E. Cranshaw and P. Reivari, Proc. Phys. Soc. (London)
90, 1059 (1967).

7J. Mishory and D. I. Bolef, Méssbauer Effect Methodology,
c‘e;iiltei by I. J. Gruverman (Plenum Press, Inc., New York, 1968),
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F16. 1. Cranshaw and Reivari’s data. Sideband spectra for an
absorber vibrating at the ultrasonic frequency of 16 MHz; the
driving voltage across the ultrasonic transducer is (a) V=0.0 V,
(b) V=0.4V, (c) V=30.0 V. In Fig. 1(c) the velocity scale has
been contracted by a factor of 2.5.

announces the formation of the Fe® excited state and
the 14.4-keV photon that proves its decay can be per-
formed. If the 123-keV photon is used to remove the
driving voltage from the ultrasonic transducer and
simultaneously to start the recording of the multi-
channel analyzer, the effect of ultrasonic vibrations
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Fi1G. 2. Mishory and Bolef’s data. Sideband spectra for a source
vibrating at the ultrasonic frequency of 25 MHz; the driving volt-
age across the ultrasonic transduceris (a) V=0.0V, (b) V=0.5V,
() V=10V, (d) V=15V.

with decaying amplitudes can be observed. While the
analyzer is not recording, the ultrasonic vibrations are
allowed to build up to their initial steady state and the
procedure can be repeated.

Coincidence measurements of the 123- and 14.4-keV
photons were sucessfully performed by Lynch, Holland,
and Hamermesh® and also by Wu, Lee, Benczer-Koller,
and Simms.? The observation of the small center-line
and sideband fractions by coincidence measurements
would require a prohibitively long time; the described
conditions should be regarded as a thought experiment.

A. Relative Intensities of Bands Emitted
from the Source

The same thought experiment can also be visualized
classically.
During the lifetime of the Méssbauer nuclear excited

8 F, J. Lynch, R. E. Holland, and M. Hamermesh, Phys. Rev.
120, 513 (1960).

9C. S. Wy, Y. K. Lee, N. Benczer-Koller, and P. C. Simms,
Phys. Rev. Letters 5, 432 (1960).
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state, the nucleus vibrates with ultrasonic frequency w
and decaying amplitude; the time-dependent projection
of the amplitude in the direction of the y beam is
a=aoe~ "2, The retarded electric field incident on the
absorber is

Er*(t)=Re(exp{iQs[t—ro/c— (ao/c)e 72
Xsin(wt+¢) 1—3Tst})  (4)
= T5t23 ], (ka) cos[ (Qs—nw)i—np—FEro].

A standard Bessel-function identity was used to
prove mathematically that the damped sinusoidal
motion of the source splits the electric field into infi-
nitely many bands of frequency Qs—#nw; the relative
weight of the bands is time-dependent.

The superscript ¢ denotes the fact that the electric
field was evaluated for one amplitude, a, only. The
electric energy Wy incident on the absorber is pro-
portional to the time integral of the square of the
electric field, after proper averaging over a and ¢ was
performed.

27
W= S WS n W o S S / 6P ($)
0

X / daoP (ao) / AtJ o (kage=74?)
0 0

X T o (Raoe™742)e~T'st cos[ (Qs—n'w)t—n'p—kr ]

Xcos[ (Qs—n""w)—n""¢p—krg]. (5)

For the diagonal terms n'=n"'. The square of the
cosine results in 1 plus a rapidly oscillatory term. Phase
angles ¢ are random ; therefore, P(¢)= (2r)~L. Integra-
tion over ¢ reduces to unity for the diagonal terms.

The distribution in amplitudes, P(ao), will be dis-
cussed for two limiting cases: (a) The ultrasonic lattice
vibrational mode cannot readily exchange energy with
thermal vibrational modes. The result is Carruthers and
Nieto’s! Poisson distribution of eigenstates, which for
large enough amplitudes implies a distribution P(aq)
which is so strongly peaked that it can be approximated
by a Dirac é function. Ruby and Bolef’s® Eq. (1) results
in the limit ¥ — 0. (b) The ultrasonic mode readily
exchanges energy with thermal modes. Here the result
is Abragam’s® Rayleigh distribution for P(aq).

Only case (b) will be used. The integral over a, has
a form evaluated in Ref. 11 as follows:

./ w daoao(a?)o™ exp[ —3ac(x?) 1 n? (kaoe™7!/%)
0 = exp(— EXa2)) ]2 ((x2)),

(#%)=(a")oe™".

Both a¢ and (x%), are evaluated at time {=0. Integra-

(6)

where

10 P, Carruthers and N. M. Nieto, Am. J. Phys. 33, 537 (1965).
U N. Watson, Bessel Functions (Cambridge University Press,
New York, 1962), p. 395,
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tion over ao expresses an average over all Mdossbauer
nuclei in the source. Cancellations of the exponentials
2 allowed the replacement of ¢ by ao and (x?) by
(x%)o in most terms of the left-hand side of Eq. (6); its
right-hand side reduces to Abragam’s Eq. (2) in the
limit v — 0.

For cross terms n's%n'. The square of the cosine in
Eq. (5) can be expanded into terms that have sing or
cos¢ as multiplicative factors; integration over ¢
results in zero. Cross terms are identically zero because
there is no coherent phase relationship between the
Mossbauer v emission and the ultrasonic vibrations.

Time integration of the diagonal terms can be per-
formed after the negative exponential and hyperbolic
Bessel functions are expanded into their Taylor series.

Wi=X nWite %Zn/ difa(t)eTst
0

. © (—30)Y (Gyo) t20 )
- 2Z"(:‘éo =7 U (n+0) [ Ts+ C+nt+20)y ]/

where
fa()=exp(—yoe ) (y0e7) and yo=k*a*)o. (8)

This result is exact, and the series is absolutely
convergent; but for large values of yo it converges
very slowly.

Evaluation of the double sum in / and ¥ for each
individual value # establishes the areas under the bands.
Equation (7) furnishes no information on line shapes,
but their general behavior can be estimated from the
plots of f.(f) against time illustrated in Fig. 3.

The behavior of f,(#) can be estimated from the large
and small argument expansions of the hyperbolic
Bessel functions.

fn(t)= (2mwyo)~1 12412 provided y>>n? when n%0,
and y>1
fa@®=(yo/2)*(nl)y et provided y<K1.

(9a)
(9b)

when =0,

In Egs. (9), fa(f) changes exponentially with time; if
Egs. (9) are satisfied in the interval of integration before
the exponential e~Tst has reduced the integrand to a
negligible quantity, the exponentials e?*/2 and e "¢
establish the effective linewidths I's(eff)=Ts—3%v and
I's+mny for Egs. (9), respectively. The line shapes are
nearly Lorentzian if Egs. (9) are good approximations.

For medium values of y there are no simple expansions
but the behavior of f,(f) can be approximated to the
damped sinusoidal

fn ()= b sin(Bi46)e—,

If Eq. (10) is satisfied during the main interval of
integration, the widening of the top and narrowing of
the wings of the line is very pronounced.

provided y=#?. (10)
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F16. 3. Fractional depth of f,(¢). The depth of center-line and
sideband fractions is plotted against time on a regular and y on a
logarithmic scale. (a) is fo(¢) illustrated by the dashed and f1(?)
by the dash-dot line; (b) shows f2(¢) to fo(£). The number of dots
expresses the number of the band illustrated.

B. Line Shape of Radiation Leaving Source

Exact line-shape derivations can be performed by a
double Fourier transformation of the electric field prior
to the integration over the Rayleigh distribution of
amplitudes

Epe (t) = (2#)”1/2/

—0

00

dQe e (Q) (11)

where E;%(¢)=0 for times ¢<0; therefore, Er*(Q) must
be analytic over the bottom half of the complex plane if
Q>0.

/0 " U Ere ()= / " UEe ()T

—c0

— ) / / /_ IR O e @) Epe(@) . (12)

Time integration results in a Dirac delta function for
Q'= —Q. The right-hand side of Eq. (12) is real, and
therefore the left must be real also; this can be generally
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true only if this Er*(Q)=E~*(— ).

Wlm/ quft P((b)fw d(loP(ao)/w dﬂ]E[a(Q)lz

%fmme-m>

The last step in Eq. (13) is the definition of Er(Q).
Integrations over ao and ¢ can be performed after £;4(Q)
is evaluated by an inverse Fourier transformation.

(l(loP (do)

0

W'1=Zn/ dQW (Q) [e< (27!')—1
X// dQdt'dt” e =) Ere () Ere(¢)

=3 nQr)| 49 / / arat’ f.(¢',t'")
) 0
XexpliQ»(('—¢")—30s('+¢")], (14)
where

Jalt "= expl—hyu(e o]
XIn(poe @ +e012)  (15)
and
Qr=0— (Qs—nw).

Integration over ¢ reduces to unity. Integration over
ao is still possible by an amendment of Eq. (6). The
lower limit of the time integration was changed to zero,
because Er%(#)=0 when ¢<0. The double time integra-
tion can be performed after f,(#,t”") is expanded into a
triple infinite series and the changes of variables
T=4t41t" and t=1'—1¢" performed. The result is

W (Q) [ed Z Cn,y,L0, 0"
T+ (1" +n+20)y
{ Lot @ bnt 2y (16)
(304 (U +Hin+Dy I+ @)
where
chcyyl.l' R
© © @ © (l (V41 "+atol)

£ £ £ omn Tt

1=0 1'=0 1=

VN (1)

Equation (16) was solved on the General Electric
time sharing service computer by the reduction of a
three-dimensional matrix to a series in r=141".

Wi (@) <37 gy L[ Ts+ (2r+n)y]
{i[Ts+ @r+n)y P+ @2 (16)

Each factor g, ,,, is an alternating series in yo; the
resultants have alternating signs. Equation (16”) ex-
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presses a superposition of Lorentzian lines of increasing
width. If yo<1 the first term (r=0) is the dominant
one; a wider line with less area has to be subtracted;
the result is line narrowing mainly at the wings; this
narrowing combined with a departure from the Lorent-
zian shape becomes more pronounced with increasing
¥, until the character of the line approaches the
Gaussian.

For values of yo >1, the first term in Eq. (16") is not
numerically largest; line narrowing beyond the natural
width T's is also possible for the sidebands if y, is
substantially larger than #2

This information can be read from the plots of f.(¢)
against time in Fig. 3. The maxima occur at a value of
v that is of the same order but slightly larger than 72
In case f.({) increases during the main interval of
integration the line is narrowed beyond the natural
width.

C. Effect of Absorber

Each monochromatic component of the electric field
is capable of exciting resonant electric vibrations in the
absorber if the Doppler-modulated natural frequency
of the absorber, Q4, is approximately equal to the
incident frequency @; small changes in the relative
velocity between the source and absorber successively
bring the sidebands into resonance.

A good explanation of resonant absorption with the
help of the imaginary part of the dielectric constant e
is given, for instance, by Stratton?:

e~ eo{ 14 B[ (R—Q42) 40T, T}
~eo{ 14+-B[20(Q—Q+3iT) T}, (18)

Here b is a parameter proportional to the number of
atoms per unit volume capable of resonant absorption
and the fraction of the incoming v beam that they can
absorb resonantly. For the ultrasonically vibrating
source, this fraction is the Mossbauer fraction f4 for
the temperature of the absorber; for the ultrasonically
vibrating absorber, fs4 has to be replaced by f.(f);
therefore, the factor & becomes time-dependent also.

By straightforward application of Maxwell’s equa-
tions, it is possible to show that the complex dielectric
constant introduces an imagninary part to the wave
propagation vector &; in the vacuum £ is purely real and
has the magnitude Q(uoeo)!/2=%0/c, but in the medium,

k= (Quediou)2=Q/c
+o(Q—QF3T )AL Q—Qu)2+H3T 2. (19)

The sign ambiguity is present because Eq. (19) applies
both to resonant absorption and stimulated emission;
a negative real part of 7k« describes absorption.

The factor b can be identified in terms of Margulis and
Ehrman’s® normalized absorber thickness 7'4, which

12T A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Co., New York, 1941), p. 321.

13 S, Margulis and J. R. Ehrman, Nucl. Instr. Methods 12,
131 (1961).
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should not exceed 20.
TAEbD/PACEBfA. (20)

Méssbauer frequencies are of the order of 10% sec™;
at such high frequencies b<XQuT'4 if T4<20; at high
frequencies, p— 1 and o— 0. Equation (18) was
inserted into Eq. (19), and only the two leading terms
in the binominal expansion were carried. After passage
through an absorber of thickness D, each monochro-
matic component of the electric energy is reduced to

| Er(Q) |2=|e*PE;(Q) |2
= exp(— bl 4aD{4c[ (Q—Q4)*+1T42]}7)
X|Eq@)[2. (21)

The observable is the reduction in transmitted energy
caused by resonant absorption. In the absence of reso-
nance, the absorber is nearly transparent to Mdssbauer
radiation. Absorption processes other than Mossbauer
are insensitive to small changes in relative velocity;
therefore, their contribution can be expressed by a
multiplicative constant.

To simplify notation, contributions of neighboring
bands will be omitted; they can easily be added later.
The observable is

00

W (@)~ W @) = (2r) f a0|Er (@)

—

X (1—exp{—BfaTa[4(@Q—Q4)*+T2]7}),
~iTaBfa2 r gy, [ T+ (2r+n)y]

X{E[T+ Qrtn)y P+ Q)3 (22)

LINE IN PRESENCE OF VIBRATIONS

499

where
FErs+FA, Qpr=Q4— (Qs—%w). (23)

Equation (22) was derived by an expansion of the
resonant exponential into its Taylor series carrying only
the term linear in B, ; this is the thin absorber approxi-
mation. Contour integration can be performed around a
pole of order unity, if the electric energy is Fourier
transformed into the double-time integral equation (14).

4. QUANTITATIVE EVALUATION

A. Comparison of Incident and Transmitted Line Shapes

At first sight it seems that Egs. (22) and (16’) are
equivalent except for the replacement of I's by I and a
multiplicative constant; this would indicate that the
passage through the absorber only increases the line-
width by I'y without changing the shape. In reality
the weight of the different terms in the series expansion
in 7 is changed because in both equations gn,,,» has a
function of I's not T in the denominator.

Examination of the plots of f.(f) shows that for
values of yo>#? it is possible that the main interval of
integration has to be extended far enough beyond the
maximum of f,(f) to cause line widening of the radiation
leaving the source. In the evaluation of the line shape
of the transmitted energy the damping factor is in-
creased from I's to I's+T4; the integrand might be
very small when the maximum of f,(¢) is reached. The
result is a line with width at half-height that is greater
than I'g for the incident, but smaller than T' for the
transmitted, radiation.

Table I shows the comparison of the incident and
transmitted line shapes for #=1, y=T's, and various

TasLE I. Data for the first sideband at various values of . Different linewidths evaluated for each datum show the departure from
the Lorentzian shape. I's(rel) =T'g(eff)/T's; I'(rel) =T'(eff) /T. In the lower half of the table the observable line depth is expressed in

units of $Bf1(¢=0).

%0=0.5 =10 ¥o=1.5 $0=2.0 ¥9=2.5

ot depth  T'sg(rel) depth  T'g(rel) depth  I'g(rel) depth  T'g(rel) depth TI'g(rel)
0.00 0.2481 0.2872 0.2584 0.2142 0.1724

0.20 0.2432 1.38 0.2807 1.32 0.2519 1.26 0.2084 1.19 0.1674 1.16
0.40 0.2293 1.38 0.2627 1.31 0.2341 1.25 0.1923 1.18 0.1535 1.14
0.60 0.2092 1.38 0.2368 1.30 0.2084 1.23 0.1693 1.16 0.1338 1.12
0.80 0.1860 1.38 0.2071 1.28 0.1794 1.20 0.1434 1.13 0.1118 1.08
1.00 0.1623 1.37 0.1772 1.26 0.1505 1.18 0.1180 1.10 0.0903 1.05
1.20 0.1400 1.37 0.1495 1.24 0.1241 1.16 0.0951 1.07 0.0712 1.01
1.40 0.1201 1.36 0.1252 1.22 0.1013 1.13 0.0757 1.04 0.0553 0.96
1.60 0.1028 1.35 0.1046 1.21 0.0824 1.11 0.0599 1.00 0.0425 0.91
1.80 0.0881 1.34 0.0875 1.19 0.0670 1.07 0.0473 0.96 0.0325 0.87
2.00 0.0758 1.33 0.0734 1.17 0.0547 1.04 0.0374  0.92 0.0249 0.82
Qpt depth  T'(rel) depth  I'(rel) depth  T'(rel) depth  TI'(rel) depth  T'(rel)
0.00 0.1427 0.1585 0.1373 0.1100 0.0860

0.20 0.1386 1.17 0.1535 1.13 0.1325 1.05 0.1058 1.00 0.0825 0.98
0.40 0.1277 1.17 0.1400 1.11 0.1197 1.04 0.0948  0.99 0.0733 0.97
0.60 0.1128 1.16 0.1218 1.09 0.1026 1.03 0.0801 0.98 0.0612 0.95
0.80 0.0967 1.16 0.1025 1.08 0.0848 1.02 0.0651 0.96 0.0490 0.93
1.00 0.0815 1.15 0.0847 1.07 0.0687 1.00 0.0517 0.94 0.0382 0.90
1.20 0.0682 1.15 0.0695 1.06 0.0552 0.98 0.0407 0.92 0.0296  0.87
1.40 0.0570 1.15 0.0570 1.05 0.0444  0.97 0.0322 0.90 0.0230 0.85
1.60 0.0479 1.14 0.0470 1.04 0.0360 0.95 0.0256  0.88 0.0180 0.83
1.80 0.0405 1.14 0.0391 1.03 0.0294  0.94 0.0207  0.87 0.0144 0381
2.00 0.0345 1.13 0.0328 1.02 0.0244 093 0.0169 0.85 0.0116  0.80
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values of yo in the vicinity of #2. For each value of yq,
the left-hand column contains machine-calculated data,
and the right-hand column contains an evaluation of
the departure from the Lorentzian shape. For each
individual datum the width of a Lorentzian line to
which it would belong was derived; it is the ratio of
this effective width to I's or T' that is tabulated. This
unusual description of the line shape shows the widening
of tops and narrowing of wings of lines more clearly
than standard methods.

For the transmitted radiation the linewidth at half-
height is ' when yo=1.5 and smaller than T' for y,=2,
2.5. The incident radiation has linewidths at half-height
that exceed I's for all tabulated cases, but narrowing
of the wings is very dominant for the larger values of y,.

B. Optimum Line Narrowing of Center Line

At first sight it seems possible that v can approach
2T'g; the linewidth of the radiation leaving the source
seems to approach zero.

This result is fallacious because it was derived using
only the leading term in the large argument expansion
of the hyperbolic Bessel function, Eq. (9a). The approxi-
mation is only valid provided the inequality y>>% is
reasonably well satisfied in the entire interval of integra-
tion; this is impossible when v approaches 2I's because
the integrand remains nearly constant until y ap-
proaches #2.

Cranshaw and Reivari used y of the order of S0 in
their steady-state experiment and were able to observe
center-line fractions of slightly over 19, at these high
ultrasonic amplitudes. It is therefore realistic to assume
¥o of the order of 50 and choose y=1.2T'g; only first-
order corrections that widen the top of the line are
necessary. A linewidth of 0.4T's with a line depth of the
order of 1% is in the realm of possibility for the radia-
tion leaving the source.

It would be fallacious to simply double the damping
factor and reach the optimistic conclusion that the
observable can be 0.4T'. The derivation of the effect of
the absorber on the radiation leaving the source,
established in the previous paragraph, would result in
the pessimistic value of 0.7T for the observable.

More careful considerations of the optimum condi-
tions for the line shape of the radiation that passed
through the absorber results in a possible linewidth of
about 0.55T' without excessive widening of the top of
the line.

5. DISCUSSION OF EXPERIMENTAL DATA

In this section the data from Cranshaw and Reivari’s”
and Mishory and Bolef’s® experiments will be compared.

A very interesting feature in Cranshaw and Reivari’s

data is the sag in the background combined with near
sidebands that are not wider than the center line.
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A. Mishory and Bolef’s Data

The width of the center line slightly decreases with
increasing ultrasonic amplitude; sidebands are pro-
gressively widened with increasing #; this progressive
widening is more pronounced for the higher than lower
amplitudes of ultrasonic vibrations.

Mishory and Bolef reported a line depth of the center
line which is slightly above their expected value for
high-amplitude ultrasonic vibrations; they explained it
by a reduction of the self-absorption of the source in
the presence of ultrasonic vibrations. Self-absorption
also widens the Mossbauer line; therefore, the line
narrowing of the center line is explainable by a reduction
in self-absorption.

A possible explanation of the widening of the side-
bands is a statistical distribution over a range Aw of
ultrasonic frequencies. The contribution of one M&ss-
bauer event to the nth sideband is at a distance
n(w=Aw) from the center line. This widens the nth
sideband to I'+2#Aw. Mishory and Bolef’s data would
indicate that Aw is larger for high-amplitude ultrasonic
vibrations, which is an expected result.

Mishory and Bolef did not investigate the linewidth
of sidebands in detail; other explanations, besides the
one given in the previous paragraph, might be possible.

B. Cranshaw and Reivari’s Data

In the absence of ultrasonic vibrations, Cranshaw
and Reivari’s center linewidth is approximately 3T, but
in the presence of their high amplitude vibrations it is
narrower. The near sidebands are not wider than the
center line.

In the presence of high-amplitude ultrasonic vibra-
tions Margulis and Ehrman’s®® effective absorber thick-
ness is drastically reduced ; a reduction in line widening
results which exceeds the narrowing effect of Mishory
and Bolef’s reduction of self-absorption in the vibrating
source. Reduction in effective absorber thickness can
explain narrow center lines, but not the fact that center
line and sidebands have the same width. Cranshaw and
Reivari’s ultrasonic frequency of 16 MHz is lower than
Mishory and Bolef’s 25 MHz; this would indicate a
reduction in Aw. Cranshaw and Reivari’s amplitudes
are several times as large as Mishory and Bolef’s; this
would probably over compensate the reduction in Aw
caused by the lower frequency.

Cranshaw and Reivari’s Mossbauer nuclei are evenly
distributed in a layer of Perspex cement; interference
phenomena can cause increases or decreases of ultra-
sonic vibrational amplitudes during the average Moss-
bauer nuclear excited-state lifetimes. These changes in
amplitudes are as likely to cause line narrowing as
widening. The sag in Cranshaw and Reivari’s back-
ground is too deep to be only caused by the contribution
of tails of neighboring lines, but might be instrumental.
An interesting explanation might be a sag that is caused
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by widened lines that grew together; superimposed
would be the narrowed lines.

An increase in ultrasonic amplitudes during the
average Mossbauer nuclear excited-state lifetime can
cause considerable line narrowing if yo<#2 This
narrowing mechanism increases in likelihood with
increasing #, and possibly balances the widening caused
by the statistical distribution in ultrasonic frequencies
present.

Such increases or decreases in ultrasonic amplitudes
of the individual Mossbauer nuclei are much less likely
in Mishory and Bolef’s source, where the Co% nuclei
are in a very thin top layer that obeys boundary
conditions.

C. Possible Experimental Verifications of
Line Narrowing

The superposition of narrowed and widened lines can
be experimentally verified by controlled amplitude
modulation of the ultrasonic vibrations. The choice of
the envelope of the vibrational amplitudes is at the
experimentalist’s disposal. The exact shape of the
center line and sidebands can then be analyzed.

A periodic 180° phase change in the driving voltage
of the ultrasonic transducer also causes damping and
subsequent build-up of vibrational amplitudes; com-
parison of the two effects could give an indication of
damping mechanisms of ultrasonic vibrations in solids.

At first sight it seems possible to record only the time
periods in which f,,(f) increases, discarding the widened
lines. This would require time intervals in which the
multichannel analyzer is not recording. The Mssbauer
events would be evenly distributed over periods of
recording that terminate with the maximal f,(¢). A
discrimination against long-lived events at the end of
the interval of recording would take place that would
counteract the line narrowing. Machine calculations for
such intervals of recording were performed ; the interest-
ing result is an optimum condition of natural linewidth.

A net narrowing effect might not be observable in a
realistic experiment. The reason why narrowing could
still be demonstrated is that the superposition of a
widened and a narrowed Lorentzian line can not be a
Lorentzian of natural width.

6. CONCLUSIONS

The effect of ultrasonic vibrations with decaying
amplitudes has been analyzed. The main distinction
between the derivations of this paper and the ones
performed by Nussbaum and Dash! for a Mé&ssbauer
source that did not reach thermal equilibrium is the
fact that not only the center line but also sidebands can
be analyzed. Of great importance is the slow approach
of the center-line fraction to zero when the ultrasonic
vibrational amplitude increases. Cranshaw and Reivari
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were able to observe a center-line fraction of over 19, in
the presence of ultrasonic vibrational amplitudes of the
order of 1A. For such root-mean-square displacements
of thermal vibrations the Méssbauer fraction would be
an infinitesimal. The reason is the coherence of the
ultrasonic vibrations; the higher-order terms in the
series expansion of the hyperbolic Bessel functions have
the same width as the leading term; this is not the case
for localized lattice vibrational modes.

An optimum condition for line narrowing caused by
ultrasonic vibrations with decaying amplitudes can be
estimated from the length of the time interval in which
the large argument asymptotic expansion Eq. (9a) is
valid. During this interval, the ultrasonic vibrational
amplitude is reduced by several orders of magnitude. It
is not surprising that a considerably higher percentage
of line narrowing can be achieved than for a localized
lattice vibration mode with decaying amplitude in the
cooling source.

The center line is always narrowed in the presence of
ultrasonic vibrations with decaying amplitudes; the
sidebands may be narrowed or widened, depending on
the initial amplitudes. It is not legitimate to assume
that the effect of a thin absorber is a simple increase of
the linewidth by I'y without changing the line shape.
Examples are given where the linewidth of the radiation
leaving the source exceeds I's but the width of the
observable line analyzed by the absorber is less than
T's+4T4. Such lines have much wider tops but narrower
wings than the typical Lorentzian shape.

Changes in ultrasonic vibrational amplitudes might
be responsible for the lack of line widening of Cranshaw
and Reivari’s sidebands. This interesting phenomenon
could be investigated with the use of controlled vari-
ations in amplitudes.

The derivations performed in this paper might be of
value for the verification of the interesting phenomenon
of line narrowing of the Mossbauer line beyond its
natural width. These derivations are much simpler than
those performed by Harris; yet they are conceptually
similar enough to be regarded as an ultrasonic analog to
the cooling source. The thought experiment on which
the calculations are based might be as difficult to
verify as the decaying localized lattice vibrational mode
in the cooling source, but the superposition of narrowed
and widened lines which do not add up to lines of
natural width have a good chance of experimental
verification.
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