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Syin-Lattice Coefficients for Gd'+ and Eu'+ in CaF& and for Gd'+ in CaOt
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We have measured the spin-lattice coeKcients of Eu'+ and Gd'+ in CaF2 and Gd'+ in CaO by studying the
egect of uniaxial stress on the EPR spectra of these ions. The experimental data show that fourth-order
terms ln the spin-lattice Hamiltonian give significant contributions. The values of the second-order spin-
lattice coeKcients are given, and the fourth-order contribution is tentatively identiGed as due to the change
of the cubic Geld splitting with stress. From the value of the fourth-order coef5cient, we conclude that at
least half of the temperature dependence of the cubic field parameter is due to the eGect of the lattice
expansion.

I. INTRODUCTION

' "N his classical papers Van Vleck" assumed that the
~ - interaction which produces the relaxation in mag-
netically dilute paramagnetic ions in crystals is purely
electric and comes from the modulation of the crystal-
line electric held at the position of the impurity due to
the thermal vibrations of the lattice. This idea has been
successful in explaining the experimental data on
re1axation times. In these calculations it is necessary to
estimate the interaction between the paramagnetic ion
.and the electric held. gradients produced by the deforma-
tion of the lattice. The strength of this interaction is
given by the so-cal1ed spin-lattice coe%cients. The
knowledge of these coeKcients enables one not only to
predict spin-lattice relaxation times but also contributes
to the understand. ing of the nature of the interaction
between the ion and the lattice. '

The 6rst experiments ' to measure directly the value
of the spin-, lattice coefficients were done by two different
experimental methods. One is the measurement of the
shift of the energy levels in a crystal under uniaxial
stress by observing the shifts of the KPR (electron
paramagnetic resonance) lines. e' The other uses ultra-
sonic techniques and gives the values of the coefficients
from measurements of the interaction of phonons with
the paramagnetic ion."

In the present work we study the behavior of rare-
earth S-state iona in a cubic environment under de-
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formations of the lattice, using the uniaxial-stress
method. Previous work on these ions is discussed in
Sec. V. We report measurements on Eu'+ and Gd'+ in
the CaF2 lattice and of Gd'+ in CaO. The paramagnetic
ions are in an eightfold coordination of Quorines in CaF2
and in a sixfold coordination of oxygens in CaO.

In order to explain the experimental data, we use a
formalism similar to that used by Feher' for Mn'+ and
I'e'+ in MgO, A brief account of our preliminary values
was published in this notation. However, in our case
the data do not 6t a theory where only second-order
terms are considered. It is necessary, therefore, to in-
clude fourth-order terms in the spin-lattice Hamiltonian
to explain the data.

Ke de6ne spin-lattice coefficients which, in second
order, are equivalent to C~~ and C44 as de6ned in Ref. 6.
These correspond, respectively, to tetragonal and
trigonal deforrnations in the second-order Hamiltonian.
There are also three fourth-order coefficients corre-
sponding to the three deformations: completely sym-
metrical, tetragonal, and trigonal.

Our experimental data allow us to find the values of
the second-order codricients. One of the fourth-order
coeKcients gives an important contribution to the shifts
and is tentatively identi6ed as the coeKcient corre-
sponding to the completely symmetrical deformation.
The value of this coefficient is used to explain the tem-
perature dependence of the cubic 6eld splitting by
assuming that this dependence is due to the thermal
expansion of the lattice.

In Sec. II we give the formalism of the interaction up
to fourth-order terms in the Hamiltonian. Section III
gives the values of the shifts as a function of the stress
coe%cients for the cases of experimental importance
and we discuss the di6erence on the behavior of second. -
and fourth-order terms. Section IV deals with the
experimental data and gives the values of the spin-
lattice coeKcients. A discussion of the experimental
errors is included. In Sec. V we discuss our values for
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the second- and fourth-order stress coefficients. The
temperature dependence of the cubic field splitting is
also discussed.

G (t4)0 a.(&iQ,e (2)

where Qr,. are the normal deformations of the lattice
which transform like the n component of the F; repre-
sentation and are tabulated in the Appendix. Gi,.&") is
the corresponding spin-lattice coefficient. It is the pur-
pose of this work to 6nd the values of these coefficients.

It is helpful to choose the Q's to be the normal
coordinates of the system of nearest ligands in units of
the lattice parameter. In CaF2 eight fluorines surround
the impurity; of the 24 coordinates of this cube, only
nine are important in our problem; the others represent
odd symmetry modes. These nine modes transform like
I'zp+I's, +21's, in the cubic group and are given by
Leushin" and Huang and Inoue. "In addition, only six
of these modes can be changed by an external uniform
stress. Six coordinates must be considered. for B' in the
CaFs lattice and they transform like I'i,+I' s,+ I"s, . In
the Cao lattice, the normal modes of the octahedron of
oxygen also transform like I'z,+I's,+I's, in the cubic
group. Hence, the same modes contribute in both cases.

The perturbation Hamiltonian H for rare-earth ions
contain second-, fourth-, and sixth-order spin operators.
Our experimental data can be described using second-
and fourth-order terms only. Then for our experiments
where Qr„——Qr„z=Qr„"=0, the Hamiltonian H can
be written as follows:

a'= G„,«&(O,P+50,i)Q„,
+[Gr "'Os'+Gr„"'(04' —70s'))Qr„.

+[Grs '"Os'(s)+Grp "'o '($))Qr, ' (3)

M, T. Hutchings, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1964), Vol. 16.

rPA. M. Leushin, Fiz. Tverd. Tela 5, 605 (1963) english
transL: Soviet Phys. —Solid State 5, 440 (1963)g.» e. V. Huang and M. Inoue, J. Phys. Chem. Solids 25, 889
(1964).

II. FORMULATION OF THE PROBLEM

The EPR spectrum of a rare-earth 5-state impurity
ion in a slightly deformed cubic crystal is described by
the spin Hamiltonian

H= AH p S+II,„b+II',

where gpHp S is the usual Zeeman energy term. H.,b

has a form

II.pb =Bi(04'+504')+ Bs(Os' —210p'),

where the O„~ are the Stevens equivalent spin opera-
tors' and J34 and 86 are phenomenological parameters.
II' is a small perturbation produced by the deformation
of the crystal and can be written in terms of the spin
operators Oi,-e&"~ given in the Appendix as

The normal deformations of the lattice, Qr, , are ex-
pressed in terms of 1inear combinations of the com-
ponents of the strain tensor, as shown in the Appendix.
This transformation can be found in the literature but
we have changed some numerical factors in order to be
consistent with previous nomenclature in uniaxial-stress
experiments. If we assume that the local compression
equals the bulk value, the strain is related to the
external stress by the relation

eii Z sijsl+kt q

k, l

where XI,~ are the components of the stress tensor and
$;;~~ are the elastic constants of the crystal.

The perturbation given by II' is usually much smaller
than the Zeeman energy contribution to the levels. Also,
as a consequence of the microwave frequency used in
these experiments, the Zeeman energy is much larger
than the contribution of the cubic field H,„b. The wave
functions of the system can be approximated by 5,
eigenstates, where 2' is the coordinate axis along the
direction of the magnetic 6eld. The perturbation B'
must be transformed to this system and the shifts of
the EPR lines can be easily found from its diagonal
matrix elements.

III. EVALUATION OF THE SPIN-LATTICE
COEFFICIENTS FOR OUR
EXPEMMENTAL CASES

Equation (3) gives the value of the interaction for a
given deformation. In order to clarify the procedure
we used for the analysis of the experimental data, we
will specialize Eq. (3) to the cases of interest. The
transformation rules of the Stevens' operators tabulated
by Hutchings' are used in these calculations.

P denotes the external stress and Hp denotes the
external magnetic field.

Case A: Pll[001), Up[([100)

The components of the stress tensor are X33=P,
Xj.z= X22= Xi2= Xg3= X23 0; then the components of
the strain tensor are

&11 622 $12I p 633 $].].I ~
6y2= 6]3= C23

Using the definitions given in the Appendix for the
amplitude of the normal modes in terms of the strain
tensor,

Qrrp ($11+2$12)P)

Qr„——(sii—sis)P/2, and all others are zero.

Then H', referred to the cubic axis, is given by

H'= G r„«&(Os'+ 504') (sit+ 2szs)P

+[Gr„&'&Os +Gr„«l(04' —70''))(szz —szs)P/2. (5)
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Zc=Y
„t001]

Zc=)(
AE7(2~„]2=—1200Cr„(4)P—-,'Cr ("P—300Cr„"P

gp~—Hv/3~3/3 & (9c)

zllH

(0)

Jc

(b)

with ~E~fs Ms—1 ~~—~s ~s+1' The contribution of
the second-order terms to the shifts are identical to
those obtained in Ref. 6. Note that our respective
coeKcients are related, so Cr„("=C11 and Cr„"'=C4&.

The fourth-order contributions are angle-dependent in
this plane, as shown in Eq. (8).

FIG. 1. (a) Case P
~
(001) and H J L001]. (b) Case P

~) Llloj
and H J (110).In both cases, x„y„and 3, are the cubic axes and
x, y, and s the axes vrhere the perturbation introduced by the
stress is calculated.

Experimentally, it is more convenient to measure the
external stress P rather than the deformation, so spin-
lattice coefficients related to stress rather than strain
are used. The stress coeKcients, Cr,.("), are related to
the strain coeKcients, |"r,.("), by

ell= 322 sp($11+$12) p

1n612= 2Ps44)

~33= PS12,

613 623

Case 3:P[110j,Hp J t 110j

The components of the stress tensor are in this case

X11 X33=X13=P/2 ~
X13=X33=X33=0.

Then, for the strain tensor we have

Cr, , " =Gr, , "~($11+2$13),

Cr, "i=Gr, "1($11—$13),

Cp ( ) —or ( )sr5, — r&, 44
Qr„= ($11+2$is)P,

()...-= —!( .-".)p,
Qr„r= 3$44P, and all others are zero.

(6c)
(10)

Then, Eq. (5) can be written as

(4)P(O P+5O 4)+ C (2)(1P)O 0

+cr„&"(-,'P)(04' —704') . (7) The Hamiltonian (3) is in this case

(6a) and the values of the displacements of the normal
coordinates are

6b

This Hamiltonian is referred to the crystalline axes.
%e want to transform it to a system where the s axis is
in the (001) plane (and therefore perpendicular to the
direction of the stress) and parallel to the direction of
the magnetic field Lsee Fig. 1(a)j.

In this system the diagonal part of the Hamiltonian
is given as a function of 8 by

H'= Cr„&'~P(33+ ss cos40)04' ', Crp, "'PO30--
+Cr„&4&P(—,'p ——,', cos40)04'. (8)

For Hp[( L1007,

H'= Cr„&"PO4' 4Cr "'P03' —4Cr„"'P'04', —(9)

and the shifts in energy dE and in magnetic field AH
for the fine-structure lines are

AE3/3~1/3= 720C11 i P 3Cr'3 i ~p+ 180Cr3 ~ ~p

gP/'-1H3/3 1/3 ~ (9a)

H'=
C r „&4'P(040+5044)

—-', Cr "'P03'——,'Cr„"'P(04'—704')
+-', Cr &'&PO3'($)+-', Cr„'"P04'($),

where we have used (6a), (6b), (6c), and (10).
In order to transform Eq. (11) to a coordinate system

where the s axis is in the direction of the magnetic field,
we perform two successive rotations of the system.
First, we refer it to a coordinate system where s' is along
the L110j direction Lsee Fig. 1(b)J and then to the final
xys system. In x'y's', we have

H' =
C r„&'&P(——,'04'+ 504'+ (15/4) 04')

+Cr„"&P( 33304'+-14043 (2—1—/16)04')—

AZ3/3~3/3= 600Cr„P—3Cr„P+150Cr» In the system xys, the diagonal part of the Hamil-
gpAH5/3 3/2 (9b) tonian H' as a function of the angle &p is

'H= Cr&+ (P——,', —sscos23p+ 3333 cos4p)

+Cr, &"P(—113+133 cos2&p)03 +Cr, & ~P(—(15/128) —313 cos2p —(21/128) cos4rp)04

+Crp, i'&P(—sx —13 cos2y)03'+Cr„&"P(—(3/128)+3', cos2y+(7/128) cos4q)04', (12)

where Hp L001] corresponds to pal=90', Hp
~~

L111] to p=35'15', and Hp
~~ t 110) to q =0'.

For Hp L001), the Hamiltonian (12) is

O'= Cr„'P'04' —~Cr "'P02'—~Cry, "'P04'.
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TAni, z I. Spin-lattice coefficients in units of cm/dyne. The values for Eup+ and Gd'+ in CaFp were taken at 77'K
and for CaO: Gd'+ at 1.4'K. The cubic field-splitting parameters are given in units of 10 4 cm '.

b4= 6084
b6 = 126086

C11=Cr3, (')

C44= Ci, (')

(4)—4 —(5Cr (4)+Cr (4))

CaF2'.Eu'+

—57.9&0.2'
+0.5~0.2.
—1.71X10-»

—10.9X10 "
+0.10X10 "

&+0.08X10 "
&+0.20X10-»

CaF2. Gd'+

—48.4~0.3b

+0.1~0 3b
—1.80X10»
—30X10 "
+0 10X10 '~

&+O.OX 10-»
&+0.»X10- 5

CaO Gd'+

—12.28~0.01'
+1.18~0.01'
+0.66X10-»
—5.35X10»
+o.10X10 "

&+O.OX 10-»
(+05X10 "

Estimated
error

a From Ref. 14. b From Ref. 14. ' Our results.

This formula is identical to Eq. (9), and so the shifts of
the one-structure lines for this case are given by
Eqs. (9a), (9b), and (9c).
For Hp

~~
L111$ it is

H'= ', Cr„'+P—O-4P pCr "'P—OsP sCrp, "'P—04', (14)

and for Hp
~~

t110j we have

H'= ——,'Cr„("PO4' —4(—-'Cr ")+Cr "))POs'

+—,', (—5Cii(4)+Ctt(4))PO4P. (15)

When we consider the matrix elements of 02' and 04
in (8) and (12) we see the principal difference between
the second- and fourth-order contributions. Second-
order contributions shift the fine-structure lines

and +~~&~ in the ratio
3:2:i, while the fourth-order contribution produces
shifts of the same lines in the ratio 10:—5:—6. This
fact allows one to verify the presence of fourth-order
contributions by measuring the ratio of the shifts of the
diQ'erent fine-structure lines of the EPR spectra in
almost any direction of stress and magnetic field (the
exceptions are some singular directions where the
angularly-dependent part is zero).

However, from Eqs. (8), (13), (14), and (15) we see
that it is not easy to separate the diferent fourth-order
contributions unless a complete study of the variation
of the shifts with the direction of Hp is performed. Un-
fortunately, because Eu'+ and Gd'+ have very aniso-
tropic spectra in a cubic environment, a small change in
the orientation of the sample when the stress is applied
produces shifts of the positions of the EPR lines. The
magnitude of these shifts is comparable with the change
due to the fourth-order terms of the interaction and has
the same dependence on the fine-structure lines Lthe
cubic 6eld splitting is due mainly to fourth-order terms
in the spin Hamiltonian, as seen in Eq. (1)j. These
spurious fourth-order contributions are negligible when
the magnetic field is in the direction of the cubic axes.

IV. EKPERIMENTAL RESULTS

The experiments were performed with two diferent
KPR spectrometers with facilities to apply uniaxial

stress to the sample. One is at 9 GHz and was described
in Ref. 6 and the other at 35 GHz and was described
in Ref. 12. The crystals used in these experiments were
obtained from Semi Elements, Inc. In the case of the
CaF2 samples, the concentrations of the paramagnetic
fluoride were about 0.05%. In the case of the Cao
samples, Gd'+ was an unintentional impurity and its
concentration is less than 0.01%. The data were taken
at 300'K for Eu'+ in CaFs, 77'K for Gd'+ in CaFs,
and 1.3'K for Gd'+ in CaO.

The KPR spectra of Eu'~ and Gd'~ in a cubic
environment have been studied by different authors, '3 "
and the experimental values for the constants of the
spin Hamiltonian Eq. (1) are tabulated in Table I.

We observed linewidths of 5 to 15 G for the diGerent
6ne-structure transitions of Ku'+ and Gd'+ in CaF2. In
the case of Gd~ in CaO the linewidths are 0.1 G for
the central transition and less than 2 G for the other
transitions when the magnetic field IIO is parallel to the
cubic axis. The linewidths of CaO:Gd'+ reQect the
internal stresses of the sample. In the case of Gd+ and
Eu'+ in CaF2 the predominant factor is the unresolved
superhyperfine structure with the Quorines.

The samples were stressed along the L001j and L110j
directions up to about 600 kg/cm'. The most useful
data were found in a sample stressed in the L110j
direction and with the magnetic field Hp parallel to the
t 001j, L111j,and L110)directions. For each orientation
of the magnetic field the shift of the fine-structure lines
was measured as a function of stress. In the case of
Hp

~~ $110], the spectra of Gd) and Eus+ in CaFs is not
well resolved and so only a pair of transitions could be
measured. In the case of Gd'+ in CaO it was not possible
to measure the shifts for Hp

~~ L1111 because the EPR
lines overlap lines from other impurities. We found in
every case that the central fine-structure transition
(M'8= ——', ~-,') is not affected by the stress. This

"Z. Sroubek, M. Tachiki, P. H. Zimmermann, and R. Orbach,
Phys. Rev. 165, 435 (1968).

» R. Lacroix, Helv. Phys. Acta 30, 374 {1957).
'4 C. Ryter, Helv. Phys. Acta 30, 595 (1957).
» Alexander J. Shuskus, Phys. Rev. 127, 2022 (1962).
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8.97 t.85 4 40
a) g

4.40 I.85 8.97

7.70
b& Q

2.57 5.I3 5.I5 2.57 7.70

l.26

c} Q

0.75 0,65 0.65 0.75 I.26

8.96 I.82.4.48

I.I-
-7/2~ -5/2 I/2~5/2

5/2~5/2
-I/2~I/2

448 1.82 8.96

I"
-3/2~-I/2 5/2+ 7/2

-5/2~-3/2

Fro. 2. Shifts of the EPR lines of CaFa: Eu" for P II L1103 and8
I I 001) corresponding to 8=1 dyne/cm'; (a) exper™ental

shifts, (b) second-order contribution to the shift as calculated with
Craa&'&= —1./1X10 "cm/dyne, (c) fourth-order contribution to
:the shift as calculated with (Cr„&4&—-', Craa&'&)=+0. 1X10 "
cm/dyne, (d) total shift as predicted including second- and fourth-
order contributions. The shifts are given in 10 " cm ' per
dyne/cm' (or 10 "cm/dyne).

justifies Eq. (3) where only even powers of spin are
allowed in H'.

It was observed that the shifts of the fine-structure
transitions do not follow the ratio 3:2:1for the & ~ 52,

~+-+» ~~-,' lines, as expected if only second-order
contributions in (3) are important. The data were fitted
with Eqs. (9), (13), (14), and (15), wherecontributions
up to fourth order are considered. %e have found the
values of the second- and fourth-order spin-lattice
coeKcients from the shifts of two of the three non-
conjugate fine-structure transitions (conjugate transi-
tions like +Ma&-+ &3f~+1 give the same shift but in
opposite directions). The value of the shift of the third
transition with stress serves as a cross check.

Because of the anisotropy of the EPR spectra of
Eus~ and Gd+ (in a cubic environment) with the
direction of the magnetic 6eld Hs, small changes in the
orientation of the sample when the stress is applied
produce significant shifts of the lines. Only when Hp is
parallel to the cubic axis is the change of the positions
of the lines negligible for small changes in the position
of the sample in an arbitrary direction. The cubic field
splitting is mainly due to fourth-order terms in the spin
Hamiltonian (1). Hence, when the orientation of Ha is
slightly altered, the positions of the transitions —,'~-,',
—,'~-,', and —,'~2 change in the ratio 10:—5:—6. This
is a major source for the determination of fourth-order
coeKcients in directions of the magnetic field other
than Ha II [100). In order to make an estimation of the
magnitude of this eGect we calculate for Eu'+ and Gd'+
in CaF2 a shift of the one-structure transition —,'~-', of
about 5 G when the direction of the magnetic field
changes only ~ deg in the plane perpendicular to its
plane of rotation and. for Ha II L111$. This shift is larger
than that observed for the fourth-order contribution
for Hall L001j (see Fig. 1). For this reason, it was
impossible to perform a measurement of the angular
variation of the fourth-order contribution to the shift

to separate the contributions from completely sym-
metrical, tetragonal, and trigonal fourth-order spin-
lattice coeKcients. However, our experimental values
suggest that the important fourth-order contribution is
given by the completely symmetrical deformation as
discussed in Sec. VB.

Our experimental values of the spin-lattice coefficients
for Eu'+ and Gd'+ in CaF~ and for Gd'+ in CaO are
given in Table I with estimated errors. The signs of the
second-order coefficients are defined in the same way as
in Ref. 6. In order to clarify this de6nition and to give
an idea of the contribution to the shifts of second- and
fourth-order terms in II', we give in Fig. 2 the changes
of the positions of the lines as measured in our experi-
ments and compare these with calculated contributions
to the shift. They are given in units of cm/dyne (or
cm ' per dyne/cm').

V. SPIN-LATTICE COEFFICIENTS

A. Second, -Order Spin-Lattice CoeRcients

First, we compare our values for the second-order
stress coeQicients to previous work. Dobrov" has
reported measurements of G44 on CaF&.Eu'+ by the
ultrasonic technique. His value IG44I =(0.3&0.1) cm '
and our value G44=(—0.38+0.04) cm ' as obtained
from Table I using Eq. (6c) are in good agreement
within the experimental errors. This agreement shows
the independence of the spin-lattice coeKcients on the
frequency of the measurement as predicted by Van
Vleck. ' (For uniaxial static stress this frequency is zero
compared with 10&s Hz for the ultrasonic method. ) This
agreement was also found between the data for iron
group ions by the uniaxial-stress method' and the
ultrasonic method. '

Simultaneously with our preliminary report, ' data
for Eu'+ in CaF2, SrF2 and BaF& by the uniaxial-stress
method were reported by Hopson and Nolle. " In the
case of Eu~ in CaFs they found. Gii= (—0.22+0.05)
cm ' and G44= (—0.39&0.05) cm ' in good agreement
with our values: Gii=(—0.20+0.02) cm ' and G44
= (—0.38&0.04) cm '.

Data for C~~ and C44 in Gd~ in CaF2 has been ob-
tained by the uniaxial-stress method by Bowden and
Miller. " They obtain C»=(3.6&0.8)10 " cm/dyne
and Caa= (8.2&0.4)10 "cm/dyne. We have no explana-
tion for the severe disagreement in magnitude and sign
between these values and ours.

There is no available theory for rare-earth ions which
would explain our experimental C~~ and C44 in terms of
microscopical parameters. Nevertheless, the comparison
with available data for similar but obviously more
covalent iron group ions (Mn'+ and Fe'+) is of some

&a W. I. Dobrov, Phys. Rev. 134, A734 (1964).
~' J. W. Hopson and A. W. Nolle, Bull. Am. Phys. Soc. 13, 885

(&968)."C. M. Bowden and J. E. Miller, Bull. Am. Phys. Soc. 13, 243
(1968).
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interest. The values of the stress coefficients for iron
group iona increase with the valency of the ions as
predicted by the covalency model. On the other hand,
the stress parameters for the rare-earth ions remain
constant or even decrease as the valency of the cations
increases. This tendency is consistent with the electro-
static ionic-model approach, as this model predicts C~y

and C44 proportional to the mean value of some power
of the ionic radius (e.g. , (rs), (r4)). The wave functions
of ions having lower valency are more spread out,
which implies larger values for (r") and so larger values
for C~j. and C44 as obtained for the rare-earth ions.

B. Fourth-Order Spin-Lattice CoeRcients

A surprising result is found in Table I. Even if the
values of the second-order coefficients differ in magni-
tude and sign for the different cases, this difference is
not present in the value of Cr„&4'—4Cr„&4). Also, by
looking at the other two rows of Table I, where only
upper and lower limits for some linear combinations of
the fourth-order coeflicients are given, we are tempted
to suppose that we are measuring the value of Cr„~4),
i.e., it gives rise to the dominant fourth-order contribu-
tion to H' in our experiments.

If this is the case, we are then measuring the change
with the lattice parameter of the cubic Geld parameter
B4 defined in Eq. (2). From Eqs. (1) and (3)

G~ (4)—r1,
Qr, g sit+ ess+ess 3~~/~

where a is the lattice parameter, hc is its change due to
the completely symmetrical deformation, and 884 is
the change of the cubic parameter 84. From our values
of the stress coefFicients and the elastic constants of
the crystals, "we find, using Eq. (6a),

Gr„&4&= (Cr„&4&/st i+ 2sis) = 2 6X 10 ' cm-'.

There are no data available on the eGect of hydrostatic
pressure on the EPR spectra of Gd'+ and Ku'" in
crystals to compare with our values. However, there
are data for the 3d 5-state ions Mn'+ and Fe3+. alsh&0

has studied the pressure dependence of the cubic field

parameter in MgO up to 10' kg/cm'. For the highest
pressure applied, he found a change of the cubic Geld

parameter84of 0.68X10 'cm 'for Mn+ and 7.3X10—'
cm—' for Fe'+. In our notation, and using the known
elastic constants of MgO, " we calculate Qr, ,——0.64
X 10 '. The values of the fourth-order strain coeKeients

in these cases are estimated to be

Gr„'4&= 1.06X 10 4 cm ' for Mn'+ in MgO,

Gr„& ~=11.4X10 ' cm—' for Fe'+ in MgO.

These values are suggestive of those we have observed
for the f' ions. At present, no satisfactory explanation
for the cubic field splitting exists and we are unable to
estimate how these quantities vary with lattice distor-
tion. It is interesting to see, however, why no fourth-
order contributions were observed for Mn'+ and Fe'+
in MgO in Ref. 6. In view of the size of the coefficients
calculated above, the change of 84 for a hypothetical
force of 1 dyne/cm' are

B4=0.22X10 "cm ' for MgO:Mn'+

B4=2.SX10 "cm ' for MgO:Fe'+,
&4=1.0X10 "cm ' for Gd+ and Eu~ in CaF2.

For an external stress of SX10' dynes/cm' the shift of
the positions of the li~es for Hs

~~ t 100j are

MgO:Mn2+, 0.028 G for the ~+-+ ~ transition;

MgO:Fe'+, 0,32 G for the ~ ~2 transition;

Eu'+and Gd'+ in CaF2, 1.2 G for the 2'+-+-,' transition.

For the rare-earth ions Eu'+ and Gd'+, the shifts of the
lines due to second-order contributions in H' are small
compared with those obtained for Mn'+ and Fe'+ in
MgO. In fact, Cr &'& is aboutfive times larger for Mn'+
in MgO than for the rare earths in CaFg and about 15
times larger for Fe'+. Thus, fourth-order contributions
are masked by the strong second-order contribution for
the iron group ions.

Another feature closely related to the change of the
cubic field parameter with lattice constant is the tem-
perature dependence of the cubic field splitting. If it is
assumed that this dependence is due to the e8ect of the
change of the lattice parameter with the thermal ex-
pansion of the crystal, we can predict its magnitude
using our pressure results. The thermal change of the
cubic field splitting GTF is given by

GTz= &B4/Qr„= AB4/3nhT,

where 684 is the change of the cubic-field parameter in
the range of temperature AT' and o. is the linear expan-
sion coefficient of the lattice.

Using the data of Ref. 21 for the temperature change
of B4 and a linear expansion coeKcient n= 1.8X 10 '/'K
extrapolated from the data in Ref. 22, we Gnd an
"experimental" value of

&YE=5.0X10 4 cm '.

'9 H. B. Huntington, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7,
p. 214.

"W. M. Walsh Jr., Phys. Rev. 122, 762 (1961).

si T. Rewaj, Fiz. Tverd. Tela 9, 2978 (1967) LEnglish transl. :
Soviet Phys. —Solid State 9, 2340 (1968)j.

~D. N. Batchelder and R. O. Simmons, J. Chem. Phys. 41,
2324 (1964).
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This value is about twice the value of Gi „"&but with

the same sign. Ke conclude from our analysis that at
least half of the temperature dependence of the cubic
field parameter is due to the effect of the lattice expan-
sion. Other contributions due to dynamical interactions
of the ion with phonons have been calculated, ""but
it was found that these contributions are not important
and they have an incorrect temperature dependence. "
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APPENDIX A: LINEAR COMBINATIONS OF THE
STEVENS OPERATORS WHICH TRANSFORM

LIKE IRREDUCIBLE REPRESENTATIONS
OF THE CUBIC GROUP

Or„lel = Og'+504', .

O „(2)—0 0.I'ag"

Ol „-('&=04' —704',-

Or «"=Oz'(s);
Or„«'l = Og'(s) .

APPENDIX B: DEFINITION OF THE NORMAL
COORDINATES IN TERMS OF THE

STRAIN TENSOR s„
I'jgl 6m~ 6yy 6zz j

Qr, ~= e(2ezz —ezz eyy—); Qrzgz= e(ezz —eyy);

Qrzg = eyzz QI'zg" ezzj Qrzgr ezy ~
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Dynamic Jahn-Teller Effect of MgO:Cn+ + at 4.2'K
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The electron-spin-resonance spectrum of Cu+ + in Mgo was observed at 4.2'K. This spectrum is explained
in terms of the dynamic Jahn-Teller eGect when an adiabatic approach is used. In addition it is compared
with the spectrum of Sc++ in fluorides for which a nonadiabatic approach is seen to be in agreement with
the experimental g values. The difference between these two systems is explained when the lattice polarization
is taken into account.

INTRODUCTION

r 1HE theory of Jahn-Teller effect of E;state ions..in the cubic crystal field has been studied thor-
oughly. '~ It is one of the important features of these
previous studies that the usual Born-Oppenheimer
approximation is not valid. The total wave function
cannot be written as a product of the nuclear and
electronic wave functions. This important feature must
be taken into account when dynamic eBects are ex-
pected. In the study by O' Brien' it was assumed that
the electronic state follows the distortion exactly, since
the motion of the nuclei should be slow compared to
that of the electrons. Under this assumption, the g

i J.H. Van Vleck, J. Chem. Phys. 7, 72 (1939).
'U. Opik and M. H. L. Pryce, Proc. Roy. Soc. (London)

A238, 425 (1957).
'H. C. Longuet-Higgins, U. Opik, M. H. L. Pryce, and R. A.

Sack, Proc. Roy. Soc. (London) A244, 1 (1958).
zM. C. M. O'Brien, Proc. Roy. Soc. (London) A281, 323

(1964).

values and hyper6ne coupling constants were calculated
by neglecting the overlap between vibronic functions.
In contrast, Bersuker' considers the splitting of the
threefold degenerate vibronic ground state given by
the tunneling eGect. However, in his study, though
it is not stated explicitly, an approximation other than
that used in all previous studies is employed. The
vibronic wave functions used by Bersuker are given by
a product of the vibrational and electronic wave func-
tions, which may be interpreted as implying that the
electronic states do not follow the distortion adiabati-
cally. Nevertheless, quite recently' Bersuker's approach
was successfully used to explain the experimental g
values of Sc++ in CaF2 and SrF2. In the present study
we shall calculate the g values of the vibronic state
caused by the tunneling between the three degenerate

z J. B. Bersuker, Zh. Eksperim. i Teor. Fiz. 43, 1315 (1962);
44, 1239 (1963) LEnglish transl. : Soviet Phys. —JETP 16, 933
(1963); 17, 836 (1963)g.

e U. T. Hochli, Phys. Rev. 162, 262 (1967).


