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powder-pattern structure at 4.2 K. Only when a 6eld is
applied at 4.2 K is there direct evidence of randomization
of the magnetization directions, indicated by the more
rapid disappearance of the multiplet structure compared
to the total resonance. Therefore we would rule out
zero-field 3-dimensional powder pattern insofar as it is
produced by shape anisotropy. However, within the c
plane the "B NMR cannot distinguish between a 2-
dimensional powder pattern and a model of only two
magnetically inequivalent sites.

The appearance of the dispersion mode in the "3
NMR at T=4.2 K in zero applied field is likely due to
the absorption derivatives saturating out more rapidly
with increasing T1 than the dispersion derivatives at a
fixed level of rf field. 24 An admixture of dispersion-
dependent upon T& and the effective rf field will always
be present at the marginal oscillator detector because of
the electronic mechanism driving the nuclear resonance. '4

This effect is demonstrated in Figs. 3 (a) and 3 (b), where

'4R. L. Streever and L. H. Bennett, Phys. Rev. 131, 2000
(1963).

upon increasing the rf level by approximately a factor of
two, the dispersion component becomes evident. The
possibility that the enhancement of the applied rf field
goes up with decreasing temperature cannot be ruled
out, but this seems unlikely in view of the fact that
magnetocrystalline anisotropy field increases at 1ower
temperatures" (decreasing the enhancement factor).
There is nothing to suggest that the multiplet and back-
ground resonances come from two diferent sources. For
example, no difference in temperature dependence of the
two resonances has been observed.
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Knight Shifts in Liquid Alloys from the Pseudopotential Formalism
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The fractional changes of Knight shift ttS/S for solvent and solute atoms in liquid In-T1, Pb-sn, Hg-In,
and Ga-In alloys have been calculated from the pseudopotential formalism. It is shown that the Faber theory
developed for the substitutional dilute liquid alloys can be extended to include the nonsubstitutional liquid
alloys of any concentration rvithin the erst-order approximation. The experimental and hard-sphere-model
interference functions I(E) have been used, and it is pointed out that small errors in I(Z), particularly
with respect to its peak shape and peak position, are rather unimportant as far as the qualitative results
for ttS/S are concerned. The calculations predict the right sign and right trend of the M/S-versus-c plots
of the above liquid alloys. Quantitatively, however, there exists some disagreement, which may easily be
interpreted in terms of the variation of the spin paramagnetic susceptibility and perhaps the Fermi diameter
with the solute concentrations; these eBects where not considered in the basic theory. The present findings

strongly suggest that the psedudopotential approach leads to encouraging results if the pseudopotentials are
correctly evaluated and necessary corrections are applied.

I. INTRODUCTION

'HIS paper will deal with some calculations of
Knight shifts in liquid In-T1, Pb-Sn, Hg-In, and

Ga-In alloys, which form a practical test of the applica-
tion of the nearly free-electron model. The calculations
are based on the pseudopotential formalism and the
interference functions of the liquid metals.

The theory that we propose to use is an extension of
Faber's' theory developed for very dilute substitutiona1
alloys. The fractional change of Knight shift AS/S of
the solvent and solute atoms with concentration will be
evaluated using the hard-sphere-model and experi-

' T. E. Faber, Advan. Phys. 16, 637 (j.967).

mental interference functions. Although the theory has
some limitations, it will be shown that the present
approach is moderately adequate in interpreting the
behavior of the above liquid alloys over the whole
composition range. No attempt will be made to discuss
the concentration dependence of the spin susceptibility
term.

II. NUCLEAR MAGNETIC RESONANCE SHIFTS

If a small amount of impurity is introduced in a pure
metallic specimen, two things may happen whenever
there is a nuclear magnetic resonance' (NMR). First,

s W. D. Knight, A. G. Berger, and V. Heine, Ann. Phys. (N. Y.)
8, 173 {1959).
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AII/a= (Sn/3)f), X~(IP(0) I )„(1)
where 00 is the atomic volume, X~ is the spin para-
magnetic susceptibility per unit volume, and (I P(0) I')»
is the density of the s electron, i.e., the conduction
electron, at the site of the nucleus averaged. over the
Fermi surface. &I is proportional to the density of states
at the Fermi surface and can be measured experimen-
tally. Most important of all is the term (Ip(0) Is)e,
which depends primarily on the atomic volume and the
atomic structure of the metal. Experimentally one may
achieve the above resonance condition also by changing
the radio frequency of the applied magnetic 6eld, and in
that case the above equation reduces to

Ap/o= (sn/3)QeXp(Ily(0) I
)e'.

If we make use of the electron density function
(Il4(0) Is) of the free atom at the site of the nucleus
we may write'

(2)(Iit (0)I')~= 8(Il4 (0)I')

' C. P. Slichter, Prencsp/es of Magnegsc Resonance (Harper and
Row Publishers, New York, 1963}.

4 J. M. Ziman, Phil. Mag. 6, 1013 (1961).
~ C. ¹ J. Wagner and ¹ C. Halder, Advan. Phys. 16, 241

(1967).
6 C. H. Townes, C. Herring, and %'. D. Knight, Phys. Rev. 77,

852 (1950).

there occurs a broadening of the resonance line, and
second, the position of the resonance line is usually
shifted. In this paper we will be concerned with the
impurity shifts of NMR lines in liquid alloys,

The shift of an NMR line represents the interaction
of the nuclei and the conduction electrons. ' The shift
may be caused by either of the two possible magnetic
interactions between the nuclei and the electrons, which
are known as the Knight shift and chemical shift
according to their origin. The former shift represents
the coupling of the electrons to the nucleus due to the
magnetic moment associated with the electron spin; the
latter, that due to magnetic fields originating from the
motion of the electron charges. Thus, the Knight shift
in metals is quite different from the chemical shift.
Furthermore, the Knight shift is observed to be larger
than the chemical shift in metals.

We will, at present, deal with Knight shifts only, and
therefore, all other resonance phenomenona will be
excluded from further discussions. We will first briefly
describe the situations in the solids, and then pass on to
liquids —in particular the liquid alloys. Our Anal

approach will involve an application of the nearly free-
electron model4 and the use of an appropriate atomic-
distribution function' of the crystal lattice. We begin
by writing down the equation for pure metals. For a
given nuclear spin, the strength of the resonance mag-
netic 6eld is characterized by the surrounding con-
stituents of the nucleus. It has been shown' that the
relative change of the resonance magnetic 6eld AH for
two diferent environments of a particular nucleus is

Denoting ( I $(0) I
')e by P» and (I f~ (0) I

') by P~ we get

S=&a/a=»/. = (8n/3)vexing ~. (3)

The factor )=Pr/P~, as measured' for solid alkali
metals, is about 0.5—0.8, and agrees very well with the
theoretical calculation of Kjeldaas and Kohn. ~ The
above theory has been reasonably successful in explain-
ing the Knight shifts in solid metals.

The fact that the solid loses its long-range periodicity
upon melting, causing an enhancement of the atomic
volume, was considered to be a strong indication that
the Knight shift for solids should change appreciably at
the melting temperature. ' ' Although Eq. (3) is valid
for both solids and liquids, it failed to predict the
experimental observations (see Table I in Ref. 2), i.e.,
practically no change in S upon melting was observed
in Li, Hg, Al, and In. Thus, one is led to suspect the
foundation of the theory. Nevertheless, later experi-
ments have yielded results in the cases of Na, ' Cs,' Sb,'
Cu, ' Si,' and Cd "restoring some order in the theory,
and thus encourage more faith in the use of the nearly
free-electron model for liquid metals. Subsequently
Watabe eI, at." advanced a theory describing the tem-
perature dependence of S in liquid metals and applied
the theory to liquid Na. The results of their theory and
experiment were in good agreement for liquid Na. In
their theory, while the basic form of Eq. (3) was still
intact, the quantity E& for liquid metals was treated by
the 6rst-order perturbation method, and the electron
wave functions were written in terms of pseudo-wave
functions as outlined by Phillips and Kleinman. '3 The
structural disorders were accounted for by the introduc-
tion of the interference function of the liquid.

The above is a general outline of the Knight shifts in
pure solid and liquid metals. As we are interested here
in the study of liquid alloys, in Sec. III we shall elabo-
rate on the mechanism of Knight shift in liquid alloys,
introducing sorn. e alternative arguments to those
given above.

III. LIQUID-ALLOY THEORIES

The effect of an impurity atom in a metal is to alter
the Knight-shift spectrum through changes at all
nuclear positions. If the structure of the crystal is known
(as in solid solutions), the exact solution of the problem
is not dBFicult. The problem of the Knight shift in
alloys was first attacked by Slandin and Daniel, "who

r T. Kjeldass and W. Kohn, Phys. Rev. 101, 66 (1956).
8 W. D. Knight, Solid State Phys. 2, 132 (1956).
9 R. L. Odle and C. P. Flynn, J. Phys. Chem. Solids 26, 1685

(1965).
R. R. Hewitt and B. F. Williams, Phys. Rev. Letters 12, 216

(1964).
~ E. F. W. Seymour and G. A. Styles, Phys. Letters 10, 269

(1964).
~ M. Watabe, M. Tanaka, H. Endo, and B. K. Jones, Phil.

Mag. 12, 347 (1965)."J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
"A. Blandin and E. Daniel, J. Phys. Chem. Splids 10, 126

(1959),
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considered that the changes in Knight shift originate in
the changes of electron density at the Fermi surface
caused by a spherically symmetric scattering center.
Odle and Flynn" extended this idea to study liquid
alloys by adding the modidcation terms generated by
the short-range periodicity of the atomic arrangements
and the true potentials of the liquids. Their theory
depended on the radial-density function (also called the
pair-probability function) of the solvent atoms and on
the phase-shift data on the solute atoms at the given
concentration of the solutes. Unfortunately, the latter
values are not known with a great degree of certainty
except for some recent calculations on the monovalent
metals. "'~ Besides, the Odle-Flynn theory is applicable
to very dilute alloys.

Recently Faber' ' has developed a theory for calcu-
lating the Knight shifts in liquid alloys, using the
pseudopotentials of the atoms and the interference
functions of the solvent. It is the idea of this theory
which will be useful to us. The original Faber theory is
limited to a certain class of liquid alloys that are known
as the substitutional alloys. "In these alloys the atomic
constituents are supposed to have the same valences
and same atomic volumes, so that the Fermi radius at
the two extremities of the concentration range does not
differ. Also, the Faber theory is satisfied by the very
dilute alloys. Here we will rewrite his theory in a manner
suitable for our calculations and carry it one step
further to study both substitutional and nonsubstitu-
tional alloys at any solute concentration.

We have seen earlier that the density of electrons at
the site of a nucleus, i.e., the probability density of
6nding an electron at a nucleus, is

& =(lf(o) I')

If there are E ions present in a given volume of the
liquid, then

1
J'r= —2 14(r') I')

E p

where r; is the position of an ith ion, the angular
brackets mean the average over the Fermi surface. The
conduction-electron wave function in the OPW approxi-
mation" is given by

4 ()=C I94()—2 (4 A )4 ()j
where

l~~l '= (4~8~)—2 I (4-A~) I'.

pq(r) is the pseudo-wave function, and p (r) is the core

"R.L. Odle and C. P. Flynn, Phil. Mag. 13, 699 (1966).
'6 W. H. Young, A. Meyer, and G. E. Kilby, Phys. Rev. 160,

482 {1967).
17 J. M. Dickey, .A. Meyer, and W. H. Voung, Phys. Rev. 160,

490 (1967).
'8 T. E. Faber, Advan. Phys. 15, 547 (1966)."T. E. Faber and J. M. Ziman, Phil. Mag. 11, 153 (1965).

electron wave function. The summation indicates
inclusion of all ion sites as well as that of core states, and

(4»4 k) = 4 *4'idfI

indicates integration over the whole volume. The wave
function gq(r) is a smoothly varying function, as in the
orthogonalized-plane-wave treatment. The orthogonal-
ity condition Lto make P&(r) orthogonal to p (r)j is
usually satisfied by writing the potential term of the
wave equation in 94 as Vz+ V, where Vz is a repulsive
potential added to the true potential V. This sum
V~+ V is the pseudopotential, which is weak enough to
be treated by the perturbation theory.

I-et us now consider the following scattering problem.
Suppose that an electron in a liquid metal passes from
a state Pi to another state fi under the action of a
potential v(r). The incident wave fi will be modulated
both in amplitude and phase by the same potential of
the adjacent ions, and may be represented by lt, where
this P really represents the incident plus all the scattered
waves. Therefore, the probability of scattering from
state fi to fi of an electron due to the potential v(r)
is proportional to the xnean potential energy and can
be determined" from

it ace(r)lt dr.

We write the modulation factor as 1+pi(r), then it
will be seen

lt (r) =LI+Vi(r) jA(r)

The above result therefore becomes

it a*LI+yi(r)ge(r)lt idr.

Writing io(r) =
I 1+pi(r)ge(r), we find that this result

is now equivalent to

0 *~(r)A«.

This io(r) is the effective potential that is causing
scattering. U it is a nearly free-electron scattering, ro(r)
may be expressed in terms of the pseudopotential N(r).
When the potential is very weak. and the Born approxi-
mation is accepted, pi(r) is very small and it may be
neglected, that is, w(r)~N(r). Consider further that
had we calculated the pseudopotential N(r) of aN

isolated ion as done by Animalu and Heine (see Ref. 37),
then of course we should have

io(r) =LI+v(r) j&(r)

where the term 1+y(r) is introduced to represent some
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additional modulation due to the potential set up by
the adjacent ions.

We saw before that the Knight shift S is proportional
to Q (0) i

')~, hence it is also proportional to L1+y (0)p]'
Lsee Eq. (8)]. If we disregard the variation of Xp and
omit the constant of proportionality terms, then it is
easily seen, retaining the ftrst order terms in y (0)z, that

S~1+2y(0)p.

Equation (10) is derived for liquid metals, i.e., for ions
in the presence of the same kind of ions. The above
argument is equally valid even when the surrounding
ions are replaced by an impurity. Let c atomic percent
of the impurity atoms be present in a liquid metal. The
Knight shift now becomes

ut'(E) =ut(E) —uo(E)5F(E),

where 8 is the dilatation term defined by

(15)

change in volume caused by the impurity
(16)

mean atomic volume

and P(E) is a function of E, which is related to the
pair probability function P(r) by

Case II:Nonsubstitutional Alloys

In the case of nonsubstitutional but very dilute
alloys, the eRect of dilatation, i.e., the size eRect, is

significant. All that is now necessary is to replace u&(E)
(the pseudopotential element of the solute atoms) by
the reduced solute pseudopotential" element

Sp 1+2yp(0) p.

The fractional change of Knight shift for the liquid
alloy will be simply

"dP(r) sinEr
F(E)=

dr Er
(17)

X d -, 13

where r is the lifetime of an electron in a free-electron
traveling-wave state, I(E) is the solvent interference
function, and up(E) is the matrix element of the
solvent pseudopotential up(r). We will now discuss
two cases.

Case I:Substitutional Alloys

For a substitutional alloy we may write up(0) =ut(0)
and px(r) =pto(r)/ct= pot(r)/co= pp(r). The subscripts 0
and 1 denote the solvent and solute atoms, respectively,
and p;;(r) are called the partial distribution functions.
It then immediately follows from Eqs. (10), (12), and
(13) that

2Zo(m/m*) "uo(E') —ut(E)
P(K)—1]

1+2'(0)~ up(0)

(K+2kp)'1 trP/(4A'r'E')
X -', ln

(E—2k y )'+ m'/(4l'r'E')

X ~ . 14

I'= (Sp—S)/S=2Lpp(0) p —p(0) p]/L1+2y(0) p]. (12)

Faber' has clearly shown that when up(0) goes to pEp, —-
then to a good approximation in u, for an electron at the
Fermi surface, one has

up(E)
y(0) =Z (m/m*) PI(K)—1]

'
p up(0)

(K+2k|;)'+no'/(4h'r'E')
X -', ln

(E 2k )'+m—'/(4A'r'E')

1 "dp(r) sinKr
dr

pp p cfr I&

where pp is the average atomic density of the liquid.
Then the formula for F becomes

2 (m/m*) " Zpup(E) Ztut'(K)

1+2y(0)p p — up(0) ut (0)

(K+2/ )2+~2/(4 jgpr2K2)-

&(LI(E)—1] -,'ln
(E—2k')'+ms'/(4A'r'E')

E )E
(18)

(2u i E.2u, i
Equations (14) and (18) are still valid for non-

substitutional alloys with large c if the functions I(E)
are independent of the concentration, i.e., when the
pure-solvent radial distribution function is indistin-
guishable from the solvent-solvent distributions. Such
liquid alloys are Ag-sn, 'P Au-sn, " and Cu-Sn. 2' It is,
therefore, natural to expect that in these alloys M/S
will be approximately linear in c. Hence the only factor
that determines the change of hS/S in these alloys is 8.
For small enough 8 dS/S will be exactly linear in c.

Nevertheless one can use the present theory if one
replaces the term I(E)—1 by Iop(E) 1at the desired—
concentration. The partial interference function Ipp(E)
has the form""

sinKr
Iop(K) =1+ t pop(r)/cp —pp] d'r

0 Er
"N. C. Balder and C. ¹ J. Wagner, J. Chem. Phys. 47, 4385

(&967)."C. N. J. Wagner, N. C. Balder, and D. M. North, Phys.
Letters 25A, 663 (1967).

PP D. M. North and C. N. J. Wagner (unpublished}.
~ N. C. Balder and C. N. J. Wagner, Z. Naturforsch. 22A,

1489 (1967).
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It is well Imown that Ipp(E) is a function of the alloy,
solute-solute, and solvent-solute interference functions,

cpsf 2 ctpfr2
I(K)= Ipp(E)+ Irr (K)

&f&' (f&'
2cpcrfrf2

+ Ipt(E), (19)
&f&'

where the f's are the atomic scattering factors, and (f&
is the weighted average of f. There is no way of deter-
mining these quantities except by means of three-
radiation experiments, as suggested in the work of
Keating. " The three-radiation experiment involves
practical problems not yet surmounted, and has not yet
been enthusiastically pursued except in the case of
liquid CueSn& alloy. " Fortunately, however, a theo-
retical computation"" of Ipp(E) is possible using the
Percus- Yevick equation for the hard-sphere (HS)
modeL Recently both HS I(E) and HS I;;(E) have
been successful in explaining the electrical resistivities
in liquid metals and alloys. Finally, after adding the
dilatation term we may, to a good approximation, take
the interference function term for a nonsubstitutional
alloy as

Ipp(E) —bF (K)—1.

Writing I'(K) for Ipp —oP(E), we have in this case

2(2N/2N') " Zpgp(E) Zrlr'(E)r=—
(1+2'(0)s) p - Np(0) Nr (0)

(K+2k| )2+2222/(4ftsr'E2)
)&LI'(E)—1$ -', ln

(K—2kr )2+2222/(4hsr'E2)

(within about 4%%u~). These two systems more or less
satisfy the existing requirements of Eq. (14).Hg-In and
Ga-In alloys fall in the group of nonsubstitutional
alloys and can be 6tted well within the erst order
approximation laid out in Eq. (20). ln addition, the
data on I(E) of the elements of the above four alloys
have been measured with sufBcient accuracy, and also
their N(E)'s have been calculated with reasonable
success. Thus these systems constitute very interesting
all.oys which seem to present problems amenable to
practical solution and leading to useful results based on
the pseudopotential theory.

I(E)=LI- '—&f'&+&f&'3/&f&'

singr
=1+ Lp(r) poj

(21)

The coherently scattered intensity I,„~ is obtained
from x-ray or neutron-di8raction experiments. The HS
I(E) is written" as

I(Eo)= 1/L1 —ppc(Eo) j,
where the function

(22)

sin(sKo)
c(Eo)=—42ro (ap+Ps+ysp) spds, (23)

0 (sEo)

and the packing density

Interference Functions

Several interference functions were used. It is ixn-

portant that they should be de6ned clearly. The experi-
mental interference function is dined ~ by

2) = 2rppop/6.
&&I /dl I (2o)

&2u,& ~2u, &
np, P, and y are constants depending on 2), and o is the

IV. ACTUAL COMPUTATION Op KNIGHT SHIFTS hard-sphere diameter For alloys, "however, the distri-
bution function is

Choice of the Systems
p(~) =Z 2 c'f*f p' (r)/&f& (24)

sinKr
Lp" (r)/c' poj-

Er
I;,(E)=1+

Four liquid alloy systems —In-T1, Pb-Sn, Hg-In, and i
Ga-In—were chosen, for which experimental data are
available from NMR. measurements. 28 30 Zn In-Tl and which yields the Partial interference functions of the

Pb-Sn alloys both the solvent and solute atoms are
equivalent and have nearly the same Fermi radii

24 D. T. Keating, J. Appl. Phys. 34, 923 (1963).
~' J. E. Enderby, D. M. North, and P. A. EgelstafF, Phil. Mag.

14, 961 (1966).
"N. W. Ashcroft and D. C. Langreth, Phys. Rev. 156, 685

(1967)."J.E. Enderby and D. M. North, Phys. Chem. Liquids 1, 1
(1968).

~ D. J. Moulson and E. F. W. Seymour, Advan. Phys. 16, 449
(1967).

~ W. Van Der Lugt and S. B. Van Der Molen, Phys. Status
Solidi 19, 327 (2967).

PP D.J.Moulson and G. A. Styles, Phys. Let ters 24A, 438 (1967).

I ~(E)=3"+(pp)'"
Slur

(Kg—1) d'r, (26)

» N. W'. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (2966).32¹C. Balder and C. ¹ J. Wagner, J. Chem, Phys. 45, 482
(1966).

These are related as shown in Eq. (19).The HS I;;(E)
for alloys" are
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Wagner et GL,II and Ga (50'C) from Ascarelli II All
experimental I(E) were from x-ray data except that
for Ga, which was measured by neutron diBraction. The
HS I(E) and I;,(E) were calculated as discussed by
Ashcroft and Lekner, "and Enderby and North. "Some
of these I(E) and I;;(E) are displayed in Figs. 1-3.
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FIG. 1. Plots of the interference functions I(E) for liquid Pb
(330'C) and Sn (335'C). The experimental I(E) for Pb was
identical to the hard-sphere (HS) I(E), as shown in curve a.
Curves b and c, respectively, denote the HS and the experimental
I(E)for liquid Sn'.

3.6
I l I

3.2-

Determination of li and E(X)

The dilatation sects in the alloys were considered
according to Eqs. (16) and (17).Let us write

(28a)

where 0' and 0 are the atomic volume of the element in
the presence and absence of the impurity atom, respec-
tively. 0 represents the mean atomic volume. The above

with

gl2= g21= 1+C12P

PlCll P2C22+P1PIC11C22 P1P2C12 ~

where 8;; is the Kronecker delta, and

gll= 1+Lcll(1 p2c22)+pscl2 jP
g22 =1+Lc22(1 Plcll) +plc12~]P i (27)

2.8-

2.4-

2.0-

l.6

l.2

0.8

0.4

Partiol Interference Functions. of
Pb in Liquid Pb-Sn Alloys

The coeKcients c;; are given by Enderby and North. 2~

The experimental I(E) for liquid Tl (350'C) and

Hg (25'C) were taken from Halder and Wagner, II
0

I

4 6
K(A ')— 10

I I I I I

a
I

II
3.0— II

IIII
) I
I I

I
I I

2.5- I

" l.5-
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Flo. 3. Plots of the partial interference functions I,g(E) for
liquid Pb(330'C) at different Sn concentrations. These partial
functions were computed as discussed in the paper of Enderby
and North, Ref. 27. These I;;(E)are somewhat different from HS
I(E) (see Fig. 1), particularly below the first peak; but no
significant change was observed in the calculated AS/5.

equation in the approximation becomes

3= (Po —P o )/2PoP o (28b)

where pp and p'p are known from the density
measurements.

The function P (E) of Eq. (17) was obtained from the
derivatives dP(r)/dr. To get P(r), the functions I(E)
were inverted:

0
0

K (A-')—
lo P(r) = 1+ Et I(E)—1) sinErdE. (29)

2'' Ppf' p

The derivatives of P(r) were computed numerically

"H. Ocken and C. N. J. Wagner, Phys. Rev. 49, 122 (1966).
34 C. N. J. Wagner, H. Ocken, and M. L. Joshi, Z. Naturforsch.

20A, 325 (1965).
» P. Ascsrelli, Phys. Rev. 143, 36 (1966).

FIG. 2. Plots of the interference functions I(E) for liquid Ga
(50'C). The solid line gives the experimental I(E); the dotted'
line, the HS I(E) with packing density 0.50; and the dashed line,
the HS I(E) with packing density 0.45. Attempts at generating
HS I(E') with packing density below 0.45 to match the experi-
mental I(E) were unsuccessful. The experimental I(E) was
obtained by inverting the radial distribution function of Ga
(50'C) reported by Ascarelli (Ref. 35).
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Fig. 4. Plots of the derivative dP (r)/dr and the function F(E) as
defined in Eq. (17).These were obtained using Tl (350'C) data.

N(E) were divided by the AH N(0) and then multiplied
by the appropriate N(0) corresponding to the tempera-
ture considered. This helped include the effect of tem-
perature through the equation N(0) =—ssEp, where Es
is the Fermi energy. Two necessary corrections were
made before these functions were used. The 6rst step
was to account for the screening of the ions. When
solute atoms are dissolved in any solvent, we must
evaluate the N(E) of the solute embedded in the electron
gas existing in the solvent atom. One may write 0

ss(E)solute insolvent I (E)he(E)sojute/e(E)solvent] yl (31)

where e(E) is the dielectric function given by

e(E)=1+(4tres/Es)1V(Ep) . (32)

with the method of five-point approximation36 at
intervals of 0.1 A. Incidentally, it is interesting to note
that when X~0 "dJ.'(r)

dr= 1, (30) which for a free-electron liquid becomesF(E)=
0 dr

X(Ei ) = Lm/(2s-'))(kp/k'). (33)

The quantity E(E&) is the density of states of the
liquid at the Fermi surface, and is usually expressed" as

E(Ep) =4trk'/(8s') [I/(dE/dk) j,

which result fixes the value of F(E) for all elements at
1 for E=0. Figures 4 and 5 show the plots of F(E) and
dI'(r)/dr for liquid Tl (350'C) and In (170'C).

Pseudoyotential Elements

The pseudopotential elements N(E) due to Animalu
and Heine (AH)" were used for all elements. The
AH N(E) for Hg, are, however, unsatisfactory, as. has
been pointed out previously. ' Therefore, Ashcroft's'9

N(E) for Hg, which were obtained somewhat empiri-
cally, were also employed. The AH N(E), which were
given as functions of E/2ki, were first expressed as
functions of E and then normalized —i.e., for all E, the

The second correction was made to absorb the
dilatation effect, 4' as described in Eq. (15).

where

&I ( )I') ( ) (
((N(E) (')= [N(E) ('I(E).

Electron Lifetime r
The logarithmic term in Eq. (18) contains the

quantity v, the electron lifetime in the free-electron
traveling-wave state, which needs some attention.
Faber" writes

I.O

.10-

I

rn(I7o c)I1

I t dP(r)/dr
lI

I l

A'

l
l I
I

I Ili
II
V

K(A-') 0 r(A)—

1 l 1 I l I I

2 0 0 0 6

p 4

—-2 'n

I

8 9 lp

7 is little diGerent from the electronic relaxation time
as de6ned by Ziman. 4 Ke set ko ——kp as an approxima-
tion and evaluated the integral. For metals those are
under discussion here, we have r 10 "sec.In the work
of Moulson and Seymour" the v.-dependent part of the
logarithmic term was completely neglected.

We are now ready to compute y(0)s and hence P.
A program was written in FORTRAN language for a
CDC 3100-3300 computer to solve Eqs. (14), (18), and
(20). Provision was made to accept various I(IC) and
sr (E).Table I shows the basic data on the solvent atoms
which were used to calculate what follows.

Fro. 5. plots of the derivative d (Pr) dr/and the function F(E) as
defined in Eq. (17). These were obtained using Xn (170'C) data.

'fl M. Abramomitz and I. A. Stegun, Handbook of 3Ãathematical
Egnctions (U. S. Department of Commerce, National Bureau of
Standards, Washington, B.C., l967), p. 883.

st A. O. E. Animalu and V. Heine, Phil. Mag. . 12, 1249 (1965),
'8

¹ C. Balder and C. N. J. Wagner, Z. Naturforsch. 23A, 992
{T968).

ss N. W. Ashcroft, Phys. Letters 23, 48 (1966).

V. DISCUSSIONS OF THE KNIGHT-SHIFT
PARAMETERS

The calculated results are shown in Figs. 6—9. For
comparison the experimental values are also reproduced

ss S.H. Kellington and J.M. Titman, Phil. Mag. 15, 137 (1967).
4~ N. F. Mott, Advan. Phys. 16, 49 (1967).
4s T. E. Farber (private communication).
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TABLE I. Solvent data used to calculate Knight shifts in liquid alloys. Note that in Hg-In alloys two diferent sets of pseudopotentials
for Hg were used. I and II refer to the calculations based on Ashcroft and Animalu-Heine pseudopotentials of Hg, respectively. Both
experimental (expt) and hard-sphere (HS) interference functions I(K) were used to evaluate r, y(p)r, and P, s, which are de6ned in
Eqs. (34), (13), and (18), respectively. Z is the valence and ks is the Fermi momentum.

Alloy

In-Tl

Tl-In

Pb-Sn

Sn-Pb

Hg-In(I)
Hg-In(II)
In-Hg(I)
In-Hg (II)
Ga-In

Solvent

Pb

Sn

Hg
Hg

In
In
Ga

kr(A ')

1.484

1.432

1.548

1.607

1.340

1.484

1.671

1.484

expt
HS

expt
HS

HS

expt
HS

expt
expt

expt
expt

expt
HS

expt
HS

T (sec)

1.865X fo-»
0.928

0.587
0.520

0.315
0.649
0.533

0.576
1.850

1.865
1.865

0.702
0.718

1.865
0.928

L 1+2m(f))rj
0.890
0.813

0.833
0.833

0.840

0.771
0.818

0.872
0.555

0.890
0.890

0.804
0.807

0.890
0.813

—0.004—0.049

+0.010
+0.0001
-0.033

+0.038
+0.046
—0.346
+0.022
—0.207
+0.045
—0.070—0.086
—0.054
+0.021

(Figs. 10-12). AS/5 for the pure liquid metal in each
case was adjusted to zero after the integration was
performed, and consequently all the alloy data scaled
with respect to this point.

Interpretation of the Results

As can be seen from Figs. 6 and 10, the shapes of the
hS/S curve for In and Tl in In-Tl alloys agree well with
that of the experimental curve. The calculated M/S
refer to liquid Tl at 350'C and liquid In at 170'C. The
AS/S obtained with HS I(K) are a little smaller than
those obtained with the measured I(K). A calculation
with the HS partial I;;(K) did not yield results strik-
ingly different from those with HS I(K) for this alloy.
The predicted values of hS/S for Tl and In are about
ten times smaller and four times larger than the respec-

tive experimental values. The results for Pb and Sn in
Pb-Sn alloys as shown in Fig. 7 do not seem to predict
the right curvature of the experimental curves (Fig. 10),
although the magnitudes of AS/S are now much closer
to the measured values than for In-Tl alloys. Both the
predicted and measured values fall with increasing Pb
percentage. In Ga-In alloys the predicted ES/S for Ga
is linear in c, and for In it is nonlinear, which agrees with
one of the experimental observations, ~ as is evident from
Fig. 11.Of course, there exists a temperature di6'erencc
of 40'C between the two experimental 6ndings; we do
not believe that this temperature difference is really
responsible for the discrepancy. Our results are based on
Ga data" at 50'C and In datass at 170'C, and both
temperatures are close to the respective melting tem-
peratures. The case of Hg-In alloys is different. First,
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FIG. 6. Plots of the predicted dS/S as a function of atomic
percent of In. )& are obtained with measured I(E) and O are
obtained with HS I{X).Partial I;;(E') gave almost the same
values of hS/S as HS I(K); thus those results are not shown here.

l I
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I l l I i

40 60 80
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Fro. 7. Plots of the predicted AS/S as a function of atomic
percent of Pb. The )& line is obtained with measured I(K); the
O line is obtained with HS l(E'). Partial I;;{X')gave almost the
same values of AS/S as HS I(K); thus those results are not
shown here.
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Hg-In is not an equivalent alloy, and secondly, liquid
Hg shows some anomalous behavior within the frame-
work of the nearly free-electron model. "4' The pre-
dicted graphs for Hg and In in the alloy do not quite
give the qualitative picture of the experimental trend.
In particular, two differences are apparent. One is the
missing hump of the In plot, and the other is the
curvature of the Hg plot, which is concave downward
rather than convex.

From Table I it is evident that I+2y(0)s is almost
constant (0.8-0.9) for the various solvents, except for
Hg in Hg-In(II) alloy and Sn in Sn-Pb alloy. The value
0.555 for Hg obtained with AH N(E) cannot be
trusted. "Similarly the AH N(E) for Sn are also doubt-
ful; they are discussed in Ref. 22. We then 6nd that

FIG. IO. Plots of the experi-
mental hS/S of solvent and
solute atoms in liquid In-Tl
and Pb-Sn alloys. These were
taken from Moulson and Sey-
mour (Ref. 28).

FIG. 11. Two experimental
plots of BS/S for Ga and In
in liquid Ga-In alloys. The
upper results were taken from
Van Der Lugt and Van Der
Molen (Ref. 29), and the lower
ones from Moulson and Sey-
mour (Ref. 28). Note that the
two measurements do not give
consistent results, particularly
for Ga in the region of low In
concentration.
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Fro. 8. plots of the predicted AS/S as a function of atomic
percent of In. The )& line is obtained with measured I(E'); the
0 line is obtained with HS I(It).
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y(0)s is about —(0.1—0.05) for Hg, Tl, In, Ga, and Pb,
compared to —0.23 for Li obtained by Faber. ' This
result implies that the eRective pseudopotentials ttts(E)
in these metals are about 10 to 5% less than the com-
puted Ns(E) when E is large. But how large thisE'
should be before this conclusion becomes effective is a
matter of guesswork —most likely, larger than 2k&.

FIG. 9. Plots of the predicted d,SiS as a function of atomic
percent of Hg. These points were obtained with experimental I(IC)
and AH (Ref. 37) u(K) for In, but Ashcroft (Ref. 39) N(E) for Hg.

43 N. E. Cusack, P. Kendall, and M. Fielder, Phil. Mag. 10, 871
(1964).

Qualitative Prediction of 48/S

Yo give any meaning to the present results and to
understand their importance one must return to Eqs.
(13) and (20). Obviously, in these equations there are
three principal terms upon which the whole analysis
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FIG. 23. Plots of the interference-function term, the logarithmic
term, and the pseudopotential term of Kq. (18) for Tl in liquid
Tl-10 at.% In alloy. Curve a: interference-function term; curve b:
logarithmic term; curve c: pseudopotential term.

We show the behavior of these terms in Figs. 13 and 14
for liquid Tl and In, respectively. The limits of the
integrations in both equations extend up to ~. It must
be emphasized here that beyond K= 7 A ' the pseudo-
potential term does not contribute to the integration,
and therefore any structure at E)7 A ' may be
unimportant. The only region that is of any relevance
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FIG. 24. The plots of the interference-function term, the log-

arithmic term, and the pseudopotential term of Eq. (18) for In in
liquid Tl-90%~ In alloy. Curve a: interference term; curve b:
logarithmic term; curve c:pseudopotential term.

was centered. These are the pseudopotential term

/Zeus(E)/up(0) —Zrur (K)/ur (0)j,
the interference function term P'(E)—1], and the
logarithmic term

(K+2hZ:)s+m'/(4l'r'K')
g lI1

(K 2k')'+m—'/(4A. 'r'K')

to us is approximately 2 A '(E(7 A '. Small errors
in the measurement of either the peak height or the
peak position of I(E) should have practically no effect
in the process of integration. For this reason it is not
surprising at all that reasonably good agreement (Figs.
7 and 8) was found between AS/S obtained with
measured and HS I(E) for liquid Sn, Ga, and Hg,
which do not quite resemble HS liquids (Figs. 1 and 2).
The sign of AS/S is mainly determined by the pseudo-
potential term. In the present investigation perhaps the
most encouraging and significant contribution is the
prediction of the right sign and qualitative trend of the
DS/S-versus-c curve in the liquid alloys.

C. Limitations for Quantitative Agreement

We should not be disappointed at the lack of quanti-
tative agreement of hS/S with the experimental result.
We know that in the theory we made a number of
approximations; most serious of all is our reluctance to
distinguish the 2k' of the solute atom from that of the
solvent atom, which was due to mathematical com-
plexities. Perhaps this restriction can be disposed of
without too much difficulty when the two atomic species
have quite dissimilar 2k&. Additional reason can be
found if we recall Eq. (3) and Eq. (18). Admittedly,
there are two other factors 00 and Xp, both of which
depend upon the concentration of the elements. In the
present theory we have completely ignored any con-
tributions from these two variations. One could, how-
ever, add these two extra features to the present results
to observe somewhat better quantitative agreement.

VI. CONCLUDING REMARKS

We have made attempts here to establish that a
treatment of the electron density function (i $(0) 1')z in
terms of the pseudopotentials alone predicts qualita-
tively the fractional change of Knight shift, hS/S, in
liquid alloys. The procedure also gives the right sign of
the shift. Thus, the results of this study apparently
disagree with the conclusions of Moulson and Seymour, "
who do not seem to have found support for the theory.
Kellington and Titman" applied the Faber' theory to
the case of dilute Na alloys and found qualitative agree-
ment between their experimental and theoretical
answers, although the equation (see Ref. 40, p. 1047)
they gave in their note is not the same as that given by
Faber (see Ref. 1, Eq. 15).
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