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The range of validity of a general argument for the asymptotic form of correlation func-
tions, presented in a previous paper, is discussed in some detail. The asymptotic form
of correlation functions of local variables for one-dimensional lattice and continuous
systems are discussed and found to have the predicted form.

I. INTRODUCTION

In a, previous paper' (hereafter I) a plausible
general argument was given for a certain asymp-
totic form for the correlation function of two local
dynamical variables. It was argued that if &(r)
and B(r) are local dynamical variables and &u

stands for the variables specifying the thermo-
dynamic state of the system then for

linear

the
critical point q and r large enough

=d~(&)d~((u)e ( ) /r ( ) (1-1)

where &
~ ~ ) is the usual average over an equi-

librium ensemble. The functions lc(u) and b(v)
are the same for a large class of &and & and
x(&s) 0, b(&u)-b ~ 0 as &u u&c. Near the critical
point and for external field equal to zero the

spin-spin, spin-energy density and energy-density-
energy-density correlation functions of the two
dimensional square spin-& Ising model are known'
and have been shown' to satisfy Eq. (1-1) for
T&Tc (the critical temperature). One might still
argue that (1-1) is not a general property of sys-
tems in thermal equilibrium, but rather depends
on some special properties of the example given.
In particular it might depend on: (a) the system
being two dimensional, (b) the nearest-neighbor
interaction, (c) the system being spin 2, (d) the
fact that the external field was zero, (e) thepartic-
ular choices of dynamical variables &(r ) and
&(r ), and (f) the system being a lattice rather than
a continuous system. Points (d) and (e) fall under
the general question: For what class of variables
A(r), B(r) and what thermodynamic states &u is
(1-1) true 'P This question is discussed in general
in Sec. II.

In Sec. III we discuss the asymptotic form of
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the correlation function for any two local variables
of a one-dimensional Ising model for arbitrary
spin and any finite range interaction and for any
equilibrium state. We find that (1-1) is satisfied
except for certain apparently rather unusual cases.
These examples are pertinent to all of the above
mentioned questions except (f). We also consider
the correlation functions of a one-dimensional gas
with nearest-neighbor interactions, and find that
this continuous system has similar properties.

C(A, B;r, &u) =dA(v)dB(e)f(r, cu), (2-2)

where f (r, &u) is the same function for essentially
all local dynamical variables & and &. A some-
what extended version of the argument gave

f ( )
-z((u)r] b((u)

which, with (2-2) yields (1-1).
We want to discuss ways in which (2-2) might

fail. One way that (2-2) can fail is if we can
find two different correlation functions for which
the function f (r, u) is different. We shall show
that this must always be possible. Suppose we
have two correlation functions C(A, A) and C(A, B)
for which (2-2) holds. We can construct one for
which (2-2) is false. Presumably (2-2) is the
first term in an asymptotic expansion of the
correlation functions, so let us write for r large

C(A, A;r, (u) =d ((u)f(r, (u)+g~(r, e), (2-3)

C (A, B;r, (u) = dA((u)dB ((u)f (r, (u) +g~ (r, (u),

(2-4)
where the g functions are small compared to f
for large r. The assumption that (2-2} is true
for these correlations is equivalent to requiring
dA(v) & 0 and dB((u) & 0 in (2-3) and (2-4). Now if
A(r) and B(r) are local dynamical variables and
a and b are constants, then D(r) =aA(r) +bB(r) is
another local dynamical variable. It is trivial
that

C(A, D; r, e) = aC(A, A; r, m) +b C(A, B;r, e),
(2-5)

Hence from (2-3), (2-4), and (2-5) we have, for
r large

C(A, D;r (u)=d ((u)d .(&u)f(r, (u)
D

+ag~(r, e) +bg~(r, &u), (2-6)

where dD(~) = adA(e) +bdB(& ). (2- I)

II. GENERAL DISCUSSION

We shall use the notation

C(A, B;, ) = (A( )B(o)) —(A( )) (B(o)), (2-1)
sometimes suppressing an argument when of no
interest. We shall assume, for simplicity, that
(2-1) is a function of only the magnitude of r and
that C(A, B; r, &u) =C(B,A; r, v). In I it was
argued that for r large enough

One can choose a and b so that dD((u) = 0 for some
fixed &u, hence C(A, D) will vanish more rapidly
for large r than f (r, e) by virtue of (2-6}. Fur-
thermore, the correlation of D with any other
dynamical variable will vanish faster than f (r, a&).
For fixed D(r), or equivalently fixed a and b, at
what points &o can we expect the (hopefully)
anamolous behavior dD((u) = 0 V Suppose &u stands
for two thermodynamic variables. Then if
dA(~) & 0 and dB(&v) & 0, we would expect the solu-
tions of dD(u&) = 0, if any, to form a line of points
in the e plane, but in general we would not expect
the solutions to form a two-dimensional manifold.
This leads one to conjecture that the proposed
asymptotic form (2-2) is valid for any pair of
local dynamical variables, A(r) and B(r), for
any thermodynamic state +, except for at most
two lines in the w plane (one associated with each
dynamical variable) which are the points, if any,
where dA(~) =0 or ciB(&u) =0. We shall see that
this conjecture seems to be true for the one-
dimensional models to be considered. We shall
call the set of points for which dA(e) =0 the zero
line of &.

For the two-dimensional Ising models it is
known' ' that above the critical temperature and
in zero field, the energy-density-correlation
function vanishes faster with r than the spin-spin
correlation function. The spin- energy- density
correlation function is zero. We suppose that
this is the line of zeros of the energy density. To
verify this supposition we would have to show
that all three correlations have the same asymp-
totic dependence for I') &~ but non-zero external
field. Unfortunately, 'the correlation functions
are not known there. We shall see that there is a
similar behavior in the one-dimensional Ising
models where these conjectures can be verified.

Another way that (2-2) can fail, even if the
function multiplying f (r, &u) is not zero, is for
this function of e not to have the product form
dA(&u)dB(&u). It is difficult to say anything in
general but we shall investigate this possibility
for the one-dimensional Ising model.

III. ONE - DIMENSIONAL MODELS

We now consider the correlation functions for
some one-dimensional models ~ We take first the
Ising chain of any spin and finite range of inter-
action. We have found that the form (1-1) follows
rather directly from the existence of a transfer
matrix formalism.

Consider an Ising chain where each site interacts
with its y nearest neighbors and which is ny sites
long. Suppose the spin variable on each site
varies from 8 to -8 in integer steps, where ~ is
integer or half-integer. All of the equilibrium
properties of such a system can be expressed in
terms of a (2S+1)~dimensional transfer matrix
by a straightforward extension of the techniques
used in the nearest-neighbor spin-& chain. -' One
can write the correlation function of two groups
of spina, one group on the sites iy(i2( +iq,
and the other at ry+y ~&ry+y2& ~ &ry+j~, in
the form
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(il, . . . , i, ry+g 1, . . . , ry+y )q'

~ ~ ~

M(il, . . . , i )0
n)Q

(3-1)

its two largest eigenvalues are degenera, te with
each other but not with any other eigenvalue. For
T small enough, by continuity in T, these two
eigenvalues must still be larger than any other.
For T small but nonzero the transfer matrix
has positive elements and therefore has a non-
degenerate largest eigenvalue. Hence in the
neighborhood of T =0 neither ~p nor &, is degen-
erate and in fact

where Xp is the largest eigenvalue of the transfer
matrix (which can be shown to be nondegenerate)
and o.'runs over the other eigenvalues. M(il, ~

i&) is an operator depending only on the differ-
ences i, —s,, i, —i„...and istaken in the basis
diagonalizing' the transfer matrix. The correla-
tion function of any two local variables can be
written as a linear combination of the above type
of functions. In order that the asymptotic form
of (3-1) agree with (1-1) it is sufficient that the
second-largest eigenvalue ~, of the transfer
matrix be nondegenerate and that the matrix
elements M„and ~yp be non-zero. The eigen-
values and the matrix elements are functions of
the temperature &and the magnetic field &. The
vanishin of the matrix elements on lines in the
(T,B) pl ne is consistent with the discussion of
Sec. II; however, they must not vanish over the
whole (T,B) plane.

We have not been able to prove that the general
Ising chain has the above two properties. On the
other hand, we have not been able to find any
particular model for which either property is
missing. For the nearest-neighbor spin-& model
there are only two eigenvalues' and these are
nondegenerate. In this case (3-1) has only one
term and the form (1-1) is obtained even for
small r. This is a special property of this model.
One can verify that the matrix elements do not
vanish identically by direct computation. For the
nearest-neighbor spin-I and spin-g case the eigen-
values are known' for B =0 (and by perturbation
theory for small B}and again neither X, nor A. ,
is degenerate. Temperly' has solved the next-
nearest-neighbor spin- —,

' model for & = 0 and again
~p and ~, are nondegenerate. A direct calcula-
tion of the matrix elements would be algebraically
complicated in these last two cases and has not
been done. There is no reason to believe they are
identically zero.

For the general Ising chain every element of the
transfer matrix is positive and a theorem due to
Perron says that ~p is nondegenerate for such
matrices. Unfortunately there seems to be no
applicable theorems concerning the degeneracy of

We can consider the general models in limit-
ed regions of the thermodynamic plane. Both
high- and low-temperature expansion suggest
themselves. In the low-temperature region &-0.
B =0, for a ferromagnetic Ising chain, two of the
diagonal matrix elements of the transfer matrix
become large compared to all others. The trans-
fer matrix P= exp(c/kT}P', where c is a con-
stant and 8' is a matrix whose elements all-
approach zero continuously as T- 0 except for
the first two on the diagonal which approach 1.
In this limit the transfer matrix is diagonal and

A.,/A. , 1, X. /1 -0 for i& 1,
Z

as T-0
0

(3-2)

g(r) = ~ for r( a, Q(r) = 0 for r ~ 2a. (3-3)

These conditions imply that only nearest neighbors
can interact, The correlation function of any two

so that the non-degeneracy condition is satisfied
for a rather large class of Ising chains in this
limited region of the thermodynamic plane. For
these models there is only one characteristic
length appearing in the correlation functions at
small T and this length goes to infinity as T-O.
If we look at (3-1) for fixed r (not necessarily
large) but as T 0 for B =0, the result (3-2) shows
t"at o»y t"e ~&/~o term contributes, and since
A.,/Ao-1 this term becomes very long ranged.
Thus T = 0, 8 = 0 appears in some respects like
a critical point; an observation often made in con-
nection with the divergence of the susceptibility
at this point.

For the general Ising chain and arbitrary & the
transfer matrix approaches a matrix whose every
element is 1 as T-.~, Call this matrix Uand
write the transfer matrix as T= U + (T U), where—
T —U 0 as T -.~. The obvious thing to do is
diagonalize ~ and treat 1' —U by perturbation
theory. U is a cyclic matrix and can be diagonal-
ized by standard methods. ' All of its eigen-
values are zero except one which is equal to the
dimension of ~. Hence for T - , ~p is nonde-
generate, but &y= 0 and is degenerate with all the
other eigenvalues. In this limit the correlation
functions (3-1) vanish, as they should for high
temperatures. To move slightly away fromT = ~
we can try to find the perturbation-theory correc-
tions to the eigenvalues treating (T —U) as small.
This is easy for ~p and produces a high-tempera-
ture expansion of the partition function. To find
the asymptotic form of the correlation functions
at high temperature we must find the corrections
to A, The transfer matrix has dimension (2&+1)y
and &,is a [(2S+1}y—1]-fold degenerate eigenvalue
in zero order. To do even first-order perturba-
tion theory we must diagona, lize a (2S+1)y- 1
submatrix of &- U. For y or S large this seems
to be no easier then diagonalizing the whole
transfer matrix itself. It is strange that going
to high temperatures, which immensely simplifies
the computation of the partition function, produces
no similar simplification in the computation of the
asymptotic form of the correlation functions.

We now consider a one-dimensional gas of
particles interacting by a pair potential with the
properties
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physical local variables can be written as an
integral or a sum of integrals of the reduced dis-
tr ibution functions .V A

f„(yl, ..., y„) =&
' =1 ' =1
n

x5(~. -y ) ~ ~ ~ 5(x. —y )) (3-4)
2 1 2 n

where the prime on the sum means no two indices
are the same and x1, ... , x&are the coordinates
of the particles. One can also assume y1& y2
+$3' ' &yn because any configuration not satisfy-
ing this condition is a permutation of a configura-
tion which does, and (3-4) is invariant under per-
mutations of the y1, ... , yn. In the thermodynamic
limit, as the length of the gas and the number of
particles go to infinity with the length per particle
approaching L, the fz become functions of only
the differences y2 —y1, ... , yn —y1 by translational
invariance. Salsbur g, Zwanzig and Kirkwood"
have computed the reduced distribution functions
of this model. The result that we need from
their work is that the reduced distribution func-
tions obey, in the thermodynamic limit, the
superposition principle

2n ~ 1

f„(yl, ~. .. y„)=L ll f2(y, , l
—y,.). (3-5)

z=1

Let the coordinates y1, ... , yn split into two
groups &1 p2+ &y and a second group we label
~1&~2& ~ ~ &zk, and measure the distance between
the groups by r=z1-y&. We want to let r become
large while keeping the distances

2 1' ''" k1 k 1

fixed. If we define

u( 21 ""

'fJ'1 'u)

then one can show from (3-5} that

c,g+~'y21 ""ygl: 21 ""'y1')
—~f (y21, ,y. l)f~(~21, . .., z )kl

x[f2(~) —& -2
J (3-6}

Since f,(r) approaches I ' for large r the correla-
tion function vanishes as it should. For fixed
J21, ..., ~~1 this correlation function is of the
form (2-2). One can show that these correlation
functions have the slightly stronger form (1-1),
but the computation is too detailed to present
here. This result is a direct consequence of the
principle of superposition, and it is easy to see
the principle of superposition depends on the
interaction being no more than nearest neighbor.
To extend this calculation to longer-range forces
appears to be rather complicated. One can
formulate the problem, in analogy with the Ising
models, in a transfer-operator manner and in-
deed Van Hove" has studied the thermodynamic
properties of these models in this way. Unfor-
tunately the structure of the correlation functions
is not known.

The result (3-6), and the corresponding results
for the Ising models, depend on defining the
distance r between the groups of variables as the
smallest distance between members of the groups.
Local variables have some spatial extension so
that the distance between two such variables is
not, in general, uniquely defined and this is
something of a difficulty with (2-2) unless one
has a specific model where the definition of the
distances is clear. Near the critical point, how-
ever, this difficulty disappears because the cor-
relation functions become very long ranged and
hence insensitive to the exact definition of the
distance.
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