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Using the recently developed phase-space techniques for the treatment of quantum-mechan-
ical problems, we set up a procedure for calculating multitime-correlation functions in
terms of the joint distribution functions. The correlation functions are then expressed simply

as integrals over the associated phase space.

Explicit expressions are given for these joint

distribution functions, in terms of Green’s functions of the c-number equations of motion for
the phase-space equivalent of the density operator. Using these joint distribution functions,

an exact regression theorem is rederived, andthe connectionwith the multitime correspondence
‘between classical and quantum stochastic processes is discussed.

I. INTRODUCTION

During the last several years, increasing use
has been made of time-correlation functions in
the description of the behavior of physical sys-
tems. Recently Zwanzig! summarized the main
results in this area and discussed some applica-
tions of time-correlation functions to nonequlib-
rium problems (see also Ref. 2). In the calcula-
tion of quantum correlation functions, use has
been made of phase-space techniques.3 % In this
connection the Wigner distribution function has
played a preferential role® and has been used to
obtain first quantum corrections*® to time-cor-
relation functions calculated classically. This
in turn permits one to obtain quantum corrections
to transport coefficients. Similar procedures

have been useful in discussing a wide variety of
problems such as nuclear magnetic relaxation, *
neutron scattering,® hydrodynamic transport
coefficients, etc. However, in the discussion of
certain problems in quantum optics, it is useful
to use other distribution functions? based on dif-
ferent rules of association between functions of
noncommuting operators and ¢-number functions.
Recently a general technique, for the derivation
of the different distribution functions from a
unified point of view, was developed®~1° and has
been used to study dynamical problems.

In the present investigation, we extend this
analysis to construct various joint distribution
functions. These functions are then used to ex-
press multitime-correlation functions as integrals
over the associated phase space. An exact re-
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gression theorem,!! relating two-time averages
to one-time averages, which follows readily from
our analysis, is also discussed.

II. ORDERING DELTA OPERATORS AND
SOME RELATED RESULTS

Let us recall a few results which have been
presented elsewhere.®~1° In these papers, cer-
tain classes of orderingdelta operators were intro-
duced. These ordering delta operators are de-
fined as

A _aoaxo ahfiecia-z)  (2)

= 'n'zfdzaz Q(a, o)

x exp| a(z,* - ﬁT)—a*(zo—a)]. (2.2)
Here $ denotes an ordering operator (one for
each rule of association), and the function Q(x, 8)
appearing in Eq. (2.2) is an entire analytic func-
tion of two complex variables @ and 8, which has
no zeros and satisfies the requirements

(i) Q(a,ﬁ)=ﬂ(—a,_ﬁ)) (ii) Q(0,0)=1.
Then !f was shown that any operator function
)

G(a,a") of Boson creation and annihilation opera-
tors can be expanded in the following manner:

6@, ah= JFD @, 29a® ¢ _a 2x_ahaZ, (2.3)

The function F' (9)(2 2*) appearing in the right-
hand side of Eq. (2. 3) is the c-number function
associated with the operator G(a, at) via the €
correspondence and is given by

F(Q)(z, z*)=7TTr[G(Zi, aT)A(ﬁ)(z -G,2% - ET)] , (2.4)

whnere

A(ﬁ)(z-a z*—azT zjd a[Q(a, o] -1

xexp[alz,*=a") = a*(z,-2)]. (2.5)

Using the properties of the ordering delta opera-
tors, it was shown that the trace of the product
of two operators G,(a, a’) and G (a at) is given by

Tr[G,(a, 4)Gy(a, a")]

=n—ljd2z FI(Q)(z,z*)FZ(ﬁ)(z,z*), (2.6)

Here F,(2)(z,z%) and F,(%) (z,2*) are the c-
number functions assoc1ated with the operators
and Gl(a at) and G,(@, a ) via the § correspondence
and 2 correspondence, respectively. 12

For a wide class of associations of interest
Q(a, a*) is of the form

Q(a, a¥)=exp(pa+va*2raa¥), (2.7)
where p, v, A are parameters. The £ -ordered
equ1Va1ent FIZ(Q)(z z*) of the product G,(a, a')

G,(a, at) is then given by

Flz(ﬂ (z,2%) =F1(Q (2,2%)

x exp(h, + A E )z 2%, (2.8)

with
SRR
<« - « -
A e rate ), @9
T;(gg_ai;;.) (2.10)

Throughout this paper we consider rules of
associations for which (@, a*) is of the form
(2-7).

III. THE c-NUMBER FUNCTION ASSOCIATED WITH THE HEISENBERG OPERATOR A(Q) (20— &,Z of — &T,t)

Q PN -~
The Heisenberg operator A( )(zo -a,zy* -aT,t) is defined by

2 —dzox-a" =01 tt98 Dizy-a,200-" )01, 3.1)

where U(t,t o) is the unitary time-evolution operator. Let li)(ﬂ)(z z*t) be the Q-ordered equivalent of the
density operator p(t)assoc1ated with a quantum-mechnical system, i.e.

AN B (
p(t)—Q[Fp

(2,2%,t)].

(3.2)

The f2-ordered equivalents of the density operator at times ¢, and ¢>¢, are related by an equation of the

form

Fp(m(z,z*,t):fdzzoK(Q)(z’z*’t,20’20*’t0)Fp(Q

020" to)

(3.3)

where K(Q)(z,z*,t |2,,20%,t,) is the Green's function for the equation of motion for Iv;)(ﬂ)(z,z *t). The
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Green's function K(Q)(z,z*,t |20,zo*,t0) satisfies the initial condition
Q
K( )(Z;Z*ytolzo’zo*’to):5(2)(3_Zo)- (8.4)

From (3.2) and (3.3) it follows that

pO)= fdzZOFp (Q)(ZO’ZO*’to)[ o K(Q)(Z:Z*,t l29:20* t )1 - 3.9

According to (2.3), we can also express the density operator at time ¢, in terms of ordering delta opera-
tors, i.e.,

Blty)= fdzzon(9)(z0,zo*,t0)A(m(Zo —d,zy -4t ). (3.6)

0

Therefore the time evolution of the density operator is given by

p(t)= Dt t)p )T ¢ty

- (2 (@) x5\ ), _» _atopt
= [a 2gF, " (egpzg* )0t ) A g =z * = a1 )0 (11 ). (3.7)
On comparison of (3.5) and (3.7) one finds that
O [E D (e,2% ¢ 20,24, 10] = 0,0 A D2y a,20% - a7 100 0. (3.8)
On inverting the relation (3.8), with the help of theorems II and III of Ref. 9, we have
K(Q)(Zsz*;tlzmzo*yto)
=aTe[ 0,t) A D 2y -,z —a 100 0,00 AP @ - 2% - 4T 1]
= 1TTI‘[ A(Q)(ZO_ &7‘20* - &T7to)ﬁT(t,to)A(Q)(Z - a,Z* - &fyto)ﬁ(tytc)]
=7Tr[ A(Q)(z0 —a,z5* - aT,to)A(ﬁ)(z,- a,z% - &T,t)] . (3.9)
On making use of theorem II of Ref. 9,we find that
7Tr| A(Q)(zo— a,z,* — &T,tO)A(Q)(z -a,2*% - &T,t)]
is the & equivalent of A(Q)(Z—a, z*—a,t), i.e.,
A(m(z2 —-Q,2,% — a*,t) = ﬁ[K(m(zz,zz*,t |z,2%,t,)]. (3.10)

We may summarize the result of this section in the form of the following theorem:

The & equivalent of the Heisenberg operator A(Q)(Zz— a,2,*~ a7 t)defined by (3.1), is given by K(Q)(zz,
z,* ¢ |z,zf,to), which is the Green's function of the equation of motion for the £ equivalent of the density
operator p(?).

IV. JOINT DISTRIBUTION FUNCTION FOR TWO-TIME-CORRELATION FUNCTIONS

Let us now consider the correlation function R(Z ,,¢,) defined by

N PN 4,1
Rtyty) = (G087 ,606,Ga" 1), t,2t,), (4.1

where the sharp bracket denotes the quantum-mechanical average. We make use of Eq. (2.3) to expand
G,@a't,t)) and G,a,i1, ¢,) in terms of the ordering delta operators. This gives

L~ oAt 2 Q Q o ”

G.(a,a ,t))= fd Z1F1( )(zl,z,*,t,)A( )(zl—a,zl*—aT,t,), (4.2)

Gz(ayaT,tz) = fdzzze(Q)(Zzyzz*,t1)A(Q)(Zz ~d,2,% - aTytz)- (4.3)
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Using (4.2) and (4.3), the correlation function (4.1) can be expressed in the form

2 2 Q
R(tl,tz')=ffd 2,d zzFl( )(z,,zl*,tl)Fz(Q)(zz,22*,t1)0(22,32*,t2;z1,z1*,t1), (4.9
where
Q - N Q a -
0(22,22*,t2;21,21*,t1)=(A( )(zz_a,zz*_aT’tz)A(Q)(z1"a;zl*_aT,t1)> (4.5)

is the joint distribution function for two-time-correlation functions. Now using the result (2.8) and the
result of Sec. 3, we find that the 2-ordered equivalent F, A% of the operator § A(R)(z,-d,2,*-51,1,),
such that

SA@ s st s (@)
pA (zz—a;Z* a)tz)‘Q[FpA ]’

2
is given by
Q > Q
FpA( ). p 9)(z,z*,t1)exp(A1+T2)K( )(22,22*,1‘ lz,z*,tl), (4.6)

Similarly the £-ordered equivalent FA(Q) of the operator A(Q)(zl—ii,z *-a ,1,), such that

A(ﬁ)(z1 —d,z.* - att)= S:Z[FA(S—))]

is given by
Q)_ .2
FA( )_ 5 )(2‘21)' (4.7)
Now using Eq. (2.6), (4.6), and (4.7), we find that (4.5) may be expressed in the following form:

O(25,25%, 1552 1,2,%,1,)

-1 fdzz 5(2)(2 - zl)[Fp(m(zz,z*,tl)exp((IT1 +7\>2)K(§) (,22,,z2"‘,1f2 lz,z*,tl)]

le(Q)(zl *,t,Jexp(R; + %, )K( D vy 2 (4.8)

PRIt NUT
where now the operators K; and]\-;act onfunctionsof 2, and z,*. We now introduce the distribution function
<I>p(..9)(z,z*,t) for © ordering associated with the density operator 5(¢), via the relation

q»p(m(z,z*,t)= w_le(m(z,z*,t), (4.9)

so that @,(%)(z,2*,¢) is properly normalized (Trp =1). It is then seen from (4.8) and (4.9) that the joint
distribution function is given by

. (@) T
(P(zz,zz*tz,zl, 5 1) <I> (z ,tl)exp(A1+A2)K (z2,z *t lzl,zl*,tl). (4.10)

We now use the joint distribution functmn to find a relation between two-time averages and one-time
averages. For this purpose, we take Gl(a a t,) to be the identity operator. For the identity operator
F(Q)(zl,zl*,tl) 1 and (4.4) gives the followmg expression for the one-time average:

~ A Q
(G,@,a f 1)) = ffdzZLdzzze( )(zz,zz*’tz)@(zz,zz*,tz;31121*;t1)- (4.11)

On comparing (4,4) and (4.11) we find that, in both the cases, the essential time dependence, i.e., the
dependence on ?,, is contained in the joint distribution function @ (2,,2,%,¢ 5 2,,2,*,¢,) and this can be
taken as the statement of the exact regression theorem. The same theorem has been proved by Louisell
and Margburger!?in a different way. Lax has extensively used the regression theorem, in a slightly dif-
ferent form, to discuss Markoff processes in quantum-mechanical context.
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V. CONNECTION WITH THE MULTITIME CORRESPONDENCE

Let us write down the expression (4.4) for the case when Q represents normal and antinormal orderings,
respectively. For normal ordering it follows from (2.9), (2.10), and (4.10) that the correlation function
R(t,,t, ) is given by

2 A N
R(t,t,)= f dzzld Z2Fl( )(szl*atl)Fz( )(22,22*,1‘1)

X[@p(N)( * ¢ )exp< 5 3 )K(A)( 29,29%, 2Iz tl)], (5.1)

9z, 3z, *

For antinormal ordering, one has from (2.9), (2.10), and (4.10)

2 2
R'(tl’t2>_: ffd z,d 22F1(N)(thx*:tl)Fz(A)(Zz,zz*,tl)

@ ( b i) ™)
[@p (@25t )exp 52 ¥ 0z, K (22,22*,t2|21,z1*,t1) . (5.2)
In particular, using (5.1), the correlation function (a T 28(t,)) is given by
@A) = [firz,a22,(z,2)
7

X 2 _1_< o @p(N)(Zl,Zl*,t1)>< 2 nK(A)(Zz,zz*’tz]Zn'gl*;tx)>- (5.3)

n
n=0 n! ‘oz, 8z, *

On integration by parts Eq. (5.3) leads to
o

a1 2) 1)) = ffd zldzzz(zz*zl)K (22,22*,12|21,21*,t )exP( W)QP(N)(ZL,%*’Q)

—ffd z,d zg(zz*zl)K (22,22 s Izl,zl*,tl)ép(A)(zl,zl*,tl), (5.4)
where the relation!*
__® N .w @)
exp ( 821 321* )d)p (Zl’zl*’tl) ép (21,21*,t1) (5.5)
has been used. Similarly the relation (5.2) gives
T s - (2, 72 ) W)
<LZ (tz)a(tl» = ffd sz zl Zz*[(zl"' 3/321*) q:‘p (zl,zl*’tl)]K (zzyzz*;tzlzlszl*ytl)o (5-6)

The relations (5.4) and (5.6) follow easily from the multitime correspondence between classical and
quantum stochastic processes. For it has been shown elsewhere!5 6 that the generating function S, for
the time ordered, normally order correlation functions

. T T w
(@) 1 [ )) e, ) Lael Y, €zt ),
is given by
- 5 5 7 igkzh*+i£)\*z>\ @A)
S'f"'fd R e N L L W TNy (6.7)

Here K(A)(Z)\,Z)\*,l)\lzk_l, Z) —1%, tx—,) for A #1 is the Green' s function of the equation of motion satisfied
by the antinormally ordered equivalent of the density operator, and forx =1, K @) is given by

The generating function S can also be expressed in terms of the Green's function KWV )(zx,zx*,t )Y lz‘;\_ 1,

* A=1), i.e.
zl-—l ’.tl—-l)’( 1),16,
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2 2, W)
s=ff &2yena o I K Gua i 15 = pAh ot )

xexp (i, *z, +18, 2, * + £ £ ¥), (5.9)

N) @

where K( = (N)(zl,zl*,tl). (5.10)

pE 512yt = 2,

Expressions of the type (5.1), (5.2), (5.4), and (5.6) are useful in computing the spectrum of amplitude
and phase fluctuations of, say, laser beams!’ One usually calculates the Green’s function appearing in (5. 4)
and (5.6) by eigenfunction-expansion methods!’18, In some cases one can also obtain closed expressions
for the Green's functions. As an example we consider a system for which the Hamiltonian is given by

H=o0t)d'a+g@)a+gx@)d’, (=1). (5.11)

In this case, thedistribution function <bp for normal as well as antinormal orderings satisfies the equa-
tion of motion?®

od 99 0P
i =1 w(t)a=g* )] +[ wt)2* +20)] 5L - (5.12)

The Green's function is given by (see the Appendix)

N,
K( )(22,22*,t2 ,21,21*)t1) :K(A)(Zzyzz*:tz 'zvzl*ytx)

= 5(2)[ zz -e - iB(tzytl)zl + ie—iB(tZ’tl)j); tzdt'g*(t’)e iB(t’Jl)], (5013)
1
[
where  Blty,t,)= [, 2w (t)ar. (5.14)
1
Then Eq. (5.4) and (5.6) lead to the following expressions:
At A 2 A)
(@' @aw) = Ja“z @ e,z %)z
£ 3
X < e - lB(tzytl)Zl —-ie - lﬁ(tzytl)ft 'tzdt'g*(t')elB(t,’tl)) (5'15)
1
- (2 0 (™)
= fa zl<zl+az1*_>¢p (21215
*
X(e T, g o B [ agpga e iﬁ(t"”) : (5.16)
1

One could have also obtained the result (5.15) by using the coherent-state techniques, for itis well known!®
that for the Hamiltonian (5.11) a coherent state remains a coherent state as the system evolves in time.

VI. HIGHER-ORDER JOINT DISTRIBUTION FUNCTIONS

Using again the method of Sec. 4, we can show that the multitime correlation function, defined by

R(tl,tz,...,tn)z(@n(t ). . .Gl(tl», >t .. .>t1),

n n-1
is given by -
e e (2 g’ D *t )eeop (@) *
R}t . .,tn)—f Ja 2yt d 2 F (R 2 Ko ) By (2,2 0%t )
<P, D 2t V@@ 2 *t s a2z R L) 6.1)
1 Ryt CRR, S - R R ) .

* . . *
where (P(zn,zn e+ 32 ,tl)

IO I PR LV VAL ORSE PICRF LRI\ [ I LS (6.2)
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To simplify (6.2) further, we make use of theAfollowmg theorem:
The Q-ordered equlvalent of G,(@,aT)«+Gy(a,at) is given by's

exp,< 2 Ags T A:J)Fl( Yaga ) r Do a0, =12 .0 (6.3)
i<j 1<j
al*:z*
with
G, 8 3, 3 B 5 9 I
A== 2 g z”ra.a‘a‘.”(w.—faa. +—aa.*a“or>’ (6.4
i J i g i 7 J
j_1/8 8 3 @
A, _§<6a. da.* oda.foa, )° (6.5)
i g i j

Then using (2.6), (3.10), (4.7), and (6. 3) we find that the joint distribution function is given by

. . . ZJ > ij
@,z %tz Lz Kt 5oL Gz,z Kb )= exp( 2, A A }
wn’nn-1n-1"n-1 0 S WS | i<j 1 i<j 2

s Dq @ — (=1, ..n).

@) * x
" e %t K (,2,, ,tnlotz,a ¢

*
g%ty *tyla,,a %)

( 2! 2 b
(6.6)

o F=z%
l

These higher-order joint distribution functions are useful especially in defining quantum mechanically a
Markoff process. We can define quantum mechanically the Markoff process as a process for which these
higher-order joint distribution functions factorize, in the following way'!:

* * o .
(P(zn,z ot n* " "Zl’zl ’t )= (P(z zn ’tnlzn—l’zn-—l ’tn-l)y(zn—l’zn—l*’tn—l" : "zl’zl*’tl)' 6.7)

Here the first factor is independent of txn—,,fy—5 . . ., .

Finally we mention that throughout this paper we consxdered functions of Boson annihilation and creation
operators @ and a'. However the same problem could have been treated by considering functions of posi-
tion and momentum operators ¢ and p Then the joint distribution functions are functions of p and ¢ vari-
ables, where p and ¢ are the ¢ numbers associated with the operators p and g respectively. These joint
d1str1but1on function of p and ¢ may be used to find quantum corrections to classically defined correlation
functions. A different approach has been employed by other authors (see, for example, Ref. 4 - 6).

ACKNOWLEDGMENT Following Louisell and Marburger,!3 we try a
solution of the form
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APPENDIX = exp ( lz- Y(t)]g[:) rE)]~ +1nI‘(t)>. (A.4)
In this Appendix, we wish to determine the
Green’s function associated with the equation From the equation (A.4) at ¢ =t , and the formula

(5.12). The Green’s function K(z,z*,¢ |z,,2,* , o) (A.3), it follows that
is the solution of the differential equatlon
Mto) =24, v*(t,)=2,*, &) =1/€, I(t,)=€. (A.5)

i K[ _w(t)z —gr(t)] 2K
i 0z We now substitute (A.4) in (A.1) and equate the
coefficients of equal powers of 2 and z2* on both
oK : ; .
[wt)z*+g(t)] ot (A1) sides. We then obtain the equations
subject to the initial condition 8E(t) _ 0 (A.6)
(2) o ’ ’
K(z,2%,t, [24,20%,8,)=0  (2—2,). (A.2)
() -
We express 6'” in the form af T iw(t)n(t) == zg*(t), (A.7)
) : i 8I(t) 2
0(2)(2—Zo)= lim 66—5(2—20)(2—20)*. (A'3) r(t) st Ze—l')/(t)l

€ >0
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=eg(t)y(t) —eg*(t)y*(t).  (A.8)

Using (A.7) and (A.8) we find that
aI(¢

TtL ) (A.9)

The solution of (A.6) - (A.9) under the initial con-
dition (A.5) is given by

£ =£(t)=1/e, (A.10)
I(t)=1I(t,) =¢, (A.11)
.y(t):e "'iﬁ(t7t0)zo

ie” iB(t,ty) Jtl; dt g+t )eiﬁ(t',to)’ (A.12)

Bt,ty)= ftt w(t)dt" . (A.13)

On substituting (A.10)-(A.12) in (A.4) and taking
the limit € =~ ;| we obtain

K(z,z*,t Izo’ Z2o*, 1)

lim _ -e[z-v()][z-7(t)]*

=€"°°

:é(zj[z _'y(t)], (A.14)

where v(t) is given by (A.12).
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