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Finite-temperature corrections to the limiting low-temperature behavior of the thermal con-
ductivity and spin-diffusion coefficient of a normal Fermi liquid are calculated using a quasi-
particle Boltzmann equation which is solved by the variational method. For liquid He the
most important corrections come from small momentum transfer processes, the amplitude
for which can be determined exactly by using Landau theory. The expressions obtained are
evaluated in detail, assuming that all Landau parameters vanish for l ~ 2, and comparison of
theory with experiment yields an estimate for the previously undetermined Landau parameter
E~ . The calculations are compared with calculations based on paramagnon theory. -

1. INTRODUCTION

Although the limiting low-temperature behavior
of the specific heat, staticresponse functions,
and transport coefficients were predicted over 10
years ago on the basis of Landau's theory of nor-
mal Fermi liquids, ' it is only recently that the
properties of a Fermi liquid at finite temperatures
have been studied theoretically. The main stimulus
to recent theoretical work was the experimental
observation' that even at 50 m K the specific heat
of liquid He' showed appreciable deviations from
the linear temperature dependence predicted by

Landau theory. Doniach and Engelsberg' were
able to account for the observed specific-heat data
by using a model in which persistent spin fluctua-
tions play an important role. They found that the
specific heat calculated using their model had a
contribution of order T'lnT as well as the term
linear in T predicted by Landau theory. Other
calculations of the T' lnT term in the specific heat
have been performed by Brenig and Mikeska~ and
Amit, Kane, and Wagner' using Landau theory,
by Brenig, Mikeska, and Riedel' and Brinkman
and Engelsberg' using the random-phase approxi-
mation, and by Riedel' using the shielded potential
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approximation of Baym and Kadanoff. '
The low-temperature behavior of the thermal

conductivity K and the viscosity g were first dis-
cussed in detail by Abrikosov and Khalatnikov, "
and the spin-diffusion coefficient D was considered
by Hone. " These authors used a quasiparticle
Boltzmann equation with a collision term to take
into account binary collisions and found that as
T- 0 the quantities 1/KT, 1/DT', and 1/q T' tend
to constants. Finite-temperature corrections to
the limiting low-temperature forms of the trans-
port coefficients have been calculated by Rice"
using a model in which bare fermions are scattered
by persistent spin fluctuations ("paramagnons").
In this model the fermion-paramagnon interaction
is treated in much the same way as the interaction
of electrons and phonons in the electron-phonon
problem. " The part of the paramagnon propagator
is played by the wave-number- and frequency-
dependent susceptibility. Rice found that the lead-
ing finite-temperature corrections to 1/KT and
1/DT' were of order T and that the leading cor-
rections to 1/qT' were of order T'.

By inspecting the paramagnon theory calculations, '2

one can see that the terms of order T in 1/KT and
1/DT' come from processes in which fermions
emit or absorb small momentum paramagnons.
Since a paramagnon is nothing more than an inter-
acting particle-hole pair, such scattering pro-. d
cesses may alternatively be described as small
momentum transfer binary collisions between
quasiparticles, and therefore one can evaluate
transport coefficients using the standard quasi-
particle Boltzmann equation' with a binary
collision term. The observation which is crucial
to the work to be described below is that the ampli-
tude for collisions in which the momentum trans-
fer q is small may be determined exactly in terms
of Landau parameters without invoking the concept

of a paramagnon. Thus one finds that corrections
to 1/KT and 1/DT' of order T are a, general fea.—

ture of any Fermi liquid irrespective of whether
or not it is almost ferromagnetic or, more gen-
erally, almost unstable against a spontaneous
deformation of the Fermi surface. "

Thus the linear correction terms to 1/KT and
1/DT' coming from small momentum transfer
processes, far from heralding a breakdown in
Landau theory, may in fact be calculated in terms
of Landau parameters; and one is led to the re-
markable conclusion that one can pin down some
of the finite-temperature corrections to 1/KT
and 1/DT' better than the low-temperature limits
of these quantities. Our results enable us to pre-
dict a relationship between the finite-temperature
corrections to 1/KT and those to 1/DT' without
making any assumptions about the size of the
spin- antisymmetric Landau parameters. This
relationship is well satisfied for liquid He' at
low pressures.

The basic calculations of the finite-temperature
corrections to 1/KT and 1/DT' are described in
Sec. 2. Certain mathematical details relating to
the evaluation of these corrections in terms of
Landau parameters are given in Appendices A and
B. In Sec. 3 applications of the theory to almost
ferromagnetic Fermi liquids and to liquid He' are
considered, and an estimate of the Landau param-
eter I", is obtained. A brief discussion of the
finite-temperature corrections to 1/KT and 1/DT'
arising from processes in which the momentum
transfer is not small is given in Sec. 4, and we
argue that these corrections should be small in
liquid He' and in almost ferromagnetic Fermi
liquids. Section 5 is a conclusion, and in Appen-
dix C we discuss the relationship between our
work and the paramagnon theory calculations of
Rice. "

2. CORRECTIONS RESULTING FROM SMALL
MOMENTUM TRANSFER PROCESSES

In this section we describe the variational calculation of the transport coefficients, and for definiteness
we consider the calculation of the thermal conductivity. If it is assumed that the collision integral in the
quasiparticle Boltzmann equation contains only terms corresponding to binary collisions, the variational
expression for the thermal conductivity is given by"

-2
W» n,n, (1 —n, )(1 —n, )(Q, +P, —Q, —Q,)' Q P,e,v, u

x5 (e, +c,—g, —&,)5 5~
3+ 4 P +P2 P+P

Here &z and vz are the free energy and velocity of a quasiparticle of momentum pz and spin Oz and W»'4
is the transition probability for the process 1+2-3+4 with i —= (pf, o'f ). Also pf is the variational trial
function and n. —= n(ez) is the Fermi distribution function [exp(pe. )+lj, where p is the inverse tempera-
ture uis a.n arbitrary unit vector, and the sum in Eq. (1) is to be taken over all distinct final states.

To calculate 1/KT we need to know the quasiparticle scattering amplitude, and in general this depends
on both the energies and the momenta of the quasiparticles. However, when the momentum transfer
q (= p, —p, ) is small, and p = 2~ (p, + p, ) and p' = ~ (p, + p, ) are nearly equal to the Fermi momentum pF,
the scattering amplitude depends chiefly on the relative orientation of the vectors p, p, and q, and on
the variable s =or/vFq, where &o is the energy transfer corresponding to the momentum transfer q and
vg is the Fermi velocity. For the purposes of the present calculation the dependence on other variables
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may be neglected.
The possible spin orientations of the initial and final quasiparticles are shown in Fig. 1, where for

simplicity we show only processes in which the quasiparticle of momentum p +q/2(= p, ) has spin up.
From the invariance of the quasiparticle interaction under rotation of thy spins, it follows that the
amplitude for the process shown in Fig. 1(c) is the difference between the amplitudes for the other two
processes. We denote the amplitudes for these processes by the expressions

(a) [A (cos8, cos8', p, s)+A (cos8, cos8', p, s)]/~(0),

(b) [A (cos8, cos8', P, s) —A (cos8, cos8', P, s)]/~(0), (2)

(c) 2A (cos8, cos8', g, s)/~(0),

where ~(0) =m*pF/w' is the density of quasiparticle states at the Fermi surface. (m*=p /v& is the effec-
tive mass. ) 8 is the angle between p and q, 8' is the angle between p' and q, and Q is t e angle between
the plane containing p and q and the plane containing p' and q. As and A~ may be determined in terms of
Landau parameters, and we give certain of the mathematical details of this calculation in Appendix A.
Finally we remark that in evaluating the scattering amylitude for real processes one must put the initial
and final quasiparticles on the energy shell, which is equivalent to the condition co =& i —&p —

qg~g ym g~I 1 m
+ 2q p —2q'

&et us now evaluate 1/Kf. T, the contribution to 1/KT which comes from processes in which the momen-
tum transfer q is less than some cut-off momentum ql («pF). For Qz we take the usual trial function
e~ vz u, "and to the order to which we are working the quasiparticle velocity may be replaced by vy.
The transition probabilities W are given by 2v times the squared moduli of the amplitudes 2(a)-(c).
On substituting the transition probabilities into Eq. (1), one finds

Kf T m*'p& T' ~
(

+4+p

, P~ P

dug(IAs(cos8, cos8', P, s) I'+ 31A (cos8, cos8', Q, s) I')

(eP —1)(1—e ~ )

X[n(6 I ) n (E I )j 5(QJ p q/m )[n(E g I ) n(6 I )]
p —&q p+&q p —&q p +2q

x 5(&- p' ~ q/m*)((p(o+qa ) [(p —p~)(o+q (e —e,)]),p p p
(3)

where 2 e =&p+i q+a &q. In deriving Eq. (3) we have averaged over all directions of p, p', and q
relative to u for f~ed values of 8, 8', and P, and we have also used the identity n, (l —n, ) = (n, —n, )/
(1 —exp[- P(e, —e,)]j. The term in braces in Eq. (3) may be replaced by p (p —p') &u'+q~& ', since
the other terms vanish on performing the integrations. This term is expanded in powers of q, and the
summation over q in Eq. (3) is transformed into an integral over s between the limits I&el /v&ql and
unity. The zeroth-order term in this expansion, pF'(1 —s')(1- cosp) ~', leads to a contribution to
1/KI, T which may be written in the form

f (I —cosy) f —(1 —s') [IS (s, y)l'+3I& (s, y)l'], (4)

where 8 (s, Q) =A (s, s, p, s) and s0= Ix) T/vF ql . Strictly speaking the limits of the x integration in (4)
are +vF ql, /T but these may be replaced by + ~ without altering the term linear in T. The divergence
at the lower limit of the integral over s is separated out by rewriting the integral in the following way:

1

f dss IS (s, Q)l (1 —s ) =(v&q&/Ixl T) IS (0, $)l
SO

~ 4p

IS (0, $)l —IS (s, P)l
dS

S~ + IS (s, y) I + I a (0, y) I
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p -q/2t p'+q/2t p' q/2l p~+q/2) p'-q/2) p'+ q/2j FIG. 1. The possible spin orientations of quasi-
particles in a binary collision. Only processes in which
the quasiparticle of momentum p+q/2 has spin up are
shown.

p+ q/2 p- q/2I p+ q/2 p-q/2f p+q/2

(b) (c)

(6)

The first term in Eq. (5) gives a temperature-independent contribution to I/Kl T, and the term in square
brackets gives a contribution linear in T. Higher-order terms in the expansion in powers of q of the
expression in braces in Eq. (3) do not give contributions linear in T, although they do give temperature-
independent terms and contributions of order T and higher. Thus, if we retain only terms of order T,
we may write Eq. (3) in the form

(1/K~T) —(I/K~T)T 0
———[810&(5)m*'/n'pF') ( +3- )T,

where

=' = f "
(1 —cosP)

0

18 (0, y)I —)8 (s, y)l"-
+ tO, "(s, y)i I+~~'(O, y)i

and l' (n) is the Riemann zeta function of order n. We remark that the right-hand side of Eq. (6) is inde-
pendent of the cutoff qL. Calculations of a number of contributions to = will be found in Appendix B but
we defer discussion of these results until the next section.

If one now neglects correction terms of order T coming from processes in which the momentum transfer
exceeds ql, one can immediately rewrite Eq. (6) in the form

(1/K T) —(1/KT) 0
———[810$(5)m*3/mph '] 5'kB( + 3 )T, (8)

where we have inserted the appropriate powers of h and Boltzmann's constant k&.
The calculations of the finite-temperature corrections to 1/DT2 closely parallel those for 1/KT, and one

finds

(1/DT')- (1/DT') 0=-36vg(3)[m*'k '/p 'g (I+F0 )]= T (9)

In Sec. 4 we shall return to the problem of processes in which q is not small, and we shall argue that
the other correction terms linear in T are small in liquid He' and in almost ferromagnetic Fermi liquids.
However, for the present we accept the validity of Eqs. (8) and (9) and in the next section we consider
applications of these results.

3. APPLICATION OF THE RESULTS

(i) A general result

By comparing Eqs. (8) and (9) one can see that
if it is possible to estimate =, two independent
"experimental" values of ™amay be obtained
from measurements of the thermal conductivity
and the spin-diffusion coefficient. If the theory
gives a consistent account of the data the two
values of =a will be the same. We shall not dis-
cuss this result further here, but will return to
it when we consider the experimental data for
liquid He' later in this section.

(ii) The almost ferromagnetic limit

The results of our calculations are rather com-
plicated, in general, but they may be simplified
considerably in the case of an almost ferromag-
netic Fermi liquid (FP - —1). In this limit the
pa~a~etc~ A,~ =F, /(1++, ) is large, and it will
therefore be a good approximation to consider
only the leading term in an expansion of " in

descending powers of A, . = is independent «
the antisymmetric Landau parameters and may
therefore be neglected. In Appendix B we give
expressions for ™acalculated on the assumption
that Landau parameters for / ~ 2 may be neglected.
By examining these, one can see that the dominant
contribution to -a in the almost ferromagnetic
limit is ——,m2(A, s) 3 and comes from the first
term in the expression for =,P [Eq. (B.3)]. The
dominant contribution to =„Eq. (B.6)] is of
order (Ap)'Ap and may therefore be neglected.
If one includes higher Landau parameters in the
calculation of - a, the dominant contribution is
still —&w2(A, ~) . Substituting this value into
Eqs. (8) and (9) one finds

1
ET KT T O

1215 (5)
m @2 ~ (A a) 3T

2 p 7 B
(10)

~(5)
T 3 T(»)

8 M
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1 1
DT DT y 0

3 Cls4 k (g )
=9~g(s)P~' 5 1+@ ~

(13)

temperature) to a straight line, Abel and Wheatley
fitted values of 1/K(T" + b, ) versus T* + b to a
straight line for different values of 4. A b, of
+0.3 m K gives a smaller mean-square deviation
from the line than either 0. 2 or 0. 4 m K. This
value of 6 is consistent with values determined
by other methods. " In Wheatley's opinion 7*
+ 6 with a 6 of 0. 3 m'K is very close to T above
3 m'K, and we assume in our analysis that the
difference may be neglected. For b, =0. 3 m K
a fit to the data gives

where T~, the effective magnetic temperature of
the Fermi liquid, "is given by the expression

T = P (1+E )/3m*k (14)

TM may be obtained directly from measurements
of the magnetic susceptibility without making use
of a value for m*. The expressions (11) and (13)
will be useful in Appendix C where we compare
our calculations with those based on paramagnon
theory.

We notice that according to Eqs. (10) and (12)
the finite-temperature corrections to 1/KT and
1/DT' vary as (AP) T, and we now try to explain
this dependence in simple terms. As one can see
by examining the discussion at the end of Appendix
8, the normalized quasiparticle scattering ampli-
tude for small momentum transfer processes is
well approximated by the expression

A0 /(1+ ~i vA0 s) when is I
=

I +i /v&q((1.

Thus the transition probability falls off quickly as
[sl increases beyond the value 1/[A, ~t . In the
limit 7.'- 0 only scattering processes in which
s- 0 are important. However, at finite tempera-
tures the energy transfer in a collision is typi-
cally of the order of T(s- T/v&q), and therefore
for processes in which q& lAgl T/vp the transi-
tion probability will on the average be considerably
less than its value in the limit T- 0. Thus in
Eqs. (10) and (12) a factor }A/I T is accounted for
by the number of "ineffective" values of q weighted
with a factor 1/q', and two remaining factors of
A p~ com e from the transition probability. The
weight factor is most easily explained by looking
on the binary-collision process as the scattering
of a quasiparticle-quasihole pair from one state
to another. The density of initial and final pair
states of a given energy each vary as 1/q, which
accounts for the weight factor 1/q'.

(iii) Application to liquid He'

Although the results for the almost ferromagnetic
limit are not applicable to liquid He' there are
large finite-temperature corrections to 1/KT and
1/DT' whose magnitude is consistent with theory.
The thermal conductivity data of Abel, Johnson,
Wheatley, and Zimmermann" have recently been
re-analyzed by Abel and Wbeatley" in connection
with some thermometry studies. Instead of fitting
1/KT* versus T* (T* is the effective magnetic

1/K (T*+4) = [(2.87+ 0. 1)

—(18+3)(T+ + A)(K') '] F10 2 sec cm/erg

A possible error of + 0. 1 m'K in 5 was included
in estimating the errors in the parameters of the
line. A plot of the data is given in Fig. 2. The
spin-diffusion data of Anderson, Reese, Sarwinski,
and Wheatley" were analyzed using 6= 0. 3 m'K,
and the fit to the data is given by

1/D(T*+ b)' = [(0.695+ 0. 012)

—(2. 0+0. 3)(T*+b, )(K') '] F10' sec/em' (K')'

—e/4 =2. SSS.

5.0

a) 2.8
N
'o

2.6
I

I I

2.4
I-

2. 20 40
(T"+ g) ~ oK

*

FIG. 2. The thermal conductivity of liquid He at
low pressure (the saturated vapor pressure). The data
points are those of Abel, Johnson, Nheatley, and

Zimmermann (Ref. 18) and the line is given by [E(2'*
+&)] ~= f2.87 —18(T*+4) (K ) i] &10 sec em/erg
(&=0.3 m'K) which is obtained by fitting a straight line
to the data.

l0 50

These data are displayed in Fig. 3.
To check the prediction made in (i) above we

need a value of "s. We calculated this assuming
that all spin-symmetric Landau parameters vanish
for 1 ~ 2. The general formulas given in Appendix
8 are not particularly useful for numerical calcu-
lations for liquid He' because of the large amount
of cancellation between the terms from the poles
corresponding to collective modes and the other
contributions. However, we do not need to know
-.s with great accuracy since -.s «-.a For E s
= 6. 0, the value obtained from the data of Wheatley, "
and I' ps -, = may be evaluated analytically by the
techniques described in Appendix 8 and we find
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FIG. B. The spin-diffusion coefficient of liquid He

at low pressure (0.17 atm), The data points are those
of Anderson, Heese, Sarwinski, and Wheatley (Ref. 20),
and the line is given by tD(T*+&) ] =- [0.695 —2.0(T*
+&) (K') «] && 10 sec/c~ (K') (&=-0.3 ~'K) which js
obtained by fitting a straight line to the data.

The corrections to the strong-coupling approxi-
mation are of order (F,s) 'for F-P =8 and are
therefore completely negligible for liquid He'. Us-
ing Eqs. (8) and (9) and the values m*/m = 3.0 and

F~ = —0. 67 obtained from the work of Wheatley, ',"
we find that the "experimental" values of =& ob-
tained from the thermal conductivity and spin-
diffusion data are 11+2 and 13+2, respectively. '
The agreement between these numbers is remark-
ably good. We can now go one stage further and
estimate F, if we make the popular assumption
that Landau parameters with l &2 may be neglected.
Th values we find are

F, = —0. 88 + 0. 09 (thermal conductivity)

and F, = —0. 58+0. 09 (spin diffusion).

4. OTHER FINITE-TEMPERATURE CORRECTIONS

In this section we briefly discuss contributions to
1/KT and 1/DT' from processes in which the mo-
mentum transfer is not small. For a system of
fermions interacting via a weak local potential one
can calculate the contribution to 1/DT' of order T
exactly, and the result depends only on the Fourier
transform of the potential for a wave number 2p+.
If one calculates the finite-temperature corrections
coming from processes in which the momentum
transfer (in either the direct or the exchange chan-
nel) is small, one obtains a different answer. The
procedure employed in this paper is therefore in-
consistent for the weak-coupling problem and pre-
sumably the inconsistencies will persist under
more general conditions, although we have not iso-

The quoted errors are only those due to uncertain-
ties in the parameters of the lines —the true errors
are certainly larger and include contributions from
approximations in the theory.

The values we obtain for F,~ are consistent with
the inequality F, ~ F, derived by Leggett and
are not very different from the estimate F, = —0. 70
based on the forward-scattering sum rule, '4 A,
+A, A, +A, =0 assuming higher Landau param-
eters vanish.

lated the particular sorts of process which give
rise to the other contributions linear in T. However,
we note that in liquid He' and in almost ferromag-
netic Fermi liquids the linear correction terms
coming from small momentum transfer processes
are greatly enhanced as a result of the strong de-
pendence of the scattering amplitude on the vari-
able s (essentially the energy transfer) .By study-
ing the Bethe-Salpeter equations for particle-
particle and particle-hole scattering we have sought
in other parts of momentum space for a strongly
energy-dependent quasiparticle scattering ampli-
tude which could lead to a large enhancement of
the finite-temperature corrections to the trans-
port coefficients. We did not detect any energy de-
pendence which would alter the linear correction
term" to 1/KT and 1/DT' and conclude that in liq-
uid He' and in almost ferromagnetic Fermi liquids
only the contributions from small q processes will
be enhanced. It should therefore be a good approxi-
mation to neglect all but small q processes.

Our conclusions are consistent with the results
of Amit, Kane, and Wagner which indicate that if
one neglects processes in which the momentum
transfer is not small the inconsistencies introduced
into the calculations of non-analytic terms in the
self-energy are only of the order of a few percent
for liquid He'.

Finally we note that collisions involving three or
more quasiparticles make no contribution to the
linear corrections to 1/KT or 1/DT .

5. CONCLUSION

The theory we have devoloped gives a consistent
account of the available data for D and K for liquid
He'. By fitting our theory to the experimental re-
sults for K and D we find F,~= —0. 66 and F,
= —0. 58, respectively. The estimates of F, are
likely to contain appreciable errors due to our use
of a variational method to calculate the transport
coefficients, '6 the neglect of processes involving
a momentum transfer q& qL and the neglect of
Landau parameters for l ~2.

If one tries to calculate finite-temperature cor-
rections to the viscosity using the methods de-
scribed here, one finds that the dominant terms do
not come from small-angle scattering processes
and therefore cannot be calculated in terms of
Landau para, meters alone.

The calculations we have described are very
close in spirit to recent work of Emery, '4 but the
results differ by appreciable numerical coefficients
as a result of approximations made in the latter
work and a different procedure for solving the
Boltz mann equation.

Finally we stress the value of more extensive
measurements of the thermal conductivity and
spin-diffusion coefficient of liquid He at low
temperatures.
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APPENDIX A. SOLUTION OF THE LANDAU EQUATIONS

In this Appendix we describe the evaluation of A (cos8, cos8', P, s) and A (cos8, cos8', P, s) in terms
of Landau parameters. Landau&s version of the Bethe-Salpeter equation' for a particle-hole pair may be
written in the form

A'(p, , p, ', y, s) =A'(p, p', y, )+ (4~)-~ f dQ'A (p, , p, ",P —P", s)[p, "/(s —p, ")]A (p, ",p', P", ), (A. 1)

where dQ" is the element of solid angle dp,
"dP". To solve Eq. (A. 1) the A~ are expanded in terms of

Legendre polynomials:

A'(p, , p, ', y, s) = Q Al l ™(s)Pl (p, )P1 (p, ')e™
l, l2, m 1

(A. 2)

The values of Al l
' (~) are related to the Landau parameters by the expression

1 2

Al l (~) =
51 I [(l —im l)!/(l + iml )!]El, (A. 3)

Combining Eqs. (A. 1)—(A. 3) we find

Al I
'

(s) =& [(l —im i)!/(l+ iml)!]El -ZFl Q A ™(s),
1 2 1 2 1 l 1 13 32

3

(A. 4)

where Qll, (s) =[(l —imi)!/(l+ imi)!] f~dp'E (W')[p'/(p' —s)]&p (p') ~

We solve Eq. (A. 4) a,ssuming that only the Landau parameters Eo& and E,~ are nonzero. The solutions
are

A, (s) = E, [1+E,Q„(s)]/&, A„(s)=A, = —E Q„(s)F, /4

A„(s)= F, [1+F0Q„O(s)] /b, A„(s)= —,'E, [1+E,Q„'(s)]
(A. 5)

where dP = [1+E,Q»'(s)] [1+EOQ»'(s)] —E,E,[QO, '(s)]

The functions 0 are given by the expressions

Q„'=y, Q„'=Q„'= sy, Q„'=-', + s'y, Q„'=-,'[(1-s')y--,' ],
where y(s) = 1 ——', s ln[(s+ 1)/(s —1)] .

Substituting Eq. (A. 5) into Eq. (A. 2) one finds

(A. 5)

8 (s, P) =—A (s, s, Q, s) = 6, (s) + 2@, (s) cosP,

where 8, (s) = (F„+A, s /[1+ (E, +A, s )y ]

and a, (s) =E, (1 —s )/2(1+ —,'F, [(1—s )y ——,']3.

(A. 7)

(A. 8)

Al is defined by the equation Ap =Ep[1+Fl ~/(2l+ 1)]

APPENDIX B. EVALUATION OF "

In this Appendix we describe the calculation of some of the terms which occur in the expressions for -~



PE THICK

[Eg (7)]. Substituting Eq. (A. 7) mto Ea ( ) o"' ""
(B. l)

where

+ft '(s)a '
(s) +e (o)@ (B.2)

z z z z

sI

z
d

z be evaluated analytically by using the fact that-00 an -» may

fme (s) = —~ ssa (s)a (s)e(l —}sl), fmy(s) = 2 ms&(1- Isl)

where 8(s) is the Heaviside step function. e mrs ow ere s is ' ' ' Th f' t of these results is essentially a form of the optical
theorem. Equa ion . mt' (B 2) ay therefore be written in the following way:

([a '(0)] fm)f(s)+fma '(s)
z 2ds —fme '(s)) +[a~ 0

7t'S s

ninri . 4 andtheThis integral is easily conver e in o a cot d
' t contour integral around the contour C show 'g.

result is

2mis ( s'

s has a cut along the real axis from s = —1 to s =+ 1 but the discontinuity acrossThe function in the braces has a cu a
-0. It it therefore permissible for t e con our o cr

~ ~

r the m =1 collective mode in liquid He'&. The con our can e e(e. g. , zero sound or e nz =

nd the circle at infinity as shown in Fig. 5. The inte-the pole at the origin, the poles on the real axis an e circ e a
grals may be evaluated easily, and one finds

2 2 i z z z z z y zgz) [. 7j +o +i++ ] 2Ao + ++0+0 &+1 1

(B.3)+ ,'Z, 'Z, '+~I,-'(I, ') +-,'(Z, ) +2ft, (s, )

- ' '(a ') [l - (~ /i6)X, ' ] + -', Z, '~,' -—,",(Z,
'

) + 2ft, (s,') .~ll 2 1

B,~(s,~) and A, (s,~) are contributions rom ef th poles corresponding to collective modes and are given by
the equations

I

I r w i i r i as i r re 5 x z v i z s ~ i z i I
$ Q(gJ F/I

—S l s'

FIG. 4. The contour C. The crosses correspond to
poles, those at +s being due to possible collective
modes.

FIG. 5. The contour obtained by deforming the contour
e (Fig. 4),
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)),'(s)=-[(s —))is ][)",'+x, 's )(~ [[)','+a, 's )x(s)])

and )),[s) = [[s' —))'is'1 ( q, [[)—s')g(s)])

(B.4)

where s,& and s,~, the velocities of the collective modes measured in units of the Fermi velocity, are the
roots of the equations

1+ (E +A, s, )}[(s,) = 0, and 1+'F, [(I.—s, )})'(s, ) ——,']=0.

has not been evaluated analytically but analytical approximations suitable for calculating =» for
liquid He at low pressures are described in Sec. 3. Here we give an analytical approximation for =„
when A, is large. This result is used in our discussion of an almost ferromagnetic Fermi liquid in Sec.
3(ii). When AJ is larger, ~(s) [Eq. (A. 8)j has a strong dependence on s for small va.lues of s, and may be
approximated by A,'f/( I+,i~mA—,fs), which is obtained from Eq. (A. 8) by putting A, ~= 0 and Re)[' = 1. Where
@„~(s)is large and rapidly varying, CP(s) varies only slowly and may be replaced by A, f/2, its value at
s =0. Making these approximations Re "» may be evaluated by using Eo. (B.2). The dominant term as
A ~- — is given by

Re. , -—()) /8)A, '(A, ')

APPENDIX C. COMMENTS ON PARAMAGNON
THEORY

The most important differences between our
calculations and those of paramagnon theory" are
due to the fact that the latter calculations start
from a Boltzmann equation for bare fermions and
therefore contain the bare fermion mass m where-
as our calculations start from a quasiparticle
Boltzmann equation, which contains the effective
'mass m*. Since the quasiparticle Boltzmann
equation has a well-defined microscopic basis"
it would appear that m~ is the quantity that should
appear in the transport equation. The quantitative
effects of this difference are most easily seen by
considering the results for the almost ferromag-
netic limit given in Sec. 3 (ii). The paramagnon
theory analogs of Eqs. (11) and (13) differ from
these equations only in the replacement of I",~ by
—I, where I is related to F, by the equation

m~/m =(I+E, )/(1 —I) .

The predictions of Eqs. (11) and (13) differ from
those of their paramagnon analogs by a factor of
about 2. 5 if one uses values of the Landau parame-
ters appropriate for liquid He' at low pressure.

Results similar to those of paramagnon theory
may easily be derived from Eq. (1) if one makes
a number of further approximations. Firstly, one
must neglect the term 2(Q, —[])),)(Q, —Q, ) in the ex-
pansion of (Q, + Q, —[I),—&f&4)' and, secondly, one
must neglect all Landau parameters except I', .
As to the latter approximation we have already
seen that it is not justified in liquid He', and the
first approximation is equivalent to the assump-
tion in paramagnon theory that paramagnons are
in equilibrium. By explicit calculation one can
see that the first approximation leads to errors
in =s of order A, (A, )' and of order A,s but that
it gives correctly the result in the almost ferro-
magnetic limit.

In conclusion we note that our results for D agree
in the appropriate limit with the calculations of Ma,
Peal-Monod, and Fredkin" based on a study of spin
waves in the paramagnon model.

Research sponsored by the Air Force Office of
Scientific Research, Office of Aerospace Research, U. S.
Air Force, under AFOSR Contract/Grant No. AF-
AFOSR-3 28-67.

~On leave of absence from Magdalen College, Oxford,
England.

~For a discussion of Landau's theory of a normal Fermi
liquid see, e.g. , D. Pines and P. Nozieres, The Theory
of Quantum Liquids (W. A. Benjamin, Inc. , New York,
1966), Vol. 1, Chap. 1. Our notation for Landau pa-
rameters is the same as that used in this reference.
The quantities I'~~ are usually denoted by @Z~ in the
Russian literature.

A review of the experimental data is given by J. C.
Wheatley, in Quantum Fluids, edited by D. F. Brewer
(North-Holland Publishing Company, Amsterdam, 1966),

p. 183.
S. Doniach and S. Engelsberg, Phys. Rev. Letters

17, 750 (1966).
W. Brenig and H, J. Mikeska, Phys. Letters 24A, 332

(1967) .
~D. J. Amit, J. W. Kane, and H. Wagner, Phys. Rev.

Letters 19, 425 (1967), and Phys. Rev. 175, 326 (1968).
See also D. J. Amit, Lectures at the Eighth Scottish
Universities Summer School in Physics, 1967 (to be
published) .

W. Brenig, H. J. Mikeska, and E. Riedel, Z. Physik
206, 439 (1967).

~W. F. Brinkman and S. Engelsberg, Phys. Rev. 169,
417 (1968).

E. Riedel, Z. Physik 210, 403 (1968).
G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287



400 C ~ J ~ PETHICK

{1961).
~ A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr.

Phys. 22, 329 (1959).
D. Hone, Phys. Rev. 121, 669 (1961).
M. J. Rice, Phys. Rev. 159, 153 (1967), and 162,

189 (1967). D. S. Betts and M. J. Rice, Phys. Rev.
166, 159 (1968).
' S, for example, R. E. P ange a d L. P. Kadano f,

Phys. Rev. 134, A566 (1964).
In independent work, V. J. Emery, Phys. Rev. 170,

205 (1968), has pointed out the importance of small
momentum transfer processes in transport phenomena

and has used Landau theory to calculate finite-temperature
contributions to transport coefficients. We are grateful
to Dr. Emery for sending us a preprint of this work.
A brief report of our own work has appeared previously:
C. J. Pethick, Phys. Letters 27A, 219 (1968).

~ J. M. Ziman, Electrons and Phonons (Oxford Uni-

versity Press, New York, 1960), Chaps. VII and IX.
~ We work in units in which 8 and Boltzmann's constant

kJ3 are unity.

~~TM is the quantity denoted by T* in Ref. 2, Table 3.
W. R. Abel„R. T. Johnson, J, C. Wheatley, and

W. Zimmermann, Phys. Rev. Letters ~18 737 (1967).

W. R. Abel and J. C. Wheatley, Phys. Rev. Letters
21, 597 (1968), and private communication.

A, C. Anderson, W. Reese, R. J. Sarwinski, and

J. C. Wheatley, Phys, Rev. Letters 7, 220 (1961).
J. C. Wheatley, Phys. Rev. 165, 304 (1968).
In the analysis we have neglected the fact that the

measurements of K (Ref. 18) and D (Ref. 20) were made
at slightly different pressures.

A. J. Leggett, Ann. Phys. (N. Y. ) 46, 76 (1968).
D. Hone, Phys. Rev. 125, 1494 (1962).
We assume that the Fermi liquid is normal and

therefore do not take into account effects due to a
possible transition to a superfluid phase. See V. J.
Emery, Phys. Rev. 161, 194 (1967).

A calculation which does not employ a variational
method has been carried out by Dr. K. S. Dy and the
author: Phys. Rev. Letters 21, 876 (1968).

YSee, for example, A. A. Abrikosov, L. P. Gor'kov,
and I. Ye. Dzyaloshinskii, Quantum Field Theoretical
Methods in Statistical Physics (Pergamon Press, New

York, 1965), Chap. IV, 2nd ed.
R. A. Craig, Ann. Phys. (N. Y. ) 40, 434 (1966).

~S. Ma, M. T. Mal-Monod, and D. R. Fredkin, Phys.
Rev. 174, 227 (1968). We are grateful to Dr. Ma for
sending us a prepublication copy of this work.

PHYSICAL REVIEW VOLUME 177, NUMBER 1 5 JANUARY 1969

Phase-Space Analysis of Time-Correlation Functionss'

G. S. Agarwa1
Depg~~gt of Physics and A.stxonomy, University of Rocheste~, Rem York 14627

(Received 23 August 1968)

Using the recently developed phase-space techniques for the treatment of quantum-mechan-
ical problems, we set up a procedure for calculating multitime-correlation functions in
terms of the joint distribution, functions. The correlation functions are then expressed simply
as integrals over the associated phase space. Explicit expressions are given for these joint
distribution functions, in terms of Green's functions of the c-number equations of motion for
the phase-space equivalent of the density operator. Using these joint distribution functions,
an exact regression theorem is rederived, andtheconnectionwith the multitime correspondence
between classical and quantum stochastic processes is discussed.

I. INTRODUCTION

During the last several years, increasing use
has been made of time-correlation functions in
the description of the behavior of physical sys-
tems. Recently Zwanzig' summarized the main
results in this area and discussed some applica-
tions of time-correlation functions to nonequlib-
rium problems (see also Ref. 2). In the calcula-
tion of quantum correlation functions, use has
been made of phase-space techniques. In this
connection the signer distribution function ha, s
played a preferential role' and has been used to
obtain first quantum corrections 6 to time-cor-
relation functions ca,lculated classically. This
in turn permits one to obtain quantum corrections
to transport coefficients. Similar procedures

have been useful in discussing a wide variety of
problems such as nuclear magnetic relaxation, '
neutron scattering, ' hydrodynamic transport
coefficients, etc. However, in the discussion of
certain problems in quantum optics, it is useful
to use other distribution functions based on dif-
ferent rules of association between functions of
noncommuting operators and c -number functions.
Recently a general technique, for the derivation
of the different distribution functions from a
unified point of view, was developed' ' and has
been used to study dynamical problems. "

In the present investigation, we extend this
analysis to construct various joint distribution
functions. These functions are then used to ex-
press multitime-correlation functions as integrals
over the associated phase space. An exact re-


