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A comparison of several kinetic equations with electromagnetic interactions is made. In
particular the effects of assuming the Darwin Hamiltonian are investigated, and it is con-
cluded that the role of the magnetic forces may be of importance in the stability problem,
since they seem to manifest tendencies opposite to those of the electrostatic forces in the
limiting cases of long and short wavelengths. The possibility of the existence of density
waves at or close to equilibrium, due to the presence of the (v/c) interactions, is pointed
out. Transport calculations will lead to the same results as those in the calculations of
Trubnikov, although it may be expected that if cutoffs are eliminated as in previous work,
the results will differ.

I. INTRODUCTION earlier: '

Several papers'~ have explored recently the ef-
fects of including electromagnetic interactions for
the kinetic theory of a plasma. Some authors em-
ploy the Klimontovich formalism and its general-
izations, '&2&' while others use the resolvent method
of Prigogine and his coworkers. '~4 With the ex-
ception of the work of Hakim, these authors have
started from the viewpoint that independent elec-
tromagnetic fields must necessarily be intro-
duced. The present author has favored a particle
approach that avoids the divergences inherent in
the independent field method, and since the work
has remained within an approximation for which
the Hamiltonian and the initial value problem are
well defined, any difficulties associated with the
problem of radiation have been avoided. ' ' The
results obtained are described as being applicable
to a plasma for which relativistic (v/c)' interac-
tions must be examined.

Trubnikov' has been critical of the use of the
Darwin Hamiltonian, and he has indicated that use
of the Darwin Lagrangian is more appropriate.
We examine previous work with the Darwin Hamil-
tonian, and propose that in contrast to Trubnikov's
result, the transverse interaction, rather than
being rapidly damped, may lead to density waves.
A comparison of several other results with our
results is made, and it is found that close com-
parison exists provided that retardation effects
are ignored. This comparison generalizes the
argument used earlier to show how the relativis-
tic Landau equation reduces with the neglect of
retardation in the (v/c)' approximation.

Further investigation shows that the pair dis-
tribution function exhibits oscillatory behavior.
At small distances the effective interaction re-
duces to the Darwin result, but at larger distances
the effective interaction drops off rather slowly.

Finally, note is made of similarity with the
transport coefficient calculation of Trubnikov (with
the neglect of corresponding terms).

II. GENERALIZATION OF LENARD-BALESCU
RING APPROXIMATION

The ring approximation (v/c)' generalization of
the Lenard-Balescu equation, for an arbitrary
spherically symmetric distribution, was obtained
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For both equations the e are identical. The g giv-
en in (2.3) may be compared with what Trubnikov
refers to in the following as the true quantity,

p, = p, —(&u/fc)' .true (2.5)

This last result and the corresponding kinetic
equation in which retardation is taken into account
has the same form as (2.1) and has been obtained
by Silin, Klimontovich, and Shafranov. " The lat-
ter authors assume (all the while neglecting radi-
ation) an approximation which says the particles
move in straight-line trajectories; the possible
inconsistency in treating retardation between
charged particles in this way has been mentioned
in an earlier paper. ' However, we do wish to
point out the error in Ref. 9 in assuming that the

The resulting kinetic equation obtained as Eq. (4.1)
tn Ref. 9 has the same form as that above, except
it is defined in terms of velocity variables. To
order (v/c)', they would be exactly the same, ex-
cept that the quantity corresponding to p is given
by
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Darwin approximation in some way takes into ac-
count retardation. That this is not so may be
seen by observing that the approximation may be
derived from expansion while assuming (by one
derivation) either retarded, advanced, or sym-
metric interactions.

It is informative to compare the work of several
other authors. Hogan and Lewis' and Dupree'
use the Klimontovich" approach and introduce
fields as independent quantities; the occurrence
of infinite self-energies is unavoidable therefore,
and one must drop these infinite terms. However,
the kinetic equation obtained by Hogan and Lewis
is essentially that obtained in work on the relativis-
tic Landau equation. ' The results are identical
provided one effectively neglects the (1' v/c) term
in the denominator of the transverse interaction
term, "we get

Lenard-Balescu result). Although (2.3}differs
somewhat from Dupree's term, we note that if
one takes

m '(1 ~ P,) —= &u-0

(2.7)

Trubnikov argues that in the ~ -0 limit, one must
have

Pc'= —& '
0 (2.8)

and he is led to conclude that transverse plasma
waves of low frequency are damped in space.
Here, then, is an important difference in that
(2.7) would be consistent with the idea of trans-
verse plasma-density waves at low frequencies,
while (2.8} precludes their existence.

We would like to further comment on the rela-
tion

(Ic/(u)'= 1- (ar, /(o)' (2.9)

in (2.3) and in the corresponding term of Dupree's
result, it leads to the equation (when 71-0)

Had the appropriate retardation factor for straight
line trajectories been included in the scalar po-
tential as well, the result of the previous authors'
would have been the same as the two-cycle equa-
tion of Mangeney. ' However, it is argued in Ref.
8 that the inclusion of retardation without a cor-
responding examination of the radiation problem
may not be valid.

The kinetic equation of Dupree' also has the
same form as (2.1)." If for the arbitrary spheri-
cally symmetric case one neglects the correspond-
ing (1 v/c) term in the denominator of the trans-
verse interaction term [this corresponds also to
neglecting the second term on the right-hand side
of (2.5)] the result is not quite the same (the lon-
gitudinal term in both cases reproduces the

which is used by Trubnikov to justify (2.8). It
would appear that one can not use this high-fre-
quency relation to justify a result for which ur -0.
According to Landau, "this should be used only if

However, even if it may be used at low
frequencies, it is questionable whether it is valid
when transverse magnetic effects are taken into
account.

In further comparison, we would like to indicate
that one may get Trubnikov's results in a straight-
forward but somewhat ad koc fashion by modifying
the momentum- dependent interaction with a
screening factor with range proportional to zg
= c/&g0, and obtain results in ring approximation.
This was one of the procedures in Ref. 6, but
there the range was taken as the Debye radius.

III. POSSIBILITY OF TRANSVERSE DENSITY WAVES

The results of an earli. er paper on the equilibrium statistical mechanics of relativistic interaction cor-
rections showed that with a screened interaction one could expect negligible contribution to order (g/c}' for
all but the highest densities and temperatures. When the ring summation for the exact (no screening)
Darwin interaction was performed, the result led to an integral whose principal value vanished. In light of
that result and subsequent work on the nonequilibrium problem, we have come to the conclusion that the
presence of real axis singularities, while possibly indicative of insufficiency of the ring approximation,
may point to some interesting physical consequences due to relativistic interaction corrections. One in-
terpretation of the vanishing result is that to order (v/c) there is no contribution in the equilibrium situa-
tion.

Next, we see what follows from the nonequilibrium situation. It is simple to show'4 that (2.1}satisfies
the H theorem:
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Thus in the stable condition, the plasma will come to equilibrium, and the Maxwell- Boltzmann or the Juttner
distribution will satisfy (3.1).

Examining further the situation close to equilibrium, we have from (2.2) and (2.3)

and

�

&@ 'Pm &o(2Pm)' ' &u(2Pm)'~' ice u&, ', ,2 m
'~' ——', Pm(&u/l)'a=1+ ' 1—

p

(o(2Pm)'~' &(2Pm)'~' iu) u), ' Pm 'I' —-', pm((u/1)2
lc l l l lc 2m

(3.3)

where the Maxwell-Boltzmann distribution has been used; P is the well-known error function. It is appar-
ent f rom (3.3) that if one takes cu - 0, then setting rl = 0 leads to (2.7). The zeros that occur here are the
same singularities encountered in the equilibrium problem. ' One can also examine the l -0, ~ limits.
In the long-wavelength limit, we get

(d& 1 ~ COO (d g I —2 pm(&/l)
(Ec)' 2m

(3.4)

where f =mc'/k—T. This result would have followed in the l-0 limit for any spherical symmetric distribu-
tion. " Now one expects that the roots of (3.4) have imaginary parts, and thus it is possible for the expo-
nential to dominate. The only real ~ consistent with g = 0 in this limit is e = 0, when either of the corre-
sponding limits c- ~ or T-0 are taken. Note also that if only T-0 is taken, then (3.4) can not vanish and
g-1. For e-~, there is no transverse contribution whatever.

In the short-wavelength limit l-~ (3.3) becomes

(3.5)

One then retrieves (2.7) as a zero of 'g.
The above limiting cases show that the transverse behavior is the opposite of what follows from the lon-

gitudinal relation given by (3.2).
Thus, if the longitudinal interaction tends to stabilize the plasma at long wavelengths, the magnetic inter-

actions will not show the same tendency. Conversely, at short wavelengths, the opposite would appear to
be true. If one maintains the relation (2.9) for high frequencies in the short-wavelength limit, we see that

(d2 = Pc2+ (d 2 (3.6)

This would indicate that a "resonance" may occur in this region. Recently Tidman and Dupree" have ob-
tained such a resonance (to explain the observed spectrum in solar flares) from consideration of electron-
electron quadrupole bremsstrahlung, although the frequency occurs closer to the second harmonic of the
plasma frequency.

IV. PAIR CORRELATION FUNCTION

To further explore the equilibrium properties, and to point up the contrast with the result of Ref. 9, we
further write the pair correlation function in the chain approximation (here the endpoints are fixed, rather
than closed to form a ring):

(4.1)
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above p-=r/r&, where r~=-(c/&u0)'~', 8 =-(kT) ' and rD is the Debye length. The calculation to obtain this
r esult may be obtained by either perf orming the equilibrium summation of diagrams, or by solving the corre-
sponding nonequilibrium ca.se in the equilibrium limit. " The equilibrium calculation is somewhat lengthy, but
not qualitatively different from earlier calculations, and it is not included here. Here also the nonrelativistic
kinetic energy is used; if the relativistic form is used, re is somewhat smaller than (c/&u, )'~', and is tem-
perature dependent.

In the (c/c)3 approximation, one can write an effective interaction energy'

c„=P, '/2m+ P, '/2m —Gf„,
where f» is given by (4.2).

(4.3)
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In the limit re, rg» x, the interactionterm in (4.3) reduces tothe Darwininteractionfor two particles. As
indicated earlier, the result of Trubnikov here gives exponential screening in the transverse interaction
as well as in the longitudinal one.

In the limit ra «xg «x, the effective interaction energy becomes

—[e'/(mc)'x][P1'P2+ (Pl ~ r)(P2 ~ r)/r'] cos(r/x ) . (4.4)

Thus the correlations are still long- ranged at distances beyond which the screened electrostatic interac-
tion is negligible.

The conclusion with respect to the equilibrium calculation of thermodynamic quantities must be that,
because of the tensor symmetry of the interaction, there is negligible contribution to order (v/c) . This
is clear if one uses f», as in (4.2) (to determine the average energy for example). This is the case (as
it must be) if one uses the ring summation or the pair correlation function; it is also true for the pair. cor-
relation function given by Trubnikov, although his function is qualitatively different from ours.

The wavelength associated with the density of variation for hot electron plasmas is O(c/w, ) which is
O(10 ') cm for &u, =10" sec ', and O(1) cm for &u, =10"sec-'. A shell structure with maximum variation
at 5 cm for a hot electron plasma with ao-10" sec ' has been reported recently. " The plasma in this
experiment is in a region where (v/c)' corrections should be examined, although one must certainly be
cautious in interpreting results where external fields also play an important role. For hot, rarified plas-
mas, the predicted wavelength can be many orders of magnitude larger.

The periodicity in (4.2) can lead to quite complicated structure depending on whether p is an even or odd,
integer or half-integer, multiple of m. Such density wave structure has been recently proposed by Lin"
in explaining galaxy structure in the very similar problem of a homogeneous self-gravitating stellar sys-
tem. Wu" has obtained the pair correlation function which has "modulation factors" such as occur in
(4.2), and indeed his gravitational (nonrelativistic) result could also be obtained by formally summing over
chain diagrams [as is done to obtain (4.2)].

V. TRANSPORT COEFFICIENTS

As in the paper by Trubnikov, one may calculate
the frictional and diffusion coefficients for a Max-
well- Boltzmann distribution. Any difference in
the expressions will come from the transverse for
form alone [Eq. (5.2) below]:

paper, ' we have shown that the (v/c)' contribu-
tions may be calculated without cutoffs. " It is
possible that results such as the transport calcu-
lations will be modified when the explicit appear-
ance of cutoffs is avoided. A recent nonrelativis-
tic calculation of this type has been made by
Gould and DeWitt. "

e = 1+ (1—~I)/P~~',

q = 1 —(1 —~I)/I2y&',

(5.1)

(5.2)
VI. CONCLUSIONS
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For the Maxwell- Boltzmann distributions, these
have the explicit forms given in (3.2) and (3.3).
If one again neglects the "nondominant" terms,
the same expressions follow as in Trubnikov's
paper. Again the transverse friction coefficient
will not show diminishing behavior with increas-
ing v, unlike the longitudinal contribution.

Calculations as above are carried out by insert-
ing a cutoff in a divergent integral. In a previous

where I=-I, +iI, and I„ I, are given as

I -=, d$ 0 ' +' (5.3)
1 2(mc)' (l~ y/ )

J.

and

We have compared the results of several authors
on the kinetics of a plasma with electromagnetic
interactions with the results obtained using the
Darwin Hamiltonian. The analysis shows close
correspondence with the work of Dupree and Hogan
and Lewis, but some qualitative differences arise
with the work of Trubnikov. The suggestion is
made that a plasma near or at equilibrium has
density waves; the main characteristic of these,
apart from their periodic structure, is that they
lead to long-ranged effective interactions [in fact,
longer in range than the screened Coulomb inter-
action —see Eq. (4.4)]. Finally, in defense of the
use of a Hamiltonian (although it is not clear why
classical results should differ if one uses the
Darwin Lagrangian instead), we would like to com-
ment that the route to a quantum treatment is
through the Hamiltonian. '
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The molar volume at the saturated vapor pressure has been determined by a dielectric meth-
od for solutions containing up to 15 atomic percent of He in He between 0.025 and 1.2'K. In
the single-phase region there is a pronounced thermal expansion from which it is deduced that
the derivative of the He effective mass with respect to pressure is for low concentrations
f(0.0151 + 0.0006)m*] atm ~. The single-phase measurements also showthat at O'K and for low
concentrations, He atoms occupy (1.284 + 0.005) times the volume occupied by He . In the
two-phase region, the concentration of the lower phase at O'K is found to be (6.40 + 0.07)%
Hea. The He3 chemical potential along the solubility curve has been obtained and compared
with the predictions of Bardeen, Baym, and Pines (BBP). Assuming the effective interaction
originally proposed by BBP, thebinding energyatO K of a single He atomin He is foundto be
I 3 +B(0.284 + 0.010)'K, where I 3 is the latent heat of pure He at O'K.

1. INTRODUCTION

The experiment described here uses measure-
ments of the capacitance of a parallel-plate ca-
pacitor immersed in liquid He'-He4 solutions to
determine their atomic or molar number density
under the saturated vapor pressure. The princi-
pal results of the experiment are (a) The deter-
mination of the limiting solubility of He' in He4

at O'K, (b) The determination of the volume oc-
cupied by a He' atom in liquid He4 at finite tem-
peratures and at O'K, (e) The determination ot
the derivative of the He' effective mass in solution
with respect to pressure. An earlier and less
accurate form of the experiment was reported
some time ago' while a brief account of the present
measurements has been published in a Letter. '

Most of the properties of dilute solutions can be


