
PHYSICAL REVIEW VOLUME 177, NUMBER 1 5 JANUARY 1969
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A theory of the radiation spectrum in a nonrelativistic fully ionized gas in thermal equilib-
rium is suggested, based on Planck's law of radiation. From an observation regarding the
photon momentum distribution, an exact and simple dispersion relation for transverse electro-
magnetic waves in the medium is deduced, and a new dielectric "constant" is obtained. An
important feature of the theory is the relative ease with which the thermodynamic functions
describing the radiation field can be calculated.

I. INTRODUCTION AND THEORY
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where P = (vT) ', v is Boltzman's constant, T is
the absolute temperature, and q is the speed of
propagation in the medium. For transparent
media one can relate q to the index of refraction
through q' = c'/q '. The very important quantities
qz are often omitted in otherwise quite good text-
books, where one finds the statement that

u(p (u) = (+(o'/m'e')v ((u),

(~) e p (0/(l p 5 (g)
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is a universal function of P and w. An exception
is the book by Landau and Lifshitz, ' in which it is
observed that for a dispersive medium, g = q(&o),
the universal function is really

u(p, &o) =R& ((uv), , ~ ((oq).
(g ff d

In the preceding paper' a systematic theory of
the photon momentum distribution in a fully ion-
ized gas was constructed. The microscopic
theory was developed in a somewhat standard way
and applied to the calculation of several thermo-
dynamic functions pertaining to radiation in the
medium. Of particular interest was the round-
about procedure required to find the energy den-
sity of radiation in the gas. Although new results
were obtained, it is clear that not much was gained
in the way of insight into the manner in which the
presence of charged particles affects the over-all
view of the radiation field. More precisely, the
discussion in Sec. I- VII has underscored the
difficulties involved in attempting to discuss
Planck's law of radiation in the context of a fully
ionized gas. It was found very difficult to resolve
the apparent conceptual conflicts with classical
thermodynamics. In the present paper, a con-
ceptually different approach is developed which,
it is to be hoped, mill lead to a definitive view of
the radiation field in a fully ionized medium.

In his well-known treatise on thermal radiation, '
Planck proved that the energy density of radiation
as a function of temperature and frequency, u(p, ~),
is a universaL function independent of the medium.
That is, for two different media

obtained from microscopic principles in I, leads
to a good ~, - -oximation to the dielectric constant
(or, more appropriately, dielectric function). We
have introduced here the plasma frequency, de-
fined by

~ '=Z ~ '(o. )=Z (4vp & 'e')/~
P &P n 0.

(6)

where the sum is over all types of charged parti-
cles in the system, p& is the number density of
n-type (charged) particles, Mz is their mass, and
Z~ their charge number.

Nevertheless, if we wish to calculate the energy
density in momentum space, which is generally
much simpler than using the energy representation,
then it is necessary to write &u = +(k) and replace
v& (k) by the true momentum distribution of photons
in the system. In I we developed a systematic
theory of the momentum distribution, (n (k)), and
it was seen that there appear large deviations from
the form (2) in higher order. Moreover it is not
clear how to specifically obtain the form (4) for
the frequencies, since the two distributions in k
and m are not necessarily related by a simple
Fourier transformation. Therefore, how is one to
interpret the photon momentum distribution, such
as that obtained in Eq. (I-36), which is calculated
in a straightforward manner from microscopic
statistical mechanics'P Furthermore, how can one

This expression is equivalent to (l), correspond-
ing to Planck's original statement. The proof
of Eq. (1) is the well known one based on the Sec-
ond Law of Thermodynamics' and, in view of the
certain validity of the argument, one must con-
clude that Eq. (4) is the only possible modification
of Planck' s law for an ionized gas in thermal equi-
librium.

The utility of Eq. (4) has not, of course. gone
entirely unnoticed, and a fashionable procedure
has been to discuss the ionized medium in terms
of its dielectric "constant, " c =q'. Several cal-
culations of e have been made, ' ' but these ap-
proaches have generally not focused on the rel-
evance to the radiation spectrum Per se, nor have
they admitted calculations of high precision. In
general applications, it is usually assumed that the
dispersion relation

S~(k) ~ (k) —S(c2k2 ~ ~ 2)1/2r P
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possibly obtain the form (4) for Planck's law from
such calculations 'P

In the view of the author, the answers to these
questions rest with the lessons to be learned from
classical thermodynamics. That is, Eq. (1) seems
to be unimpeachable, and should actually be built
into the theory. In order to implement this idea,
let us recall from I that an exact formal expres-
sion for the photon momentum distribution is

( (k)) (k) "f P (7)

1 —v (k)f L (P, t, k)dt
Y 0 Y

where vy(k)is given by Eq. (3) with + =ck, and

Ly (P, t,k) is the sum over all master L graphs,
characterized by one incoming and one outgoing
line carrying photon momenta. R. The sum L& can
be calculated to an arbitrary degree of precision
by evaluating diagrams of consis'tently higher
order, ' a task which asymptotically approaches
the impossible. In momentum space, the energy
density of radiation is

u(P, k) = [( n (k)) /0] z (k )(dN/dk),

where dN/dk is the density of states, and Q is the
volume of the system. It should be obvious that as
one calculates more and more corrections to the
momentum distribution, Eq. (8) will deviate more
and more from any functional form remotely re-
sembling Planck's law. One cannot conclude ab-
solutely, though, that a complete evaluation of
L'y would not eventually provide a microscopic
derivation of Planck's law. This, however, would
probably be impossible, because such a calcula-
tion would be tantamount to performing infinite-
order perturbation theory. Furthermore, the
same situation prevails in any other approach to
calculating the momentum distribution.

A conceptually different approach begins with
the observation that for any kind of particle the
distribution in energy should be identical to the
distribution in momentum. That is, for any
physically reasonable energy- momentum relation,
there should exist a one-to-one correspondence
between energy and momentum, so that for N par-
ticles with momentum k there should be N parti-
cles with energy w(k), in a uniform system. For
most particles, however, this observation provides
no means for determining what these distributions
should be. But, and this is the major point, Eq.
(1) provides an additional condition in the case of
photons, which is not available for particles with
mass. Thus one is impelled to adopt Planck's
law from the beginning, and demand that the pho-
ton momentum distribution have the form

discussion. Moreover, similar results appear to
have been found in studying quasiparticle descrip-
tions of other systems, "and in a sense the pho-
ton is already a quasiparticle representing the
radiation field. If Eqs. (7) and (9) are equated,
it is now an easy matter to show that

h(g(k) =(g (k) -P in[1+ f I. (P, t, k) dt],
y 0 y

(10)

S&o(k)=~ (k) —P in[1~ f L„(P,t, k)dt],
0

where e&(k) =5ck. This represents an exact and
extremely simple expression for the dispersion
relation in the medium from which it is then
possible to identify the index of refraction to be
inserted into Eq. (4). Further, Eq. (10) is valid
at all (nonrelativistic) temperatures and frequen-
cies.

It is difficult to appreciate the power and sim-
plicity of Eq. (10) until one actually uses it and
compares the results with previous techniques and
calculations, for its importance rests with the pre-
dictions it can make. First of all, the function
I y can be calculated in a straightforward manner
by simply evaluating diagrams as indicated in I
and elsewhere. "~" The first dozen or so diagrams
are relatively easy to evaluate, but the algebra
becomes progressively more tedious in higher
order, as is to be expected. However, in practi-
cal applications one probably does not need the
dispersion relation beyond, say, order e'.

Secondly, one need not be concerned now with
actually summing all the L graphs contributing to
Ly, because we have adopted the hypothesis that
the radiation spectrum is given exactly by Eq. (4).
There is no need to derive microscopically
Planck s law, because it is true ab initio.

Finally, Eq. (10) allows one to reproduce pre-
vious results, such as those of the precedingpaper,
almost trivially, and obtain new results in an
equally effortless manner. This potency will be
demonstrated in the following section.

Prior to verifying these statements, though, it
is first necessary to rectify a calculational defect
intrinsic to the expression (10). In I it was shown
that the ibagrammatic iteration of the function Ly
was ill-behaved at low-momentum values, being
essentially a series expansion in }kl '. Thus one
must find an analytic continuation to Ik} =0. But
this is precisely what is accomplished by the
Bogoliubov transformation of Eq. (I-24), and the
redescription of the theory developed in I can be
adapted wholesale here. Hence in place of Eq.
(10) we write the completely equivalent expres-
sion

—Ph(o(k)
(~ (k))=

' „k -=v(k).—pÃQ) k (9)

To be sure, Eq. (9) is an assertion, but it
seems to have strong support from the preceding

where u&1(k) is defined in Eq. (5). The essentials
of the I' theory are described in Sec. III of I, the
physically important point being the screening of
the photon-charged particle interactions by the
medium.
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H. CALCULATIONS

We are interested in the nonrelativistic, homogeneous, fully ionized gas at high temperature and low
density. In the preceding paper a detailed parameter analysis of this system was given, and the reader
is referred to that paper for the limits on the various parameters of the theory in this region of the
temperature-density spectrum. We shall also refer to that work for minor calculational details which
will be omitted here, at the same time assuming the necessary mass renormalization to be carried out
implicitly at all stages of the calculations.

As a first example of the physical content of the dispersion relation (11), let us note that ignoring the
logarithm yields the well-. known approximate result,

(d(k) ~(C2k2+M 2)1 2

p
(i2)

It is usually stated' ' that this relationship is correct to order (v2/c2); that is, correct in the nonrelativ-
istic limit. " This statement is true only in the "bubble-diagram" approximation which, in the present
formalism, corresponds to summing over all contributions from zero-momentum transfer diagrams.
These diagrams were effectively summed by the Bogoliubov transformation introduced in I, and this pro-
cedureyields precisely the relation(12). Tobe sure, Eq. (12) is correctup torelativistic corrections
in this approximation. However, it is quite clear that Eq. (11) is accurate to any degree of approximation
in the plasma frequency, independent of relativistic corrections.

In order to illustrate this point, let us evaluate the next correction term to Eq. (12), which is nonrela-
tivistic and follows trivially from the evaluation of diagrams in I. The lowest-order diagram contributing
to the function L pin Eq. (11) is that of Fig. 1, and this quantity was evaluated in Eq. (I-31). Since this
term is of order $2=(P~p)2«1, we can expand the logarithm in Eq. (11) and retain only the first term.
Then

~)(k) =(c'k'+(o ')"'-(KP)-'[(u 2/(c'k'+(o ')](coshP(o —I)/P(u
p p p r r (i3)

To the author s knowledge, this dispersion relation for transverse electromagnetic waves has not appeared
in the literature before; yet, it follows immediately from what is essentially the simplest approximation
to the. expression (li). The relativistic corrections obtained by previous authors constitute corrections to
Eq. (13) also. That is, in evaluating the diagram Lp"' in I we obtain Eq. (1-35a), which contains terms
restricting charged particle energies to values much smaller than photon energies": (Pk2/2M+)/&o Z(k).
If only the leading-order relativistic correction is kept and the second term in Eq. (13) is neglected, one
obtains"

~(k) —(C2k2+M 2)1 2+1[k/(t )1 2]~ /(C2k2+R 2)3/2
p p p

in keeping with previous results. Nevertheless, Eq. (13) is much more important than (14), and we
shall return to the former equation when the dielectric constant is discussed below. For now, it should
be noted that the frequency cutoff at uy occurring in Eq. (12) is lowered by a factor of 2 in Eq. (13).

The thermodynamic functions describing radiation in the medium which were obtained in I now follow
easily from Eqs. (9) and (13). Thus the number density of photons in the medium is

1 2 2 ~ I" k2dk
p = ~ Qv(k)=, J"v~(k)k dk2-~(S(o )' v (R)[1+v (k)]

COp
0

=[2/v2(pic)2](1. 202- f 12t2-n'Q f 21' )+O(&2)0 0

as in Eqs. (I-38) and (I-39). The parameters q. , f, and f. are defined in Eqs. (I-14) and (I-18), and the
sum is over all types of charged particles in the system. This result was discussed in I.

An approximate expression for the dielectric constant can be extracted from the approximation (13) by
an obvious iteration procedure. One finds

e(~) =(1—&o '/&o')+2(lip) '(&u '/"')(coshp5~ —I)/pk&u-l, as ~ or &u-0.
p p

(18)

This expression also seems to be new. Moreover the index of refraction can now be obtained in this
order of approximation and the spectral energy-density calculated by means of Eqs. (4) and (11). This
function has been calculated and compared with that for the vacuum, as well as with that using Eq. (12),
in Fig. 2.

It is particularly interesting to calculate the total energy-density of radiation, which is now given
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FIG. 1. The lowest-order master L graph contribution
to the function LZ (P, t, 8 in Eq (11). .

FIG. 2. The spectral energy-density computed from
Eqs. (4) and (16) is given by the solid line, and compared
with that for the vacuum (dashed line) and that computed
from Eq. (12) (dotted line). The turn-up of the solid
line is valid as far as indicated, after which relativistic
particle effects are important and probably bring the
curve down again.

exactly by the simple prescription

u(P) = (I/n)Q&(k) v(k) .
k

Contrary to the conclusions reached in l, this relation is precisely correct, because any approximate
calculation of Id(k) automatically makes tc(k) and v(k) the true photon energy and momentum distribution,
respectively, to the same order. If Eqs. (13) and (9) are now substituted into (17), one finds

u(p)=(1/Q)+Id (k)v (k)-[(KuI )'/pQ]Q [v (k)/(c '(k)](coshp&c —I)/pter

(v'II'/15Pc')T [1+(15/2v')Q g
' Ing +O(t; )],6 & Q

(i6)

again in agreement with I, Eq. (I-48). Note that the leading-order effect from the interaction of photons
with charged particles tends to reduce the total energy density as expected. '

A word of caution should be inserted at this point. The parameter iln —vT/Mnc, appearing in both
Eqs. (15) and (18), is a relativistic parameter, and its smallness measures the nonrelativistic behavior
of o.-type charged particles. One should note carefully, however, that its appearance here is due to the
intrinsic relativistic nature of the radiation field, and is not a correction due to particle motion.

As a final illustrative calculation, let us consider the leading-order effects of Coulomb interactions in
the fully ionized gas as they bear on the radiation quantities discussed above. The dominant contribution
from charged-particle interactions comes from the diagram of Fig. 3 which was evaluated in Sec. VI of
I. The relevant quantity to be substituted into Eq. (11) is that of Eq. (I-61), and we find in place of (13)

tc 2 ) coshPu)F- 1
nI(k) —(c2k'+ nI 2)'~2 —

~p (c + (dp uIF

f (P~F)F Zg
Kp p&c& n n n ' (19)

where g n and An (=Debye-Huckel parameter) are defined in I, and f (PuII) is given by Eq. (I-62). In the
temperature-density region of interest here, this Coulomb-correction is quite negligible, and is probably
no more important than the omitted photon-charged particle diagrams of order g (see Figs. 2 and 3 of I).
The alteration of Eqs. (15), (16), and (18) due to the additional term in the dispersion relation, (19), is
straightforward and we shall not write down the explicit equations here.
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FIG. 3. The leading-order diagram containing
Coulomb interactions which contributes to the function
I ~(P, t, k) in Eq. (11).

III. DISCUSSION

The major objective here has been to try to over-
come the conceptual difficulties associated with
relating the photon momentum distribution to the

radiation spectrum in a fully ionized gas. Thus
it has been asserted that Eq. (9) must be the true
momentum distribution, and this leads directly to
the dispersion relation (ll). We have presented
both physical and calculational support for this
assertion, although it is to be emphasized that
the next stage is to muster experimental support,
say, for Eq. 16. For instance, the second term
in this equation should be most prominent at high,
but nonrelativistic frequeneies.

There are, of course, possible objections which
can be raised against the theory, one of which is
that unphysical results may appear when higher-
order calculations are performed. Therefore
it would be of some value to include contributions
from the diagrams of Figs. 2 and 3 in I in the
quantities calculated here, particularly if experi-
ments sensitive to these terms can be devised.

Finally, the deviation of the spectral energy
density from the vacuum curve, indicated in Fig.
2, should be a measurable difference, and such
an observation would provide a good test of the
theory.
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