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The role of the photon momentum distribution and its relation to the thermal radiation spec-
trum in a fully ionized gas is studied. An analytic continuation of the theory to low-momentum

quantum numbers is developed which is valid for the nonrelativistic system athigh temperature
and low density. A mass renormalization is carried out in order to treat the electromagnetic
self-energies systematically, after which several new results are calculated for the number

density, energy density, and momentum distribution for yhotons. Leading-order effects due

to Coulomb interactions are also found for the thermodynamic functions of the radiation field.
Of particular importance is a careful analysis of the dependence of the radiation spectrum

on the photon momentum distribution, and this relation is found tobe far from straightforward.

I. INTRODUCTION

Although considerable work has been devoted to
the study of the dielectric constant for an ionized
medium, ' or for its electron-gas approximation,
little effort has been expended on the explicit study
of the thermal radiation spectrum of a fully ion-
ized gas at high temperatures and low densities.
In particular, the relation of Planck's. law for the
energy density of blackbody radiation to the radia-
tion spectrum from an actual ionized gas is not at
all clear. As is well known, the energy density
in momentum space is a functional of the photon
momentum distribution, and the purpose of this
paper is to take a first step toward a microscopic
understanding of the radiation spectrum by pre-
senting a detailed study of the momentum distribu-
tion at nonrelativistic temperatures and densities.
In the following paper, the second step is taken
and the explicit relation of the momentum distribu-
tion to the radiation from the medium is found. It
is quite possible that the results of this investiga-
tion may have important astrophysical implica-
tions, in that the interpretation of radiation ob-
servations might be enhanced.

Several authors'~ have indeed studied the pho-
ton momentum distribution in the fully ionized
gas, but the expressions obtained generally suf-
fered from the fact that they are only valid for
small momentum values. Chappell4 indicated how
an analytic continuation to low- momentum quan-
tum numbers might be made; however, he did not
develop the theory in detail, nor apply it explicitly.
In a sense, this paper takes up that problem.
Both Nakai' and Grandy' investigated the effect of
charged-particle interactions on the photon mo-
mentum distribution, an effect which is found to
be almost negligible. We shall again investigate
this question here.

In Sec. II the formal equations of the quantum
statistics of multicomponent systems are re-
viewed, and those pertinent to a study of the pho-
ton momentum distribution exhibited. The approxi-
mations necessary for a systematic calculation
are then discussed in the context of a diagrammat-
ic analysis. Of particular interest is the straight-
forward iterative technique, which is outlined
briefly and which uncovers the inadequacy of such
an approach for small values of photon momentum
quantum numbers. The section concludes with a
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careful physical description of the system to be
studied, along with a detailed parameter analysis
of the nonrelativistic, high-temperature, low-
density gas.

The analytic continuation of the theory so as to
encompass low- momentum quantum numbers is
developed in Sec. III. This continuation is based
on a Bogoliubov-type transformation first discov-
ered by Chappell et al. ,

' and which effectively
removes unphysical zero momentum transfers
from the interaction Hamiltonian. These formal
developments allow us to calculate quite easily
the momentum distribution and radiation spectrum,
as well as relevant thermodynamic quantities, in
Sec. IV.

As is well known, the nonrelativistic Hamilto-
nian describing the interaction between photons and
charged particles contains two types of interac-
tion: a term in p ~ A, and a term in A', where A
is the vector potential in the Coulomb gauge
(V A = 0), and p is the momentum of a charged
particle. %hen one studies the higher-order A'
diagrams occurring in the expansion of the photon
momentum distribution, one encounters a large
number of divergent integrals in the momentum
representation. The divergences are intrinsic to
any theory of quantum electrodynamics; indeed,
they occur in such a systematic manner that they
can be eliminated by a straightforward mass re-
normalization. Such a procedure for removing
these self-energy terms in statistical mechanics
was developed in detail by Mohling and Grandy'
(MG), and in Sec. V it is shown that this method
provides for a very simple treatment of these
higher-order terms, and is carried out explicitly
through second order in the fine-structure con-
stant. Further higher- order contributions arise
due to Coulomb interactions among charged par-
ticles, and radiative corrections to these inter-
actions, and the nature of these effects, is dis-
cussed in Sec. VI.

In Sec. VII we attempt to analyze the physical
meaning of the photon momentum distribution
which has been calculated, along with its relation
to the thermal radiation spectrum. In particular,
we discuss the relative merits of introducing the
notion of "quasiQotons" versus that of a macro-
scopic index of refraction; what can precisely be
said about the function u(p, k), Eq. (40); and final-
ly, the interpretation to be attached to the energy-
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momentum relation for photons.
Our aim here is to analyze very carefully the

-momentum distribution for photons in a nonrela-
tivistic, fully ionized gas, and to investigate the
relation of this function to the radiation spectrum
of the system. It will be seen that it is quite dif-
ficult to reach a satisfactory conclusion in the lat-
ter respect, which is unfortunate, because the
momentum distribution is so relatively easy to
calculate. However, the theory presented here
forms a sound foundation for and contains the
germ of the solution to the physical problem, and
in the following paper a solution is suggested.

II. QUANTUM STATISTICS OF MULTICOMPONENT
SYSTEMS

Prior to developing a theory of the photon mo-
mentum distribution, it is first necessary to re-
view briefly some of the equations of the quantum
statistical mechanics of multicomponent systems.
Such a theory, which specifically incorporated
charged particles and photons into the system,
was described in some detail in MG, and we shall
refer the reader to that paper for a more detailed
discussion and derivation of the theory. ' The
electromagnetic interactions are most conve-
niently discussed in.Fock space and the momentum
representation, in which case the Hamiltonian
takes the form

where

+0 V y'

»a» a»+»
0 (2)

V&= 2 Z al a2 (klk2l V&lk8k4)a4a, (8)
k,k2k3k~

V =V1 +V2 +V1 +V& (4)

Vl = Z al (kll Vl I k2k&)a2a&, (5a)

V2 ~ - a1 (kll V2 lk2k8k4)a2 8 4
k,kP,k

+ ~ 1 a2 (klk2l V2yl k8k4)a&a4, (5b)k,k2ksk~

corresponding to the free-particle Hamiltonian,
the Coulomb interaction, and the interaction of
charged particles with photons, respectively. %e
have adopted the notation that the sums over states
k range over all free-particle states (including
spin) of all the different kinds of particles in the
system, so that these sums implicitly include
sums over particle types n. ' Thus the creation
and annihilation operators satisfy either fermion
or boson commutation relations, as the case may
be. The quantity ~k =+ (k) =k'k'/2M' for n-type
particles, and &uk=(vy(k =hck for photons, where
M& is the mass of an a-type particle. Explicit
expressions for the interaction terms of Eq. (4)
are given as follows:

where the (real) matrix elements of Vly and V2y
are given in the Coulomb gauge by

(kll Vl lk2k8)ly 23
=- zl(k'/half)(2v~/nk ) &2(k c )

x 5(kl, k2+k )5(ml, m2),

(kll V2 I k2k8k4)2y 234
=ZI'(k'mn/MQ)(k2k4) '"(C2 C4)

x5(kl, k2+k8+k4)5(ml, m2),

(kP2I V2 I k8k4)2y 34
= Z, '(k 2vn/M&)(k2k4)-'&2(e e4)

x5(k +k2, k8+k4)&(ml, m8).

(5a)

(8b)

(6c)

(7)

An explicit from for (k,k, l Vgl k,k4) is given in
(MG-108).

One then proceeds as is done at some length in
MG by deriving the quantum Ursell expansion and
exhibiting the entire theory as a diagrammatic ex-
pansion from which all thermodynamic and dis-
tribution functions can be obtained. The final ex-
pression of the theory is in terms of "master
graphs, "which are defined in Sec. VII of MG. Of
particular interest are master L graphs, which
have one incoming and one outgoing external line
carrying momentum (and spin) k, and which obvi-
ously bear some relation to the momentum distri-
bution. " We can then define a function (for a-type
particles)

all L graphs with
n 2' 1' given external lines k

where ti is an inverse-temperature variable rang-
ing from 0 to P = (KT) ', with x = Boltzmann's con-
stant, and T the absolute temperature. The sum
of Eq. (8) is a quite fundamental component of the
theory, because, as demonstrated in MG, the mo-
mentum distribution for a-type particles can be
written

(n (k)) =~,(k)[1+ f, L (P, s, k)dsj.

The function La is itself a functional of Na(k), so
that the latter function is defined by the following
set of coupled, nonlinear integral equations for a
multicomponent system:

In these equations, 5(a, k) is a Kronecker 5 func-
tion of a and b, Z, is the charge number of particle
(1) in units of I e I, m, is the spin-projection quan-
tum number of that particle, o.'= e'/kc is the fine-
structure constant, 0 is the volume of the system,
and Ci is the polarization unit vector of the photon
in the ith state and satisfies the transversality
relation
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N (k) = v (k)[1+N (k) f, L (P, s, Sds],

where
pg —p(d (k) pg —p(d (&)

v (k)=e (I-«)
Q Q

(io)

)
(3)

Y (
(4)

Y

Ilere, g is the chemical potential for n-type
particles, and &&=+1 for bosons and —1 for
fermions. In the noninteracting system v~(k), of
course, is equal to the momentum distribu™tion
for n-type particles. Finally we can combine
Eqs. (9) and (10) to obtain the more useful form

1+ f, L (P, s, k)ds
(n (k)) =v (k)

1- v (k) f, L (P, s, k)ds
(i2)

(6)

Figure 1 exhibits the only one- and two-vertex
L graphs in the theory, when the external lines
are photon lines, and both diagrams are of first
order in the fine-structure constant n, One can
find the explicit rules for writing down the analy-
tic expressions for these diagrams in MG, and
we will merely point out here for orientation pur-
poses that the vertex in L " corresponds to an

A' interaction, while both vertices in Ly cor-
respond to (p ~ A) interactions. In the next order,
a', there are 12 contributing diagrams, and
these are shown in Figs. 2 and 3. The master L
graphs of these three figures represent the entire
contribution to the sum of Eq. (8) through second
order in the fine-structure constant, for photons.

As a final matter for this formal section, we
shall clearly define the model in which we are in-
terested by specifying the limits on the parameters
describing the system. We envision a fully ion-
ized gas consisting of any number of species of
ions and the appropriate number of electrons to
provide charge neutrality in the volume O. The
infinite volume or thermodynamic limit will be
consistently taken, so that the total number of
particles in the system is to be considered very
large in order that the density remain finite.
This implies that we shall always convert sums
over states to integrals. The system of interest
here is one of low density and high, but nonrela-
tivistic, temperature. Consequently it can be
shown quite easily' that the fugacity

z =e =p X (2S +1) «1,ge 3 —1

where p is the number density of n-type parti-

I
T

FIG. 1. The one- and two-vertex master I graphs
with external photon lines. In the I' theory the first of
these is identically zero.

FIG. 2. The six master I graphs of order e which
contain no double bonds and, therefore, introduce no
divergence difficulties.

cles, Sz is their spin in units of 5, and X~ is their
thermal wavelength: A(t' = 2((h' P/Mn. Equation
(13), clearly, is characteristic of a nondegenerate
system.

The nonrelativistic nature of the system can, in
the first place, be characterized by the parameter

= (PM c')-' « 1,
which merely states that the thermal energy is
less than particle rest energies. Secondly, one
should not expect photon energies in the nonrela-
tivistic system to be large enough to induce pair
production; that is, Sck «2Moc'. This restric-
tion can be expressed more conveniently as a
relation between single-particle and photon ener-
gies:

(d (k) « (o (k) .
Or one can say that photon momenta must be much
smaller than an inverse Compton wavelength for
any of the o.-type particles.

In the next section we shall see that an important
parameter in the system is the plasma frequency
for O.-type particles,
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(13)

(10)

(14)

CK l~ lf ~l CC

dependence on the momentum k in this result is a
general feature of all the photon L graphs of the
theory, such as those in Figs. 1-3. Hence, it is
clear that for i kl «1 a straightforward interation
of the integral equation (10), and therefore of
(n&(k)), will be in powers of k ', and thus unsatis-
factory. This unpleasant situation, then, re-
quires that an analytic continuation for (n&Qk) be
found to the region of small-momentum quantum
numbers. It is probable that such a procedure
could be carried out in the diagrammatically ex-
panded theory, but attempts to do so' seem to be
fraught with conceptual difficulties. Instead, it
seems more fruitful to return to the Hamiltonian,
as described in Eqs. (1)-(6), and introduce a
transformation found by Chappell et al. '

As motivation for the transformation to be used,
let us observe that the single-vertex diagram of
Fig. 1 appears to represent a photon-charged
particle interaction in which zero momentum is
transferred. In general this would seem to be a
very unphysical process and, indeed, has been
found to be a noncontributing factor in other con-
texts. " In fact such "interactions" appear to be
a bothersome phenomena in all many-body theo-
ries in one way or the other. Thus it would be
advantageous to formally remove such diagrams
from the theory.

Zero-momentum interactions arise in the t/'2y

part of the Hamiltonian, Eq. (5b), which we now
rewrite as"

v =v '+v,

(i6)(u (o.) =(4' Z 'e'/M )'~',
p A Q

in terms of which we define a plasma frequency
for the system

M =g (d (Q). (17)

Thus as can be shown quite simply from, say,
(MG-152), it is required in the nonrelativistic,
nondegenerate system that

FIG. 3. The six master L graphs of order e which
admit the possibility of wiggly-line double bonds, and

which contain divergent parts.

where

V '= Z (1-6--6- -)
1 2 3 4

x
1 (kll V2y lk2k3k4) a2a3 4

and

(1 5m~Q~m)

x ai a2 (kik2l V2 lk3k4)a3a4, (21)
2y

(y)
VO ~ (kil V2y lkik2, —k2) 1 1 2 —2

k~k2

PS~ =K=K K-=Z P» (&)((1.
p Q Q Q p

(i6)

The parameters f and g~ will prove to be quite
important in what follows.

III. ANALYTIC CONTINUATION TO k = 0

It is a simple matter to evaluate the one-vertex
diagram of Fig. 1, following the rules given in
MG, and one finds that'

In defining V, in terms of zero-momentum trans-
fers, we have paid due attention to the 5 functions
in Eqs. (6). These latter equations also demon-
strate that the matrix elements in V, a,re actually
independent of the variable k„so that substitution
of Eqs. (6b) and (6c) into Eq. (22) allows the k,
sum to be perf ormed. This sum is then propor-
tional to h '~p'/4, due to the. appearance of number
operators

where 8(x) = 1 for x& 1, and zero otherwise. The k, k, k,
'
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We now follow Chappel et al, ' and introduce new
photon operators by means of a canonical trans-
formation of the type first applied to the many-
body problem by Bogoliubov":

~k umiak+ vk k—' bk =u&ak +v&a k, (23)

with the inverse transformation

=ub vb — t, ~ ~=ub ~ —vb . (24)kk k-k' -k kk k-k
The constants in these transformation equations
are determined by the requirement that the trans-
formation be canonical; that is, that bk and bkf
satisfy the same commutation relations as do the
original photon operators. Thus we find that

u~' ((u~+(o )'r y
v~ 440~(d

(26)

(j'p) =(~ '+12(g ')'I'
y P

(26)

and, as usual, a&& (0) = fuck.
One must now recall that the free-particle

Hamiltonian, Eq. (2), contains the Hamiltonian of
the free radiation field, Hrad. Equations (24) are
substituted into Eqs. (5a), (21), and (22), and
after some lengthy algebra it is found that

(H d+ Vo+ Vo ) =Qkb b v&(k). (27)

(u (u) =e(c'k'+~ ')'"r =
p

(28)

are well behaved as I kl -0. There remains, of
course, the question of the effects of the trans-
formation on the remainder of the theory. After
some tedious, but elementary algebra, one finds
that all of the previous equations are affected in a
simple way, and the transformed equations are ob-
tained as follows:

Therefore the canonical transformation has diag-
onalized that portion of the interaction due to V,
and provided us with the new radiation Hamiltonian
of Eq. (27). Because the new single-photon ener-
gies reflect some sort of screening by the medium,
Chappell et a/. ' have interpreted the transforma-
tion (23) as a, redescription in terms of "quasi-
photons. " We shall not adopt this nomenclature
because there seem to be several objections to
this concept, which we shall discuss later.

Nevertheless the canonical transformation has
served the dual purpose of removing zero-momen-
tum transfers from the theory, as well as provid-
ing an analytic continuation to small values of
photon momenta. That is, the single-photon ener-
gies

g„(k)

r
r

rrr u (k)
7

i I I I

-2
10 1

I

2
10

I

1
10

p s10 /cm

I

b
10

I

8
10

k (cm')

FIG. 4. Modification of the energy-momentum relation
for photons after the Hogoliubov transformation of Eq.
(24) has been applied to the system Hamiltonian,

(i) The symbolic replacement y- I' is made
everywhere.

(ii) Equations (1), (2), and (4) are respectively
replaced by

H H VC VF '

H =Q a a v++ b ~b &u (k)0kkkkkkk I"

Vp yp+ 2p+ Vyp + V2p

(2')

(4')

(iii) In Eqs. (6) the quantities (n/kf) are re-
placed by e'/&ui (kz), and in Eqs. (6b) and (6c) we
make the replacement 5[]-5t ] in the Kronecker
5 functions of momentum variables, where 5 is a
Kronecker 5 function which carries with it the
stipulation that closed "loops, " such as that of the
single-vertex diagram in Fig. 1, are prohibited.
Hence rule (iii) implies that in the transformed
theory (see Fig. 1)

(t2, tl, k) =0. (29)

It is to be emphasized that the canonical trans-
formation of the theory we have made in this sec-
tion has really done nothing more than formally
eliminate zero-momentum transfer diagrams from
the formalism. However, we have seen that the
form of the single-photon energies, Eq. (28), has
provided an analytic continuation to small values
of Ikl. One verifies that, for (."k&~~, the leading-
order term in the expansion of the radical in (28),
along with the re-insertion of closed "loops, "
leads directly back to the y theory of the preceding
section. Figure 4 exhibits the manner in which the
original photon spectrum has been altered by the
Bogoliubov transformation, and we shall discuss
the meaning of this new energy-momentum rela-
tion in Sec. VII.

IV. MOMENTUM DISTRIBUTION AND PHOTON DENSITY

It is now possible to calculate the photon momentum distribution, (n&(k)), in the transformed theory by a
straightforward approximation procedure. One first sets o. = I" in Eqs. (11) and (12), and then makes the
replacement y - I" in Figs. 1-3. To first order in e, we then have the approximate result
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f L&(P,s,k)ds = f~L«'&(P, s, k)ds . (30)

The right-hand side of this equation represents the contribution from the two-vertex diagram of Fig. 1,
and from the prescription given in MG for calculating with master graphs it is a simple matter to find that

LF+'(P, s, k) =5 [b'~ '(o.')/2~&(k)]I (s, k), (»)

where the sum is over all particle types (except photons) in the system, and we have applied the inequality
{13). We have also defined a function

I (s, k) = f ' exp/(s0 —s)&d&+(s0 —s)[(s0- s)+ I]X '0'/4v]ds0

+ f'/ exp y(s0- s)~F+ (s0- s)[(s0- s) —I]X 'k'/4v ]ds0, (32)

in which the temperature variables have been normalized by P, and we have summed over polarization
directions of the photon. It should be emphasized that Eq. (31) is exact to leading order in the particle
density, the only approximation being that of dropping terms in p~, and higher. The integrals in Eq. (32)
can be evaluated exactly in terms of error functions of imaginary argument:

I (s, k) = —i
2b (e + [erf(ia ) —erf(ia —isb)]+e [erf(ia +i(1 —s)b) —erf(ia )]], (33)

where

(34)

Finally we are interested in the nonrelativistic region as expressed by Eq. (15), which also applies to
the case y -1. In this approximation the parameters in Eq. (34) are very large, and the asymptotic forms
of the error functions can be used. Hence,

exp(- s[1+(1—s)(&u /&u )]P&u ](e F —1)
I (,k)=

P(u [I+((o /(uF) —2s((u /(u )]

"/"r
~ (b) « (u (k);

P(u 1 —((o /(u )'
(35a)

-(e P F/P&u )(eP F —1) as (&u /(u )-0.r a (35b)

Because we are interested solely in the nonrelativistic limit, we shall adopt the form (35b) in calculating
the momentum distribution. Thus with Eqs. (30), (31), and (35b), Eq. (12) for the photon momentum
distribution becomes in the nonrelativistic case

1+ [h'(u '/(uF'(b)] [coshP~F(k) —I]/P~F(&)
(nF(k)) = vF(k)

1 —[b'(u '/(uF'(u)] vF(k)[coshP&uF(k) —I]/P(uF(k)
(36)

where vt (k) is defined by Eq. (11). In Fig. 5, (nl (k)) and vt (k) are compared with the corresponding
quantity for the vacuum.

The number density of photons is defined to be

(37)

although we shall later take up the question of whether this should actually be called p&. If the expres-
sion (36) is now substituted into (37), one finds a divergent integral for large values of Ikl. This ultra-
violet unpleasantness, however, is due only to the nonrelativistic approximation and, if we use the form
(35a) rather than (35b) in Eq. (37), then the integral converges nicely. On the other hand, an equivalent
and simpler procedure is to merely introduce a cutoff at the Compton wavelength: 0 &Xz . One verifies
that this inequality is the same as (15), but it must also be remembered that, had we used the form (35a),
there would have remained a sum over n, which will affect the final form of p&,

We now assume that the denominator in Eq. {12)can be expanded in powers of g defined in Eq. (18), and
through order f' we find"

coshP~&(k) —1

pl —-
{2z)sf vt (k)d 0+2

{2 ), f vt„(k)[l+ vt {k)1 p~ (Q) ~ 2{/) ~ (33)
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The integrals are readily evaluated in a straightforward manner, and the leading-order form of the photon
density is

p —[2/m'(PA c)'] (1.202 —'g' in&———,'Q f ' lnq ) + O(f') (39)

where 71& is defined by Eq. (14). The first term in Eq (39).is plainly the free-photon result, and the
remaining positive terms show that the photon density in a fully ionized medium is greater than that in a
vacuum at the same temperature. This merely reflects the fact that interacting charged particles create
photons. Equation (39) has also been found by Smith by a different approach. '

It is the energy density of radiation or energy per unit volume as a function of temperature and wave
number (or frequency) which is a measureable quantity, so that we wish to examine

u(P, k) -=[(n~(k)) /O] ~ (k)(dN/dk). (40)

This is certainly a, correct and useful expression for u(p, k), but only if vz(k) is truly the single-photon
energy in the medium and if the density of states, (dN/dk), is readily calculable. l,et us assume momen-
tarily that the single-photon energy is given by Eq. (26), and that the density of states is properly calcu-
lated in the usual manner for a cavity, "

(dN/dk) = nk'/~'. (41)

Then let us calculate the total energy density of radiation in 0 by integrating Eq. (40) over all values of
momentum magnitude. In the course of pursuing this calculation, one readily proves the following identity:

u(P) = J u(P, k)dk = (1/&)Zk~~(k)(n~(k)), (42)

which is precisely the expression we would have adopted on intuitive grounds had we set out to calculate
u(P) directly. But the second line of Eq. (42) is only correct insofar as both +Z(k) and (n&(k)) represent
the true photon energies and momentum distribution, respectively. In this sense, if one substitutes Eqs.
(26) and (36) into (42), one is not going to obtain correct answers in higher order, because to the extent
that ~l.(k) is correct, we can only write

(n~(k)) = v~(k) (43)

for the momentum distribution. That is, one can certainly calculate corrections to the momentum dis-
tribution using vZ (k), as we have done, but the resulting (nl (k)) cannot be used indescriminately in the
second line of Eq. (42) when Eq. (26) is used. This point involves simple, but sometimes subtle, con-
siderations, and so we shall return to it in Sec. VII and approach it from yet another direction. At that
time, we shall also examine u(P, k) in more detail.

In order to conclude this section, which has as its objective the calculation of the thermodynamic func-
tions relating to photons, let us complete the calculation of u(P). A correct and unambiguous way to do
this is to adopt the statistical mechanical equation of (MG-9), namely

(44)u(P) =-(sf/sP)I, „,
where f(P,N, 0) is the grand potential for the entire ionized gas, and z and Q are to be held constant in the
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differentiation. The leading-order contribution to the grand potential due to photon-charged particle inter-
actions has been calculated previously. " Through order P' the result is the same in iither the y or F formu-
lation (see Sec. Vlbelow), and so we canwrite

f =(2n/m)Q (2S + 1)e X 'Z 'q Inq (45)r Q Q Q Q Q Q

Thus u(P) can be written as a sum of two contributions: one from the free-photon grand potential (in the
I' formulation), and one from f&. Moreover the former contribution is completely equivalent to using the
second line of Eq. (42), with the approximation (43). Therefore

u(p) = u, (p) +u, (p),

where ul(P}=(I/Q)Q v (j'p)v~(k}= 15@» T'[1+0(g')], (45)

and

u2(P) =- (~f /'P)l ~=[1/2m'P(Phc)']Q ' 'Inq (47)

Thus to the order of our approximations, the total energy density of radiation in the fully ionized gas is

u(p) =oT'[I+(15/2H)Q ' 'In@ +O(V)], (48)

where o = m'tc'/158'c' (49)

is the Stefan-Boltzmann constant. The second term in Eq. (48) appears to be a new result.
As a final point, we mention that, to the order of the calculations considered here, the radiation pressure

is

=-,'u (p)+O(~2).rad ' 1 (50)

It is interesting, but not too surprising, that only u, (P) contributes to this relation because the factor of —,
'

is strictly a relativistic phenomenon. Since the interaction of photons is with nonrelativistic charged parti-
cles, one expects their effects on the pressure to be intimately interrelated. On the contrary, it is a
little surprising that the rejatjon (50) even holds to the order indicated.

V. HIGHER-ORDER DIAGRAMS

It is probably never necessary in any practical application of the theory to include contributions of order
higher than those considered in the preceding section. Nevertheless, it is important to formally investigate the
higher-order diagrams for the following two reasons: (1) One must verify the efficacy of both the dia-
grammatic expansion of L(t„ t„k) and the expansion of (n~(k)); and, (2) it is desirable to know that the
higher-order diagrams are well behaved in the event that their calculation becomes necessary. Thus in
Figs. 2 and 3 we have exhibited all of the diagrams occurring in next order e .

There is a good reason for grouping the 12 diagrams as done in these figures, because a short calcula-
tion shows that the analytic expressions for those of Fig. 3 contain ultraviolet divergences. This is not,
surprising, of course, but only a manifestation of the general self-energy malady inherent in the present
description of quantum electrodynamics, both relativistic and nonrelativistic. Indeed, a salient feature
of MG was the systematic treatment of these self-energy terms which always occur in systems of inter-
acting charged particles. The analysis of this "one-particle problem" is given in Sec. IV of MG.

As a concrete example for investigating the higher-order terms, one finds for the expression corre-
sponding to the first diagram in Fig. 3

2
Z '2S +1) e8 ~ ek)

v (1)+v (11)v~(k8)e ' ~v (1)e ' —v (12)v~(k8)e ' ],(p t)w - (p t}w - - —tw

where 12=11+k—k8, W=u&~(II)+vZ(k) —~~(t2) —&u~(k8),

and v~(k) is defined in Eq. (11).With reference to Eq. (51), we can now comment on the two points raised
in the first paragraph of this section.

First of all, in the infinite-volume limit the sums can be converted to integrals in the usual way, and
the physical parameters extracted by rendering the integration variables dimensionless. One then ob-
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serves that the entire quantity LI "& is of order f', and so the expansion scheme adopted in the preceding
section is quite likely to be a good one.

Secondly, it is easy to verify that, when the infinite-volume limit is taken, the third term in square
brackets in Eq. (51) leads to a divergent integral for large values of Ik, t. Diagrammatically, this diver-
gence is associated with the case in which the two internal lines of the diagram for LZ &'& which go in the
same direction do not carry factors of v(k). In MG this structure was called a "wiggly-line double bond, "
and it should be clear that the divergence arises from the dynamics of the system and not the statistics.

These divergences arise throughout the theory in higher order, and they are to be interpreted as electro-
magnetic self-energies arising from the interaction of the charged particle with its own radiation field,
and are considered unphysical. As is customary, these self-energies can be removed from the theory
through mass renormalization. "~' However, the self-energy problem is not completely restricted to
the higher-order terms, because a single charged particle can emit and re-absorb virtual photons, in a
manner indicated diagrammatically in Fig. 6. Therefore in any renormalization scheme, we must also
account for these contributions to the self-energy.

Mass renormalization is carried out by first defining an "observable" (or "dressed"} mass for o-type
particles:

(52)

where Mz~ & is called the "bare mass, "and 5M& is the "electromagnetic mass" which is due to the
electromagnetic self-energy. Next, in all of the equations of the theory, one now makes the replacement
M~ -M~ "& and notes the expansions

1 1
1

o ) 1 1 ™o (53)
M M "& M "& ' &M ] [M &)]

by noting the divergent term in Eq. (51), we can identify

5M = (4«e'I'/Q)Z 'Qk (ek ~ e4)'/&d~(k4)[&u (k4)+ &d~(a4)] . (54)

This divergent quantity, therefore, can be removed from Eq. (51) by replacing Mo, &0& with the dressed
mass M~.

Of course, Eq. (54) is not complete because 5Mo, must really be the sum of all se)f-energy terms.
Thus, we must include those contributions to 6M~ arising from diagrams such as that of Fig. 6, as well
as those due to the other diagrams in Fig. 3. Fortunately these latter contributions are all equal to that
of Eq. (54); otherwise, the scheme would fail.

A systematic method for carrying out the mass renormalization to all orders has been presented in MG,
and the reader can refer to that work for the details. Here we shall merely point out that, throu h order
e, the present theory is completely renormalized if we add to every single-particle energy, &d~ k}, for
charged particles, a counter-term

S (k) = (ne'h'0'/A)(Z '/M ')Q„[2(e ~ ~4)'+If'(5 ~ ~4)'] /&d (k4)[&d (k4) + &d (u4)] . (55)

FIG. 6. The leading-order diagrammatic represen-
tation of emission and reabsorption of a virtual photon
by charged particles.
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This quantity has been defined with a factor 5'k'/2Mo, because, as observed by Smith, ' the renormalization
must not alter the form of the free-particle energy.

It is very important to realize that after carrying out the renormalization procedure there will remain
finite parts of the originally divergent diagrams. These are known as "radiative corrections" and are of
order e4. There is no reason to calculate these contributions here, however, for we have restricted our
calculations of thermodynamic quantities to order e . In the next section, though, we shall calculate one
radiative correction which is of intrinsic interest.

One important point should be stressed regarding the renormalization program which has been outlined
briefly here. In practice, it has proved impossible to carry out the renormalization program in the
transformed theory. Rather, it is necessary to first renormalize the untransformed equations (the y
theory), and then perform the Bogoliubov transformation. This is not unexpected, and a, major reason is
that the single-vertex diagram vanishes in the I' theory. For instance, one must group L ~ & with the di-
vergent parts of L&" and L&" ' to identify the electromagnetic self-energy, and this could not be done in
the transformed theory.

VI. RADIATIVE CORRECTIONS AND COULOMB INTERACTIONS

There is one radiative correction which is of importance in the present context, and that is associated
with the grand potential. In the discussion preceding Eq. (45), we pointed out that the leading-order con-
tribution to the grand potential due to photon-charged particle interactions was the same in either the
transformed or untransformed theory. We should like to prove this statement at this time.

According to MG, the diagrammatic expression for the grand potential is given in terms of master 0
graphs; that is, diagrams such as those of Figs. 3.—3 in which the external lines are closed. The leading-
order diagram of this type which is due to photon-charged particle interactions is that of Fig. 7, and its
analytical expression will be denoted by fI . The dominant contribution to this diagram is due to the self-
energy effect. After carrying out the mass renormalization, one finds from the rules given in MG that

f =(P g e20/82m )Q [(2S + 1)Z z /M X ]q l('g, p ),F Q Q Q D CL C G Q G' Q
(58)

where we have momentarily introduced the notation p, ~ = r ~ri~, Xe n is the Compton wavelength for o.-type
particles, and

—x' 2rl1(n, V ) =8~ f x'e "~dx f+ (1 —w')d~

(y2+ p 2)1/2
0

exp( —[y' —2xyw+ 2(y'+ p ')'" ] /2' ) —1

[y' —2xyzu+ 2(y'+ p ')'~']'/4q
(57)

If one now sets p, ~ = 0, this integral is identical to that encountered in the y theory. "~" The integral
I(q~, 0) can be evaluated asymptotically for 'go « I, and one finds it is proportional to go, Inq~ in lowest
order. Thus,

f =(2e'/mhc)Q (2S +1)z X -'Z 'q Inq [1+0(f )], = f [1+O(g)], (58)

thereby verifying Eq. (45).
As a final calculation, we shall find the way in which the Coulomb interactions affect the photon momen-

tum distribution in lowest order. This calculation was performed in the context of the y theory in I, and
proceeds in a similar manner here, in the transformed theory. The relevant diagram is that of Fig. 8,
in which the function LD & is the sum over all ring diagrams and repre'sents the screened-Coulomb inter-
action. We see no purpose to be served in writing down the detailed calculation of this diagram here, be-
cause the integrals involved are merely modifications of those encountered in deriving the familiar Debye-
Huckel theory. Therefore we shall just give the final result, which involes the classical Debye parameter
for a.-type charged particles.

A = pe'Z '/&D, (58)

where XD is the Debye length:

= (4wPe'Q p Z ')
D Q Q Q (80)

In a form suitable for substituting directly into Eq. (12), the master I. graph of Fig. 8 yields to lowest
order in the electronic charge

I» (P, t, k)dt=[f(P~&)/P~&]Q 0 'A (81)



PHOTONS IN FULLY IONIZED GAS. 369

FIG. 7. The lowest-order diagrammatic contribution
to the grand potential due to the interaction of photons
with charged particles.

FIG. 8. The leading-order diagrammatic contribution
to the photon momentum distribution due to Coulomb
interactions among charged particles. The function
ID

' represents the screened Coulomb interaction ob-
tained by summing over all ring diagrams, and is dis-
cussed in detail in MG.

where f(x) = (2/x')[1+6/x'+ (2/x) sinhx —(6/x') coshx] . (62)

The correction (61) to the momentum distribution is to be added to both the numerator and denominator of
Eq. (36), but it must be remembered that in the latter case a factor of vl (k) must be introduced.

VfI. DISCUSSION

t (&d) —1 —(d /(d
p

(63)

can still be thought of as due to a microscopic
screening of the photon charged-particle interac-
tion.

Thus it seems reasonable to assume the exis-
tence of "photon integrity"; that is, a photon is
always a photon in the ionized gas. One shouM,
therefore, treat the I' label introduced above as
a mere notational device reflecting primarily the
procedure used for analytic continuation, although
the method most certainly expedites the calcula-
tions. With this in mind, the densities pZ and
u(P, k) should always be considered as referring
to photons.

It seems appropriate at this point to make some
comments regarding the interpretation to be given
to the foregoing theory and calculations. Regard-
ing the photon energy-momentum relation, Eq.
(26), obtained from the Bogoliubov transformation,
we find it difficult to understand the concept of
"quasiphotons" introduced earlier. ' For this con-
cept would not seem to fit physically into the usual
picture of quasiparticles, in that collective effects
due to photons are difficult to visualize. Rather
it appears physically more satisfying to interpret
the perturbation of the radiation properties of the
gas in terms of the macroscopic index of refrac-
tion, or dielectric constant of the medium, a con-
cept which lends itself more readily to experi-
mental interpretation. Of course, the approxi-
mate dielectric constant obtained from Eq. (26),

~(P, u) = (~'/w') ~F(u) vF(k) (64)

represents a good approximation, one can observe
the differences in this function and that for the

Equation (63) is really a classical result and
well known. " This form cannot be completely
correct, however, because we have seen that
Eq. (26) itself is only approximately the true pho-
ton energy in the medium. Thus although the
momentum distribution can be calculated quite
accurately, it would seem to offer little direct
information regarding e(~). That is, a suitable
theory of (n&(k) }does not in itself provide a
s&np/e procedure for finding the index of refrac-
tion.

In Sec. IV we calculated the total energy density
of radiation in the fully ionized gas, culminating
in what a.ppea, rs to be a new result in Eq. (48).
However, it was found somewhat difficult to de-
rive this result in a straightforward manner,
particularly from the function u(P, k), Eq. (40).
Although one can certainly find the correct mo-
mentum distribution to be inserted into this equa-
tion, it is not at all clear what should be used for
the density of states, dN/dk. Furthermore, no
simple criterion seems to exist for aid in making
this decision. The difficulty here is compounded,
of course, by realizing that a&1 (k) is only correct
to a first approximation. Hence it is doubtful that
a good knowledge of the momentum distribution
can provide much insight into the behavior of the
radiation spectrum in momentum space. Similar
arguments apply, of course, to the frequency
spectrum. To the order that
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vacuum in Fig. 9. Equation (64) appears to be the
best approximation possible from the theory of the
photon momentum distribution outlined here.

To the above pessimistic comments must be
added one more observation. It is often stated"
that the function u(P, A, ), or u(P, &u), is a, universal
function of the indicated variables. If so, then
how can the photon momentum distribution in a
fully ionized gas ever differ from that for the
vacuum except trivially'P If there is a difference,
such as exhibited by Eq. (36), then one can con-
struct systems violating the Second I aw of Ther-
modynamics. Therefore a large dilemma arises
in applying the momentum distribution to a study
of the photon energy density in a fully ionized gas;
indeed, one must ask if it even makes sense to
calculate (nl (k)) in this respect. In the following
paper a solution to this problem is suggested,
from which one concludes that great care must be
exercised in applying any theory of the momentum
distribution to a study of the radiation spectrum.
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