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Equilibrium Theory of a Partially Ionized Plasma*

Julius L, Jackson and Lewis S. Klein

Physics DePaxtment, Hoseawd University, Washington, D. C. 20001

A detailed study is made of the use of the Debye potential as the effective interaction between
the electron and proton of a hydrogen atom in a partially ionized plasma. The chemical poten-
tials of the constituents are calculated and examined in the light of the requirement that they be
consistent with a single free-energy function. On this basis a Saha equation is derived which
is consistent and correct up to terms of the order of the Debye-Huckel energy. It is further
shown that the next order, obtained by expanding the effective potential in powers of the Bohr
radius divided by the Debye length, is incorrect.

I. INTRODUCTION

This paper is concerned with the equilibrium
composition of a partially ionized plasma. For
simplicity we confine our attention to a system
consisting only of hydrogen atoms and equal num-
bers of electrons and protons. To obtain an
equation of state for Ng, the number of atoms
(which for a closed system determines the num-
bers of electrons, Ne, and of protons &p), one
evaluates the partition function as a function of
the number of atoms. The equilibrium equation
(a, generalized Saha equation) is then obtained by
maximizing the phase volume as a function of N~.

The classical difficulty in this procedure, which
was recognized very early in the history of this
problem, is that the partition function of an iso-
lated hydrogen atom is divergent. The divergence
is due to the neglect of the interaction of the
hydrogen atom with its surroundings. Many dif-
ferent methods have been used to overcome this
difficulty. The volume available for the atomic
wave function can be limited by various physical
assumptions' ' which lead to a finite number of
atomic energy levels and a convergent partition
function. The particular assumption used, of '

course, depends upon the physical conditions of
the plasma.

Here we will deal with a plasma at temperatures
and densities such that it is in a "partially ionized
state. " Specifically the temperature is in a range
wherein essentially all of the atoms are in the
ground state, and the density of atoms is low enough
so that we can neglect the atom-atom interactions.
Under these conditions it seems physically attrac-
tive to use the Debye potential as the effective in-
teraction between the electron and proton of a hy-
drogen atom. This is justified by arguments
based upon the plasma shielding of the Coulomb
interaction. Since for a Debye potential there are
a finite number of bound states, this approach
automatically yields a convergent atomic partition
function. Historically, this method was suggested
by Ecker and Weizel, and, more recently, has
been used frequently for detailed calculations in
partially ionized plasmas. '& '

The use of the Debye potential implies that one
is treating the plasma according to the Debye-
Huckel theory, which is a systematic approxima-
tion scheme ordered by the small parameter Pe'v,
where P= 1/kT and tc is the inverse Debye length,

(4vpe'N/V)'~'. There are two principal questions
which we consider here with regard to the use of
the Debye potential for the effective interaction in
the atomic hamiltonian. The first question con-
cerns the terms of order Pe'I(:, and the second,
higher-order corrections.

There has been disagreement as to whether the
eff ective potential should be'

= —e (e /r)-8 z
(1) 2 —~r 2

eff (l)

or8 9 V = —ee /r.(2) 2 —~r
eff

where the subscripts A, e, and p indicate that the
chemical potential is that of an atom, electron or
proton, respectively.

We calculate the chemical potentials of the dif-
ferent constituents by a generalization of a method

/

The second form, Eq. (2), results in energy
eigenvalues shifted to the first order by the con-
stant value e'v. This results in versions of the
generalized Saha equation which differ in the
coefficient of the Pe'~ term, thus giving different
values for the so-called lowering of the ionization
potential. The higher-order terms may be ob-
tained by calculating the atomic partition function
using energy eigenvalues obtained with the shield-
ed Debye potential.

Here we shall systematically examine both the
lowering of the ionization-potential term and the
significance of the higher-order corrections. By
following a procedure which starts from first
principles of quantum statistical mechanics, we
are able to avoid the ambiguities associated with
ad hoc methods. Results will be obtained upon the
introduction of suitable physical. approximations.
These approximations, however, will be made in
the context of a systematic derivation. The pro-
cedure to be used mill be to derive the equilibrium
Saha equation by evaluating the quantum partition
function in a classical limit for a fixed number of
atoms (and free electrons and protons) and then
obtaining the number of atoms which corresponds
to the maximum volume in phase space.

This, of course, is the same as minimizing the
free energy as a function of N~, or equating
chemical potentials, i.e. ,

(3)
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II. METHOD

Here we will reviem the distribution-of-potential
method as it was previously derived and applied to
classical single-component fluids. If the particles
interact via a two-body potential u(r), we define
the potential at a point to be

n
p(r)= + u(r-r. ),

j= 1
(4)

where N is the number of particles in the fluid.
Regarding p(r) as a random variable whose sta-

developed by the present authors in a previous
publication. ' This method, the distribution-of-
potential method, is particularly suited to this
problem, because the chemical potentials are ob-
tained directly for a constituent in terms of the
probability distribution function of its interaction
potential with the other constituents of the system.
By calculating separately the chemical potentials,
the results can be subjected to an independent
check in that these chemical potentials should be
derivable in a particular order of approximation
from a unique free-energy function.

In Sec. II we mill review the distribution-of-
potential method and discuss the extension re-
quired for an application to this problem. Section
III contains a derivation of the chemical potential
of an atom based upon a quantum-mechanical gen-
eralization of the distribution-of-potential method.
A calculation of the chemical potential of an elec-
tron is presented in Sec. IV. In Sec. V we will
discuss the compatibility of the results for the
chemical potentials mith respect to the require-
ment that they be derivable from a unique free-
energy function. On this basis the best approxi-
mate form of the Saha equation will be obtained.
These considerations will also be used to discuss
both of the questions mentioned previously which
have led to controversies in the literature"
that is, the questions of the lowering of the ioniza-
tion-potential terms (Pe'x terms) and the atomic
partition-function correction terms (higher-order
terms).

The principal conclusions are:
1. The effective potential to be used for the

interaction of the proton and electron in the hydro-
gen atom which is correct to order Pe2x is,

Vff = —e e /r-e x,(1) 2 —xr 2
eff

the shifted Debye potential.
2. The higher-order "corrections" obtained

with the use of Veff are incorrect. Indeed, in
view of the results for the electron and proton
chemical potentials presented in Sec. Dt, it will
become apparent that higher-order corrections
can only be obtained by taking into account the de-
tails of the quantum-mechanical atom-electron
and atom-proton interactions. A consequence of
this result is that there does not appear to be any
justification for basing quantitative conclusions
for a partially ionized plasma on the details of
calculations of the bound states of the Debye po-
tential.

tistics are determined by the equilibrium distri-
bution, we are able to write the chemical potential
in terms of P(p), the probability distribution t'unc-
tion of the potential. We suppress the dependence
of p on r because (neglecting points near the sur-
face) for a homogeneous fluid P(p) is not a func-
tion of position. The result, which is proved rig-
orously in Ref. 10, is

Pp=in(X N/V) —lnf P(p)e dp. (5)

Here t/" is the volume and X is the thermal De
Broglie wavelength, h/(2xmkT)'~'. We may gain
insight into the meaning of Eq. (5) by the following
non-rigorous argument. We write the partition
function of the system in the following form,

N 1
drN

N!~ N)

"P~ ~["23('23)' "' '"N-1 N('N-1 N)]~

x fdr
1

exp(- p[u12(r12)+ + ulN(r 1N)]], (6)

where FN is the free energy of the N-particle
system. The integral over the coordinates of
particle 1 is of course still a function of all the
other coordinates of the fluid. However for typ-
ical distributions of the coordinates, r2, .. . , rN,
in performing the integral over r1, the values
which the exponent assumes will be determmined by
the probability distribution of p. In other words
for "typical" r2 . ~ . rN one has

fdr
1

exp(- p[u12(r12)+ ~ ~ ~ +ulN(rlN)]j

Thus we obtain

= V(e ).

PF —PvN U (e )
3

(N 1)t 3(N-1) 2

23 23 N-1 N N-1 N+'

N 1V —P�-p=~('
As FN- FN 1 approaches &F/sN= p, in the limit
as N approaches infinity, we directly obtain Eq. (5).
Equation (3) has been applied to a hard sphere gas, 'o

and, with the necessary extensions, to a fully
ionized plasma. " The problem of calculating the
chemical potential is therefore reduced to the
problem of calculating the probability distribution
function of the interaction energy, for which one
often has available useful statistical methods. To
apply this type of formula to the calculation of the
chemical potentials of the constituents of a partial-
ly ionized plasma, it is necessary to obtain a
suitable quantum-mechanical generalization of
Eq. (5). One can then write expressions for p~
and p, e in terms of the statistics of their inter-
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actions with the constituents of the partially ion-
ized plasma. The basic difficulty encountered in
obtaining such a generalization is related to the
fact that the Hamiltonian of the atom does not com-
mute with the interaction between the atom and the
plasma. However, for the conditions in which we
are interested, the charged component (plasma)

and the atoms are weakly coupled, and the relevant
commutators that appear in quantum statistical-
mechanical perturbation procedures are expected
to be small. In this approximation the leading
terms in the expressions for the chemical poten-
tials will be shown to be the suitable generaliza-
tions of Eq. (5).

III. THE CHEMICAL POTENTIAL OF AN ATOM

To derive the quantum-mechanical generalization of Eq. (5) for the chemical potential of a hydrogen
atom in a system of electrons, protons, and atoms, we write the quantum partition function corresponding
to that part of phase space containing Ng atoms and Nc charged particles (consisting of equal numbers of
unbound electrons and protons),

N~, N N, N —PH(N )N )
Z(N&, N )=Trp, where p =e (9)

is the density matrix for the system of N~ atoms and Nc charged particles, and H(NA, Nc) is the corre-
~wonding Hamiltonian. The Hamiltonian can be written,

N N

H(N&, N )= +(X.+K. )+ + (K + ~ V, )+ Z
N

Z V. (10)

where &j+Kj& is the unperturbed atomic Hamiltonian and the center-of-mass kinetic energy operator for
the jth atom,

Nc

A. 'WA.

is the kinetic energy operator and the operator for the potential energy of interaction with all other charged
particles for the Xth charged particle, and Vjy+c is the potential energy operator for the interaction of
atom j and charged particle X. Note that the atom-atom interaction has been neglected in Eq. (10). This
is appropriate for systems containing a sufficiently dilute atomic component (i. e. , the degree of ionization
is moderately high).

The partition function of the above system with one more atom added is

Z(N&+1, N )= Trp = Tr exp]- PfH(N&, N )+~ +~&V
&

+K ]],

where +~+K&+ is the Hamiltonian of the extra atom and V~p is the interaction energy of the extra atom
with the A.th charged particle. It can be written explicitly as

V =ee /lx —x I
—ee /lr —r I,

where x~+ and x~- are the coordinates of the proton and electron of the extra atom.
If we assume that the atom is weakly coupled to the plasma we can neglect all commutators involving

V~~ in an 8-matrix type expansion of the operator p &+~~Nc so that,

N~+1, N ~ N~, N
p =exp[- P(K +K +Z V )]p

Equation (13) is exact only in the case when Vny is zero. However, the approximation involved should
be good at temperatures such that only the lower atomic levels are significantly occupied. This is be-
cause the atom-plasma coupling is strong only for highly excited atomic states. The approximation Eq.
(13) is a common assumption in theories of spectral line shapes" which reproduce experimental data to
within a few percent.

In the context of the weak coupling approximation Eq. (13), the partition function of the system with the
extra atom, can be written in the form,

Z(N&+1, N )=(N&+ I) Tr fdp fdic Tr exp[- p(K + ~ + y++ y )]

(i4)
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where p+ and p are scalar variables of integration. The use of delta functions in Eq. (14) implies that
the weak coupling approximation has been made again, asZyVay+c has been commuted with H(Ng, N ). In
the same approximation, the trace operation in Eq. (14) has been factored so that Trc, Tr~, and Tra are
independent traces over the Nc charged particle coordinates, the N~ atomic coordinates, and the extra
atom, respectively. The factor (N~+ 1)-' has been included to account for the indistinguishability of the
extra atom, i. e. , the trace over the atomic coordinates must be performed with properly antisymmetrized
functions.

The probability distribution function of the positions of the charged particles is defined as

N~) N
P(r, ",r )= Tr„p '/Z(NZ, N ).

C
A' c'

Introducing the distribution function of the potential at two points (in this case, the positions of the ion and
electron of the atom),

Nc ) ( N

(18)
~= I l r r-l )

Eq. (14) can now be written as

Z(N&+1, N )/Z(N&, N )= (N&+ 1) 'Tr

fdic fdic

P(p, p ) exp[- p(& + ~ + p + p )],

where the definition of y and y may be obtained from Eq. (12). The integrand in Eq. (17) is indepen-
dent of the center-of-mass coordinate of the atom. Taking the trace over the center-of-mass coordinates
and momenta we obtain in the thermodynamic limit, N~ - ~, V- ~, N~/V-const, the atomic chemical po-
tential,

p& = kT in(X& N&/V) —kT lnTr exp(- PK ),a a
(18)

where Tra is a trace only over the atomic bound states; and, in the weak coupling approximation, Xa f is
defined as

exp(-PX )= J dp

fdic

P(y+, p )exp[- P(R + p" + p )j.

Equation (18) is the quantum generalization of Eq. (5) which was sought for the calculation of the chemi-
cal potential of the atomic component. In Ref. 15 it has been shown that, in the Debye-Huckel approxima-
tion,

P(y+ y ) = [2mkT(I —o')] ' exp(- [(y )'+ (y )' —2oy y ]/2vkT(1 —o')] (2O)

v= (1 —e )/zr, and v= (4~Pe'N /V)'12

where v is the inverse Debye length. Substituting this in Eq. (19) and performing the integration, we ob-
tain

exp(- PX ) =exp(- P~ ) exp]- P[(e /r)(1 —e /r) —e K]], (IS')

which is, again in the weak coupling approximation,

exp(- P3C )= exp{- P[- (& /2m)& —e e /r - e ~]].,
eff 2 2 2 —KV 2 (21)

in agreement with the hypothesis of Ecker and Weizel. Substituting this expression in Eq. (18) we obtain
the chemical potential of an atom in a partially ionized plasma

PE
p&=kTIn(A& N&/V) —kTln+ e (22)

where E~* are the energy levels (finite in number) of an electron in the shifted Debye-Huckel potential,
—e2e —~&/r e2v. At t-emperatures such that only the ground state of the hydrogen atom is significantly
occupied, Eq. (22) becomes,

kT in(X&'N& /V) —
l
—E—

O
l
—e'v'a&+ ~ ~ ~, (23)

where a~ is the Bohr radius, and lE, l is the hydrogenic ionization potential, 13.6 eV. The correction
term, the last term in Eq. (23), is calculated by expanding the effective potential, and is of higher order
than the Debye-Hiickel theory approximation (which is ordered by the parameter pe'z), since zaII((1. It
will be shown in Sec. V that no significance can be attached to this term.
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IV. THE CHEMICAL POTENTIAL
OF AN ELECTRON

The chemical potential of the electron is calcu-
lated to the first order from the classical formula,
Eq. (5). The interaction potentials for an elec-
tron may be decomposed into a sum of the poten-
tial due to the atoms, p~ and the charged parti-
cles yc

P=P +P&.
C

(25)

As the plasma-atom coupling is weak, we assume
that the p~ and p~ are statistically independent
and we write P(p), the distribution function of p
in terms of the PI(P~) and P2(ye) distribution
functions of p~ and pz, respectively,

P(()= J dV, fdV~5(V (o,-—(~)PI((~)P2(V', ).
(25)

Inserting Eq. (22) into Eq. (5), the result is
—

ppA
pp, =In(A. N /V)-ln Jdp&e P(cp&)

—InJdy e P(p ). (2&)

The last term in Eq. (27) corresponds to the
contribution to the chemical potential of an elec-
tron in a fully ionized plasma. This integral has
been calculated in Ref. 15 and, in the Debye-
Huckel approximation, results in the well-known
expression,

~c
lnfdp e P(y )= —', Pe

Since the atoms are assumed to be non-inter-
acting, P(y~) in the second term of Eq. (23) can
be assumed to be generated by a random distri-
bution of atoms. Thus this term can be written

fd V&P(y&)e

—pu (r —r )
I=I+(N /V}fdr (e " ' ' —I), (So)

= V fdr exp[- pZ u (r r)]=I, (29-)-
where x~ represents an integration over the coor-
dinates of a single charged particle. To obtain
Eq. (25) we have assumed that an integration of
P(cp~)e P&& over the random variable p~ is
equivalent to integrating exp[ —pZ~u(r ra)] over-
the space of the charged particle. This is valid
only when the atomic density is sufficiently low so
that there is no significant overlap of the inter-
actions between the charged particle and the atoms
in the system. In other words we calculate the
first virial associated with the electron-atom in-
teraction. We can now write Eq. (25) in the form

I = I+ (X N~/V)

x Tr(exp(- P a +u (r —r )]- exp(- P H )). (32)0 ca c a 0

Following the procedure of Ref. 18, the radial
eigenstates, which are Bessel functions, are
normalized in a sphere of radius R. This implies
the boundary condition

k (n )ft- ,'1~+5 (k)-=n ~
u ~ l u

for the eigenstates of the Hamiltonian
If0+u(re ra), and-

(33)

k (n, )ft —,'I~= n, ~—

for the eigenstates of H, . In the above equation,
kf(n) is the asymptotic momentum of the nth eigen-
state and 5I(k) is the phase shift of the 1th partial
wave. We assume that the temperature is such
that 5I(k) is nonzero only for s wave (I= 0) scat-
tering. Thus in performing the trace in Eq. (32)
we may transform the sum over states to an inte-
gral over momentum and obtain

—P[H +u (r r)] - Pff-
0 ca e a 0)

(d d 0)
ldk, (s5)

( dk dk

where dn/dk can be obtained from Eqs. (33) and
(34), i. e. ,

dn dn0 I d60(k)u 0
dk dk ri' dk

(36)

Thus far we have neglected spin. If we take this
into account by writing 50~ and 50 for the phase
shift in triplet and singlet spin states, we can
now write Eq. (31) as

Pp. = In(X 'N /V) ——,
' Pe'~

e e e

X 3N~ pg2k2/2~—ln 1+ — dke
V

N~ —pu (r —r )
—ln 1+ fdr (e ' —I) .

(31)
To evaluate the last term correctly one must
know the correct quantum mechanical interaction
between an atom and the electron. In lieu of this,
one can use the results of detailed quantum-me-
chanical calculations of electron-hydrogen atom
scattering. For this purpose, we need only use
the corresponding quantum-mechanical expres-
sion. " We thus write

and hence Eq. (23) becomes

Pp, =In(X N /V)- —,Pe a
3 1

d6 k d6 k

4m" dk dk . 37
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The phase shifts for electron-atom s-wave scat-
tering have been calculated, "and in the energy
range of interest are approximately given by

= —,w- ka, 6 = —n'- ka,T g T 8 g S (36)

where the best values of the constants are,
a~= 1.91aB, a~= 6.22aB (aB is the Bohr radius).
With these values we have

Pp = —In(X 'N /V) ——2'-Pe2v
e e e

+ 2 (N&/N )(za&)2+ ~ ~ ~ . (39)

The chemical potential of the proton can be cal-
culated in a completely analogous manner. The
phase shifts for proton-atom s-wave scattering
have also been calculated. " The resulting expres-
sion for p, t, will differ from Eg. (39) only in the
coefficient of the third term on the right-hand
side.

V. DISCUSSION

In this section we will review the results of the
preceding sections for the chemical potentials of
the constituents, and discuss them in considera-
tion of the fact that they must be derivable from
a single free energy function. That is they must
satisfy the integrability conditions

~p, ~p, ~p. ~p, ~p, ~p,
A e . A p e P

~N ~NA
' &N BNA

' ~N ~Ã (4O)

=In(~ 'N /v)- plzol

The chemical potentials calculated in the preced-
ing two sections are

Pp& = In(X&2N&/U) —Pl EO I
—va&Pe2v+ ~ ~ ~ (4»)

ton will have the same form as p.e with a different
numerical coefficient for the third term.

We note that there is no difficulty with the con-
sistency conditions up to terms of order Pe2a, as
the Debye-HGckel term, which involves the num-
ber of charged particles, appears only in pe (and

pp). Up to terms of first order in the Debye-
Hdckel theory, it is therefore correct to write,
the free energy in the form,

PE = PEO P I
E—

O
I N~ —

2 (N + N )Pe v) (43)

where I', is the free energy of non-interacting
ideal gases of Np protons, Ne electrons and NA
atoms. The consistency condition provides a
further confirmation of the necessity for the shift
—e g in the effective potential, for if there were
not such a term, there would be an additional
term of order Pe2& in Eqs. (41). This would have
to arise from a term NgPe2v in the free energy,
which is inconsistent with the results obtained for
the chemical potential of the electrons.

With regard to the higher-order terms in the
chemical potentials [the third terms on the right-
hand side of both Eqs. (41) and (42)] it is immedi-
ately apparent that they are inconsistent. Al-
though both of these terms may be thought of as
being due to interactions between atoms and
charged particles, they differ in their functional
dependence on the temperature. It should be re-
called that in deriving Eg. (41) for pg, commu-
tators were neglected, and there is no reason to
believe that the terms neglected are smaller than
those obtained in the expansion of the effective
potential. On the other hand, the third term in
Eq. (42) is the leading term in the electron-atom
interaction and should be correct in its functional
dependence. We therefore conclude that the third
term in Egs. (42) is the correct one, and the one
in Eqs. (41) is wrong. Accordingly, the free en-
ergy of a partially ionized plasma taking the plas-
ma-atom interaction into account to the first order
is

-4ve4p2a (N +N )/V+ ~ ~ ~

B P e (41b)
PE= PE +cN&(N +N )/VI2T,

DH
(44)

and

pp, =In(X 'N /V) ——,
' pe2~

e e

+ 2(N /N )(a /Pe2)'(Pe")2+ ~ ~ ~

A e B (42a)

=In(X 'N /V)

Pe2[4vPe2(N + iV )/V] I/2
e P

+ 6wPe2a 2(N&/V). (42b)

For each of the chemical potentials we have written
the first line in a form which exhibits the order-
ing of the terms in powers of the small parameter,
Pe2z. In the second form we have written the
terms in the notation which displays the functional
dependence on NA, Np, and Ne. As stated at the
end of Sec. IV, the chemical potential of the pro-

where c is a constant.
From Eqs. (42), one may see that the last term

is of order (Pe2x)2. If, however, one wishes to
include all terms to that order one should also in-
clude the higher-order terms in the free energy of
a plasma. ")" The second term in Eg. (44), how-
ever, is apparently the leading term involving
inter component interactions.

To summarize, the above remarks have the
following implication in the calculation of pA.
The use of a shielded Debye potential to obtain
corrections to the chemical potential (or partition
function) of an atom in a low atomic state is not
justified. That is, the quantum corrections which
are neglected in the derivation of the atomic
Hamiltonian, containing the shielded potential,
are of the same order as the corrections due to
the shielded potential. We can make no statement
about corrections to higher atomic levels, since
the weak coupling approximation utilized in Sec.
III is incorrect for these levels. On the basis of
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the theory presented here, which is valid only
when the temperature is low enough so that only
the low atomic states are significantly populated,
the lower atomic energy levels should be calcu-
lated with the ordinary hydrogen Hamiltonian (the
small l r+ —r I limit of X«f).

With this understanding we may use the chemi-
cal potentials, Eqs. (42) and (43), to write the
Saha equation for hydrogen which is consistent to
first order in the Debye-Huekel approximation as,

N N ~2' m
~
'" —Pe'g

N& &3(m +m ] PIEol
(45)

This Saha equation agrees with the corrected
version of the Ecker-Weizel theory' obtained by
Duclos and Cambel, "but differs from the expres-
sion obtained by Harris. '

Since our calculations are valid only for the low

atomic states, where the weak coupling approxi-
mation holds, we cannot comment on the problem
of the divergence of the hydrogen-atom partition
function. However, the use of the Debye potential
to obtain a convergent expression has been shown,
at least in the "partially ionized state" considered
here, to be inconsistent. From this it would ap-
pear that a satisfactory resolution of the diver-
gence problem must await a more complete under-
standing of the quantum mechanical many-body
problem.
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