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Measurements of the thermal-conductivity coefficient & are reported for liquid He I between
1.77 and 3.95'K, for Quid He~ between 1.5 and 3.95'K, both at pressures up to 34 atm, and
for gaseous He and He between 1.5 and 3.95'K at -10 Torr. Special attention is given the
liquid-vapor critical region of He and the X-transition line of He . Corrections for effects
of thermal boundary resistance and convection are discussed for the fixed-separation parallel-
plate apparatus used for these experiments. Taking into account these corrections, the
over-all accuracy of the data is considered to be better than + 3%, though the precision is
better than + 1%, Away from the singular regions (Bw/BT)& is anomalously positive and in-
creases with pressure for both He and He4. Isobars of ~ for He I pass through shallow minima
and then rise sharply as the & line is approached from higher temperature. Isotherms of K

for He in the neighborhood of the critical point display distinct cusps. Scaling laws predict
that near the ~ temperature Tg the coefficient & should be proportional to (T-Ty) ', and
near the critical temperature Tc it should be proportional to ~ T-Tc I '; other theories
predict & to be proportional to ~T-Tc ~

~ near Tc. The experimental data are found to agree
qualitatively, but not quantitatively, with these predictions.

We present here the method and results of ex-
periments which measure the coefficient of thermal
conductivity w of fluids He' and He' at low tempera-
ture and at pressures up to 34 atm. The regions
of the pressure-temperature plane covered by
this research as well as by previous work are
shown schematically in Fig. I (He') and Fig. 2
(He4). In addition we have obtained tc for the
vapor at ™iOTorr for both isotopes. Results for

He4 are confined to the liquid He I region, where
the liquid behaves relatively normally, since the
apparatus was not designed to measure the un-
usually large heat conductivity found in superfluid
He II.

Motivation for the present work comes from
several sources. Firstly, previously reported'-
values of K for liquid He4 I near saturation condi-
tions lack consistency and generally display con-
siderable scatter; the situation is similar for the
earlier liquid He' work'~4 above l. 2'K and at low
pressure. Consequently, a principal aim of this
research is to provide accurate, smooth values
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FIG. 1. Schematic P-T phase diagram for He showing
regions covered by the present and previous thermal-
conductivity investigations.
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FIG. 2. Schematic I'-T phase diagram for He4 showing
regions covered by the present and previous thermal-
conductivity investigations.
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of x for He' and He4 over a significant range of
P and T. Secondly, the existing thermal-conduc-
tivity data on the quantum fluids He' and He4 has
established that well above the degeneration tem-
perature the coefficient (Sx/8T)p for small P is
anomalously positive. Further exploration of the
x(T, P) behavior appears warranted. Finally, we
note from Figs. 1 and 2 that the range of the
present investigation includes the liquid- vapor
critical point of He' and extends along the X line
of He . Very little is known about the transport
properties of ordinary fluids in the vicinity of
thermodynamic singular points; even more ob-
scure is the role played by quantum effects in
these instances. In addition the entire relation-
ship between the A, transition and general critical
phenomena requires clarification, so that experi-
mental transport data close to the singularities are
of great current interest.

I. APPARATUS AND EXPERIMENTAL METHOD

For a steady heat flux q the coefficient of thermal
conductivity of a medium is defined through Fou-
rier's law for diffusive heat flow as

q = —KV'T,

where VT is the temperature gradient in the di-
rection of q in the specimen. If z is a weak func-
tion of temperature, or in the limit of vanishing
temperature difference &T across the medium,
V T may be well approximated by &T/l, the quan-
tity / being the distance separating the points at
which hT is determined (we consider linear geom-
etries and assume the temperature gradient is
in one direction only). It is immediately obvious
that in an experiment performed to obtain reliable
values of t&(T, P) for fluid He one must strive for
high accuracy in measurements of T, V'T, q, P,
and /. Furthermore, in the actual situation there
are thermal effects in addition to those described
by Eq. (1), including: heat conduction through
paths other than the fluid medium in question
(container walls, electrical leads, etc ), con-.
vective heat transfer through the fluid medium,
radiative heat transfer, and the thermal-boundary
resistance between the walls of the container and
the medium. These effects must be either elimi-
nated or accurately accounted for.

A thermal-conductivity cell designed to satisfy
the above requirements is shown schematically
in Fig. 3. The type of measurement used here
is an example of the so-called "flat plate" method.
The sample of fluid He is contained in the volume
between two comparatively massive copper plates
and bounded by a stainless-steel ring (i. d.
=2. 54 cm; wall thickness at fluid layer =0.025
cm). A narrow inlet (d =0.036 cm) at the center
of the bottom plate permits introduction of He
into the sample space without significantly altering
the critical cell geometry. Both the He layer and
the upper plate are enclosed in the evacuated inner
can, while the bottom plate is immersed in a
thermostated bath of He4. Heat delivered to the

top plate produces across the He layer a temper-
ature difference which is detected by thermometers
embedded in the copper plates. Electrical leads
(No. 40 Copper) for the hot-side thermometer
and the heater are taken out of the vacuum space
into the He4 bath via glass-metal pin seals. An
outer thick-walled copper can surrounds the cell
assembly for the purpose of minimizing thermal
gradients in the vicinity of the cell when He I is
the thermostatic fluid. (This can has several
holes to allow free passage of the He4 bath. )

A. Temperature Measurements

Both cell thermometers are Allen-Bradley
~ W carbon composition resistors (nominal resis-
tance 140 0). Resistances were measured with
a dc Wheatstone bridge using a constant voltage
(0. 020 V) such that the heat dissipated in each
thermometer was always less than 10-'W. Con-
version of resistance to temperature on the 1958
He' scale' was accomplished via measurements
of the bath vapor pressure Psat as read on either
a di-n-butyl sebecate manometer (Peat & 40 Torr)
or a Hg manometer (Psat&40Torr). The bridge
is designed to measure either the resistance of
each thermometer separately or the difference
in resistance between the two. Although each
resistor is -1.2 cm from the nearest He-Cu
boundary, because the thermal conductivity of
copper in the temperature range of interest is of
the order of 10' times that of He, less than 0.3%
of the total measured ~T between thermometers
occurs in the copper plates. For making measure-
ments of &, values of ~T were chosen such that
the estimated error in the smallest ~T imposed
was less than 1/o. Exceptions to this rule occurred
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for some measurements very close to the He'
X-line, where in some cases 4T was less than 10-'
'K with an accompanying error as high as 10%.

Two different electronic bath-temperature con-
trollers were used to obtain steady reference
temperatures T,: one' when the bath was He II,
the other' when it was He I. In both cases during
a given thermal-conductivity measurement (- 20
min) T, varied less than 10 ' 'K as indicated by
bath vapor-pressure monitorings.

B. Cell Heater

Power for the cell heater (100 0 of Manganin
wire wound around the top of the upper copper
plate) is supplied by a 2 V shielded battery and
controlled by a 50 kQ variable resistance in
series with the heater. The heater current (I )
was determined by measuring the potential drop
across a 100.00-Q standard resistor; and po-
tential ( V) measurements were made at the point
where the heater leads exited from the inner can
(the resistance of the current leads from this
point to the heater was always less than 10 ' Q,
giving negligible heating compared with the heater
proper). The estimated error in the power mea-
surement (Q =IV =Aq, where A is the plate area)
is ~0. 1%.

C. Pressure Measurements

Pressures of the sample He were determined
with a Texas Instruments fused-quartz Bourdon-
tube pressure gauge situated outside the cryostat.
Capsules for two useful pressure ranges, 0 to
34 atm, and 0 to 7 atm, are available: the for-
mer was used for most pressure measurements,
the latter for some additional points near the
He' X transition and for all data near the He'
critical point. Before use, both capsules were
calibrated over their entire range with a Ruska
Instrument Corp. Model-2460 dead-weight gauge.
The sensitivity of the 0- to 34-atm capsule is
+0.001 atm and the estimated accuracy is
+0. 003 atm; the corresponding figures for the
0- to 7-atm capsule are + 0. 0001 and + 0. 001 atm.

D. Plate Separation

We have chosen to use a fixed plate-separation
distance l rather than variable l as used in some
of the earlier He I work. ' The present scheme
has the advantages of allowing l' to be easily
and accurately measured and of providing a
single, stable geometry for the entire P and T
ranges covered for both isotopes. It has the
disadvantage of comyli"ating the estimation of
thermal boundary resistance since this is usu-
ally accomplished by changing f (see below).
In order to overcome this difficulty, after the
complete sets of measurements were taken with
an initial value of l = l„ the separation distance
was reduced to a new value, l„by removing
the top c6pper plate and remachining the top of
the stainless- steel cell wall (spacer).

In assembly of the cell, the spacer was first
silver soldered to the bottom copper plate, ; the

E. Experimental Procedure

In applying Eq. (1) to the present apparatus we
note that there are three paralle1 paths for dif-
fusive heat flow from the upper heated plate to the
thermal sink: across the He layer, through the
electrical leads, and through the stainless-steel
cell wall. Consequently, a set of measurements
of Q and hT gives not tc for He, but instead some
other coefficient, which we call KT, representing
the over-all thermal conductivity. Now, Lazarus'
has demonstrated that for the type of geometry in
question and for a given AT the total heat flow
through a set of parallel paths, each of which may
be characterized by a separate z(T), is indepen-
dent of whether the paths are in contact or are
insulated from one another. We are then justified
in decomposing Ky as

K~=K+K
C

(2)

where K~ represents the oonhelium paths. There-
fore, we may obtain K for He from measurements
of both KT and Kz, the latter being just the effec-
tive thermal conductivity of the empty cell. In
practice, for Eq. (2) to be valid, it is necessary
that the cross section of the cell wall be at the
same temperature as the upper (hot) plate at
the point of contact between wall and plate: and
similarly for lower (cold) plate. That this was
indeed so was checked by numerical calculation
of the temperature distribution for the ranges of
4T's used in the experiments.

Prior to the He runs, the empty cell was cali-
brated over the temperature range to be investi-
gated. For the cell with separation l, the quantity
K& was found to vary nearly linearly from 0.28
x 10 4 W/cm 'K at 1.5'K to 0. 90 &&10 4W/cm 'K
at 4. O'K. From the data subsequently obtained
for He' at 4 atm, for example, zc/z& is about
0.2 and 0. 33 at the respective temperatures just

inside surfaces were then machined (to square the
corners and remove excess solder), cleaned and
polished; and finally, the clean top plate was care-
fully soft soldered to the spacer while an oxygen-
free atmosphere was maintained in the sample
space. Radiographic inspection of the completed
cell gave assurance that no foreign matter was
lodged between the plates and especially that no
"blobs" of soft solder had formed in the sample
space.

Values of l were derived from thickness mea-
surements of the separate plates and of the assem-
bled cell. In each case micrometer readings ac-
curate to + 0. 00013 cm were taken at eight equally
spaced locations around the plates. The results
were l, = 0. 0820 cm and l, = 0. 0602 cm. From
the spread in the readings we estimate that each
of these represents the average spacing to better
than 1%, Calculations of the change of f with
pressure indicate that at 34 atm, nl /f & 0. 05/o.
A correction was made to the plate seyaration
and diameter to account for thermal contraction
between room temperature and liquid He temper-
ature.
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mentioned. Incidentally, the contribution to
Kc from the copper leads is small (- 1%) so that
K~~, the conductivity of the stainless-steel spacer,
can be calculated from ~z. The results of these
determinations of I(.~~ agree well with those found
in the literature.

As a rule, a given run consisted of measure-
ments of K made at constant T, and at various
pressures. Consequently, the cell was filled with
He initially to the highest pressure, with sub-
sequent points on an isotherm obtained after bleed-
ing gas from the system. On various isotherms,
points were taken at nearly the same pressures so
that isobars could be easily constructed. He4 gas
was taken directly from a high-pressure commer-
cial cylinder and purified through a liquid-N, -cooled
charcoal trap before being admitted to the sample
chamber. High pressures for the He' sample
(99. 62'%%uz He', 0. 38%%uo He') were obtained by first
condensing the gas in a bomb and then warming up
the bomb.

Each measurement of w at a given T, and P was
obtained from a series of Q-versus- b, T determi-
nations. Where w is a weak function of T, three
such determinations were deemed sufficient, with
4T ranging usually between 1&& 10 ' and 8&10 ' 'K.
However, near the He' critical point and the He'
X line, Ic varies rapidly with T; here as many as
eight Q AT measu-rements (with ET as low as
4 x10 ' 'K) were made for a given T, and P.

II. METHOD OF DATA ANALYSIS

Under the assumptions that Q is not a function
of T, that I(: is not an explicit function of x, that
V'T is only in the x direction, and that the heat flux
is uniformly distributed over A, Eq. (1) may be
separated and integrated to give

only the first term in Eq. (6) is important. We
then have the familiar expression

~( T,) = (I /A) q( T„rT)/~T .

Except near the He' critical point and the He'
X line, plots of Q versus AT for constant T,
were straight lines indicating the validity of
the approximation of Eq. (7). In this way ~T(T,)
for the full cell was obtained, with /c( T,) subse-
quently derived by subtracting off K~ determined
previously for the empty cell.

When systematic curvature appeared in the
Q-versus-AT plots additional terms of Eq. (6)
were included. For He' near the critical point
the quadratic approximation served well; but for
He4 in the vicinity of the X line it was necessary
to include the term cubic in 4T. A nonlinear
relation between Q and &T does not necessarily
mean that K varies strongly with T in the hT
interval investigated. For if convection is impor-
tant, this will introduce curvature even though
~ is effectively constant; and then the physical
meaning of such parameters as dK/dT must be
ascertained by independent estimates of the con-
tribution of convection (see below).

The experimental Q-vers su-hT data have been
fitted by Eq. (6) using a method of least squares
due to Deming. ' Whereas in the usual least-
squares scheme all the error is assumed to reside
in the dependent variable (Q in the present case),
Deming's method allows the least-squares ad-
justment of data for which both the dependent
and independent variables may contain errors.
Our estimated error in Q is + 0. 1/0 and that in
b, T at least + I'%%uq.

or

l T,j qdx=-A j ' ~dT,
0 0

Tp+ ~T
q=(A/I) j ~dT.

(3)

(4)

III. THE EFFECTS ON v DUE TO CONVECTION AND
BOUNDARY RESISTANCE

A. Convection

In general, I(: is a function of T; and we may ex-
pand z(T) in a Taylor series about T, to give

~(T) =~(T,)+ d (T T,)-
Tp

2

+ ~ ~ ~

Q(T„&T)= —, l~(T,)~T+ I(~T)'-

+—,
~

(r T)'+ ~ ~ ~
~

1 d2v

To
(6)

When v is a weak function of T and 4T is small,

d'~
dT 2

(6)
Tp

Substituting Eq. (5) into Eq. (4) and evaluating the
integral term by term, we find

In addition to diffusive heat flow across the sam-
ple fluid, radiative and convective heat transfer
may contribute to the over-all observed ~. The
former is completely negligible for the low tem-
peratures used in these experiments; but the
effects of convection can be particularly trouble-
some, especially for data taken in the vicinity
of the phase singularities. Near the He' critical
point and in the vicinity of the He4 X line the
observed thermal conductivity increases, as
does the tendency for convection to occur. Hence
it is necessary to determine whether this increase
in K is real or arises from convection. The two
regions will be considered separately.

Near the He' critical point our initial discussion
is based on the analysis by Michels and Sengers"
of convection in a.horizontal parallel-plate cell
due to small deviations of the plates from the
horizontal. Even though the fluid has a positive
isobaric thermal- expansion coefficient and is
heated from above, convection can occur if the
fluid layer is tilted. Michels and Sengers' showed
that the apparent increase in the thermal-conduc-
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tivity coefficient due to convection, 5v, could be
related to the true coefficient tc by the relation

5K/K & (I /D) NR sing&/180m, (8)

where NR = gn~'CP&Tl'/zq (9)

is the Rayleigh number (dimensionless). In these
relations D is the plate diameter, y the angle
between the plates and horizontal, g the acceler-
ation due to gravity, 0.~ the isobaric expansion
coefficient, p the fluid density, C~ the isobaric
heat capacity, and q the coefficient of viscosity of
the fluid. In the design and operation of a thermal-
conductivity apparatus the experimenter may con-
t»I y, I/D, and r T, all of which should be mini-
mized to eliminate convection effects. On the
other hand, both z~ and C@ become exceedingly
large near the critical point; and on the critical
isoehore in the limit as T- T~, the critical tem-
perature, convection cannot be avoided.

In the present work, from the cell geometry and
alignment, 5z/tc was found to be - Sx10 'NR,' and
an evaluation of N~ for He' showed that the con-
tribution to tc from convection should not become
significant (& 1%) except for T —Tc & 0. 2'K.
Since much of the data taken near the He' critical
point was along isotherms closer than this limit,
an additional examination is required.

If Eq. (6) is used to calculate v, the value ob-
tained is at T„ i. e. , in the limit of hT -0. Since
the additional contribution from convection (when
it is small) is proportional to hT, as noted in
Eqs. (8) and (9), tt(T, ) will not be influenced by
convection as long as Eq. (6) is valid. The contri-
bution from convection will be included in the co-
efficients dv/dT, d'lr/dT', etc. , along with the
true temperature variation of ~. Because con-
vection can only add to the total heat transfer,
the convective contribution to these coefficients
will be positive. The validity of Eq. (6) depends
on thd size of the higher-order terms. Except
for five isotherms in the critical region, Q was
a linear function of 4T, indicating that away from
T~ the true ~ depends weakly on T and that con-
vection was absent. In the critical region, only
terms through the quadratic in 4T were used in
Eq. (6). The maximum contribution of the qua-
dratic term (including both convection and the
temperature variation of v) was 20% of the total Q.
An estimate of the portion of the quadratic term
due to convection indicates that it was less than
half, giving a maximum of 10% increase in the
heat transfer due to convection. We feel that the
values of K reported for He' in the critical region
do not include any significant contribution from
convection.

For He~ near the X line we have a different prob-
lem. Although the singularities in the thermo-
dynamic quantities are not nearly so strong as in
the case of the He3 critical point, there is a region
of the He I P-T phase diagram (bounded by the X
line and the dashed curve in Fig. 2) in which the
expansion coefficient n& is negative. Thus for
the apparatus shown in Fig. 3, when heat is sup-

plied to the top plate the liquid near the top of the
cell should be denser than that near the bottom.
In a gravitational field we then have an inherent
driving force for convection.

Initial results obtained with the cell configu-
ration of Fig. 3 gave strong indications that the
rise in w h near the X line was completely inde-
pendent of convection (for isotherms just below
Tg, the rise in Ko s begins in a region when a&
is clearly positive . However, in order to
determine unambiguously whether convection
played a role in the results, additional experi-
ments were performed. After all the measure-
ments on both He' and He' were taken with the
original geometry, the inner ean was inverted,
leaving the cell intact but permitting the heat
current to flow upward through the fluid layer.
Results with this inverted configuration for an
isotherm at 2. 10'K and for pressures as close
as 10 'atm to P reproduced within 1% the original
data taken using the normal configuration. Thus
the effect of a negative n& was shown to be neg-
ligible. In addition, a theoretical analysis" of a
fluid with a negative ap and heated from above
predicts that contributions by convection should
be significant only for values of ( T0- T ) smaller
than used in these experiments.

B. Boundary Resistance

Q=~r „ /R =r 7' /[R +(~a/I)- ], (10)

which on rearrangement becomes

Qf/Xr r =~/(I+~R X/I) .ebs

Because the left-hand side of Eq. (11) is just the
observed thermal conductivity I(:obs, the ratio of
Kpbs to the true conductivity is

/~=1/(1+ 8:R+/I ) . (12)

For A~ —— I(:obs -~, and for Rg + 0 obs
The two unknowns in Eq. (12), i. e. , K and RR,

can be determined from experiments with two
different cell geometries, all other factors being
fixed. With the present apparatus it was most
convenient to vary I as discussed in Sec. I (D).
By differentiating K b in Eq. (12) with respect

As the result of a heat flow Q across a solid-
liquid or a solid-gas interface, a temperature
drop 4T& generally occurs at the boundary. In
the present situation the observed temperature
difference, ATob~ should then be larger than the
4T across the He layer alone; and the thermal-
conductivity calculated on this basis using Eq. (7)
would be lower than the true K. In order to correct
for this effect we may associate ~T& with a bound-
ary resistance BJ3 which ls ln series with the
thermal resistance of the fluid layer, R =(ted/I )-&.
Thus the total resistance to heat transfer (in the
absence of convection) is RT RR+R. We t-—hen
have
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FIG. 4. Thermal conductivity of liquid He as a
function of temperature for two different cell spacings
(P=1 atm).

to / we learn that a decrease in l should decrease
Kobs if the. boundary resistance is significant.
However, as shown in Fig. 4 an approximately
25% reduction in l appears to make no change in

Kobs to within exyerimental error. The uncer-
tainty in the agreement between the two sets of
data is - 1%, which places an upper limit of 3%
on the possible error in ~ due to boundary resis-
tance. This constitutes the principal source of
error in the absolute accuracy of the data re-
ported here.

FIG. 5. Coefficient of thermal conductivity of fluid
He as a function of temperature at several pressures;
present results compared with earlier data at low
pressure.

anomalous. Classically we expect & to be pro-
portional to m-' ', where m is the atomic mass;
but we see, for example, that at 3'K,

~(He') j~(He4) = 2. 11

rather than (&)' '= l. 15. The differences are
accountable in terms of quantum effects for the

IV. RESULTS AND DISCUSSION

A. Gaseous Helium

TABLE I. Thermal conductivity of gaseous He.
Numbers in parenthesis indicate number of Q-&T points
used in obtaining the average value of &.

He4, P-10 Torr
r('K} 10'~(W/cm 'K)

He, P-15 Torr
T('K) 105K(W/cm K}

Table I lists the results found for I(.
' at several

temperatures for low-pressure He' and He4 gas.
Each value of w is an average of three or four
Q rh, T measurem-ents. These v data are also
graphed in Figs. 5 and 6, where they are compared
with earlier work. The agreement between the
present results and those of Challis and Milks'
and of Fokkens et al. "for both isotopes is indeed
gratifying.

The temperature dependence of w for gaseous
helium is quite normal; the relative magnitude
of ~ for He' and He' at a given temperature is
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FIG. 6. Coefficient of thermal conductivity of fluid
He as a function of temperature at several pressures;
present results compared with earlier data at low
pressure.
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He systems; and quantum calculations" using
reasonable He-He intermolecular potentials are
in agreement with the experimental observations.

B. Liquid He and Fluid He Well Away from
Singular Regions

TABLE II. Thermal-conductivity coefficients for He
as a function of pressure for &= 2.100'K, determined
by extrapolating Q versus &T data to &T= 0. In the last
column N gives the number of experimental Q-&& points
used to determine &.

P(atm) 104~(W/cm K)

For liquid He' I some 224 values of t& have been
measured on 21 isotherms covering the range in-
dicated in Fig. 2. Similarly for fluid He, 132
determinations of I(: were made along 26 isotherms.
All of the raw data and derived values of K are
listed in Kerrisk's thesis. " Here we give samples
of the results in graphical form, plus a tabulation
for one isotherm for He' illustrative of the data
obtained (Table II). Away from the respective
thermodynamic singular points, the results for
He' and He' are sufficiently similar that they may
be considered together. Later we discuss sepa-
rately the X-transition region in He4 and the crit-
ical point of He'.

Figures 5 and 6 show w as a function of T for the
two liquids at several pressures. The solid lines
through the solid circles represent the present
measurements, while the remaining data
for the liquids are for P-1 atm as obtained by
other workers. Clearly, of the earlier data the
only values of ~ quantitatively consistent with
ours are those of Challis and Wilks. ' These
authors used a cell similar to ours but took no
account of the boundary resistance, which, in
view of the findings here, probably was not an
important correction. The figures confirm that
for both isotopes away from the critical regions,
(Bv/8T)P is anomalously positive [in comparison

TABLE III. Parameters for Eq. (13) for & in units
of W/cm 'K and pressure in units of dyn/cm'.

Parameter Liquid He4 Liquid He3

Fo

F2

F4

1.4642 x 10-5
8.8025x 10 '
9.1386 x 10 &3

—8.7000 x 10 6

4 1701x 10-2o

8.3023 x 10 ~3

1.8501 x 10-5
6,5501x10 ~

Oa

-6.2602x10 '
-'2.2759 x 10

8.2703 x10 &3

aFor He, allowing F2 to be nonzero gives no better a
fit than when F2 is fixed at zero.

with (&z/&T)P for simple classical fluids such as
Ar, N„CO„NH„CH„etc.] and, in addition,
indicate that with increasing pressure this coeffi-
cient becomes larger. No theoretical explanation
for this behavior is yet available.

Results for v of both fluids in phase regions not
affected by thermodynamic abnormalities have
been fitted to polynomials of the form

K(T, P) =F0+F1T+F3P+F3T2+F4P2+F5PT. (13)

Parameters appropriate for He' and He' are listed
in Table IG. For the 75 observations of w for He4

so fitted, the maximum deviation is 3'' for 37
He points the maximum deviation is 2. 8%. Hence
Eq. (13) is believed to be a reliable interpolation
formula; but since it does not represent the in-
creases of K near T~(P) or Tc, it should not be
extrapolated into these regions.

At temperatures below 1'K,. Anderson et a/. '4

have measured w for He' with results schemati-
cally shown in Fig. '7. In contrast with the higher-
temperature data where (&s'/&PT) & 0, below 1'K
(ex/&P)T & 0; also for each pressure the curve
passes through a minimum and, at the lowest
temperatures, rises in a manner believed to be
a precursor of Fermi liquid behavior, "i. e. ,
& ~ T '. The crossing of the isobars has not yet
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been observed —and in this connection we note
that Eq. (13) with constants of Table III should
not be used for extrapolation below 1.O'K.

C. Liquid He4 I Near the X Transition

Some detailed data for the pressure dependence
of w of He4 I in the region near the X line are shown
in Fig. 8. Those isotherms which intersect the
X line (i.e. , T & T& 2. 17'K) behave at high pres-
sures similarly to isotherms above 2. 17'K; but
as the ~ line is approached from higher pressures,
~ along an isotherm passes through a broad, shal-
low minimum and then rises steeply close to
T&(P). Because of the shape of the dips, the exact
pressures of the minima are difficult to fix; in
spite of these uncertainties, as graphed in Fig. 9,
the location of these minima on the P-T plane
appear to lie along a curve uniformly displaced
from the X line by about 0. 030-0. 040 K. It is
unlikely that the rise in I(: is directly associated
with the P-T locus of Q.P=O, signaling the anom-
alousbehaviorof nP(also drawn in Fig. 9). These
features near the X line are related to the behavior
of ~ away from the transition in Fig. 10, where
the ~- T-P surface andits projections are schemati-
cally represented. The surface was constructed
from information such as shown in Figs. 6 and 8.

Recently, moderate success has been achieved
in treating experimentally determined static
critical-point properties by the so-called "scaling
laws". "~" Rather than laws, these are hypo-
theses about the symmetry of second-order phase
transitions which lead to a formulation of the
limiting behavior of singular thermodynamic pro-
perties in terms of I T- T l . Here T is thec C
critical temperature of the phase transition and
n is an exponent characteristic of the property;
the theory gives various relations between the
exponents so as to restrict the number of inde-
pendent exponents to two, even though the number

28
E~24

20

~ l6

K I2

0—
l.7 I.9 2.0

TEMPERATURE { K}
2, I 2.2

FIG. 9. I'-T phase diagram of He4 showing the rela-
tion among the locus of thermal-conductivity minima
the 0.'~-—0 locus, and the X line.

of singular properties at T may be much larger
than this. At the heart of this reasoning is the
supposition thai net' T correlation lengths for
the system become larger than the interatomic
spacing; but &t T the only relevant length for
the system is the interatomic spacing, since all
correlation lengths become infinite at T . Con-
sequently the nature of the forces responsible

c

for the transition are immaterial, so that all
second-order phase transitions, including liquid-
vapor critical points and X transitions, should be,
according to this hypothesis, fundamentally
similar.

~xlO
IO

8—
CflI-
I-

4—

I-

Cl
2—

4C

II

2.IO'K 2.00'K I.90 K

I

I

jK

fs
f2

0II j

IO l5 20 25 50 55
PRESSURE (atm)

FIG. 8. Coefficient of thermal conductivity of liquid
4He as a function of pressure at several temperatures,

comparing the behavior of isotherms which intersect
the ~ line (& & 2.17'K) with those which do not
(T &2.17'K).

FIG. 10. Schematic plot of the ~-T-I' surface and
its projections for He4I.
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Several authors" "have extended the scaling-
law arguments to include dynamic properties near
thermodynamic singular points. In particular,
Ferrell et a/. "have examined the fluctuations
associated with first sound in He I and second
sound in He II, both as

~
t~(=—

~
T —T&~-0. The

result of this work is to suggest the temperature
behavior for the damping of the sound modes near
T~, which the authors in turn relate to the thermal
conductivity on the high-temperature side of Ty.
They find

(14)

with go=1.36x10 'W/cm K. The principal
perature dependence of v resides in the term
(2'/t~)'~'.

Equation (14) predicts the temperature variation
of x, whereas the results reported here represent
e(P) along isotherms at several values of T,. How-
ever, each point on an isotherm (at fixed T, and
P) was obtained from a series of Q-4 T measure-
ments, which may be related to the temperature
variation of v through Eq. (4). Ferrell et al.
have analyzed the present data in terms of Eq. (14)
using the Q versus b T measurements for T,
closest to T~ at several pressures. Figures 9 and
10 of their paper show the agreement between
theory and experiment to be good when Ko is normal-
ized to the data (a,lthough the calculated value of
v, is about one-third too low, the authors consider
this satisfactory considering the approximations
made in the theory). They have also compared the
data with Eu. (14) omitting the logarithmic factor
and find fits very nearly as good.

On the other hand, if one assumes that near the
X line g(T) should be of the form

g(T) = n(T T) = n(—I/f )

integration of Eq. (4) gives

Q(T„»)= (&/&)[n/(I - P ) j

x[T +aT T) —(T0-- T ) j, (16)

and one may use the measurements to obtain n
and P by a least-squares method. The results of
such an analysis indicate: (1) There is no sys-
tematic variation of n and P a.long T~(P), but if
n increases, the corresponding P decreases.
(2) Values of P range from 0.266 to 0.795, with
a,ll but one value greater than —,. (3) If it is as-
sumed that P should have a, single value along
T~(P), a properly weighted average yields P
= 0.490, significantly larger than the scaling-law
predictions.

We have made a similar analysis using an equa-
tion of the form of Eq. (14) and calling the variable
exponent P'. The conclusions are qualitatively the
same as given in the preceding paragraph, except
that the average value of P' is 0.423, still signifi-
cantly different from the P' = —,

' of Ferrell et af."
In all of these treatments a difficulty arises in

assigning I'- T coordinates to the X line, and it is

T0- T =(P P)(dP/d-T) (17)

Our conclusions are that while Eq. (14) is com-
patible with the experimental results, the best
value of the exponent P' derivable from the data
is not 3 but 0.423.

D. Fluid He3 Near the Critical Point

The He' 1962 scale of temperatures" gives for
e Tc= '3 4+0.0018 K, I'c= 149+0.002 atm.

Recently Zimmerman and Chase'4 have seriously
challenged this value of Tc and concluded from
their orthobaric density determinations that Tc
should be 3.3088 K. If we give preference to
the latter value of Tc and correct for the amount
of He' present in our He' sample, we estimate Tc
= 3.317'K for the experiments under discussion.

Figure 11 shows an over-all plot of rc for He' as
a function of pressure, while Fig. 12 gives details
of the data for five isotherms in the critical region.
According to the above, only the isotherm at
3.310'K lies below Tc All of the isotherms have
pronounced peaks even well above Tc, and in fact
an isotherm at 3.95 K still exhibits remnants of

TABLE IV. Temperature-pressure coordinates of the
X line.

Temperature

& pressure (atm)
Elwell and

This work Kierstead ' Meyer 2

1.7701
1.8009
1.8995
1.9510
2.0020
2.0511
2, 1000
2.1447
2.1501

29.36
27.62
21.59
18.15
14.54
10.82
6.852
2.869
2.335

29.37
27.62
21.58
18.15
14.54
10.82
6.84
2.84
2.32

29.33
27.57
21 ~ 54
18.13
14.54
10.85
6.89
2.92
2.40

clear that the results obtained from using rela-
tions such as Eq. (16) depend sensitively upon the
choice of T~. In the present work, (P~, T~) points
were determined by the disappearance of 4T when
a constant, small, heat flow (Q= 1.6x10 'W) was
applied across the He' sample, and the cell pres-
sure was slowly lowered isothermally through the
transition; the reappearance of ~T on raising the
pressure was also observed. For a given T the
measurements in the two directions differed by no
more than + 0.005 atm. Parameters for the X line
so obtained agree well with other recent measure-
ments, "~22 especially those of Kierstead "as
shown in the abbreviated listing of Table IV. Even
so, we have no real assurance that these are known
with sufficient accuracy to allow a proper deter-
mination of P or P'. For each isotherm we require
in Eqs. (14) and (15) values of T& corresponding
to the pressures of the sample fluid. These were
calculated from our measurements of I'~ and the
slope of the X line at the isotherm temperatures
T,. Thus we have
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V. CONCLUSIONS

While within the stated limits of accuracy we
have no reservations about the quality of the data
presented here, they are clearly not sufficiently
precise to give answers about some important
questions regarding the thermal conductivity of
the helium isotopes. In regions well away from
anomalies associated with thermodynamic singu-
larities these studies give well-defined results
such that we have no hesitation in handing them
to the theorist with a request for an explanation.
But near the A. point of He' and the critical point
of He' the experiments show only the qualitative
behavior predicted by theory. The demand for
precision is much higher here, and one can only
guess at how many orders-of-magnitude more
precise the data must be to confirm or refute the
several proposals for the limiting forms of g(T, P)
as T-T~ or as T-T~." We must realize, of
course, that experimentally it is impossible to

observe an infinite thermal conductivity, so that
the theoretical divergences can be tested only as
the singular points are closely approached. Per-
haps even more delicate is the question of how
(or if) quantum effects enter the picture at Tc,
since as yet no gross features have emerged to
indicate this. To compare the critical singulari-
ties of helium with classical fluids we require
much better information than we have now on
both classes of substances.
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