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A general theory of linearized spin echoes in an interacting Fermi liquid is developed by ex-
pressing the results of the usual type of echo experiment directly in terms of the spin-wave
normal modes of the liquid as derived from the Landau theory. The possibility of obtaining
further information by observing the echoes produced by a spatially nonuniform magnetization
is briefly discussed.

I. DISCUSSION

A characteristic property of interactions between
particles in a neutral Fermi liquid is that they lead
to a whole spectrum of spin-wave-like excitations
in the presence of a uniform magnetic field. ' (In
metals these also mix with cyclotron modes of the
system. )

For some time spin echoes have been used as a
tool to investigate spin excitations in liquid He
and dilute He'-He' solutions. ' Recently Leggett
and Rice' have shown that a variation of the usual
spin-echo experiment should yield further infor-
mation about the Fermi liquid parameters.

The question therefore arises as to the explicit
relationship between spin- echo experiments and
the natural spin-wave-like modes of the Fermi
liquid.

In this paper we give a general derivation of
this relationship valid for long waves (low field
gradient) under conditions where a linear approxi-
mation in the echo magnetization may be applied.

't)Itt'e also show how it can be further generalized
to deal with a rather idealized echo experiment in

which a nonuniform polarizing pulse ("90'"pulse)
could be used to study diffusion of shorter wave-
length modes of the system.

The gist of the derivation is as follows: The
linearized Landau kinetic equation derived by Silin'
for a Fermi liquid in a uniform magnetic field may
be solved for long and medium long waves in terms
of a set of eigenmodes with frequencies Qi(q) of
different wave numbers q and different spherical
harmonic character / measuring the phase rela-
tions between precessing spins on different parts
of the Fermi surface. In the spin-echo experi-
ment a magnetic field with a small gradient along
the field direction (z axis) is applied to the liquid.
The effect of this field, H (z) =H0+Gz, is to mix
up modes of different wave number q, since the
Gz term may be rewritten as iG S/Sqz. The effect
of the mixing is to modify the time dependence of
the mode q, I, from exp[inf(q)t] to a more com-
plicated time dependence containing a factor
exp[((q, I, t)]. In the long-wave limit g(q, I, t) is
given directly in terms of O'Qt(q)/dq', and in fact
only depends on the I=0 mode in this limit. For
an interacting system d'0/dq' is, in general, com-
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plex, the imaginary part corresponding to the co-
efficient of the usual V'm term (m the magnetiza-
tion) in the diffusion equation. In an echo experi-
ment in which there is a large transverse magne-
tization Leggett has recently shown4 that there
will be additional contributions to the above time
dependence which are nonlinear in the transverse
magnetization amplitude. The present derivation
only deals with the linear case, which will be
valid under conditions of small transverse mag-
netization produced by a small-angle (q «90')
polarizing rf pulse.

When one comes to consider shorter wavelength
modes, a new physical consideration enters: for
q 40 the eigenmodes of the system in the uniform
field now invoke mixing of different spherical har-
monic components of the magnetization. Since a
polarizing pulse does not distinguish particles on
different parts of the Fermi surface, this means
that an initial distribution of magnetization, non-
uniform in space but uniform in phase over the
Fermi surface, is in fact a linear combination of
modes of different I. For q not too large (com-
pared with inverse mean free path) only the l = 0
and 3 = 1 modes need be considered. However,
these precess at different rates and hence would
decay at different rates in a weakly nonuniform
applied field. We therefore predict that under
idealized conditions a sufficiently nonuniform
(measured on the scale of mean free path) initial
magnetization distribution will produce echoes
decaying as a linear combination of a pair of modes
with diff erent diffusion coefficients. Some esti-
mates of this effect are given at the end of the
paper. The conclusion is that it is likely to be
rather difficult to observe within the present state
of low-temperature technology.

II. SPIN WAVES IN A UNIFORM FIELD

In order to deal with the nonuniform case, we
first need explicit solutions for the spin-wave
modes of the Fermi liquid in a uniform field, These
have been worked out by various people'i'~' (in
connection with the problem in metals); we here
repeat the salient features that we need for the
present simpler case of the neutral Fermi liquid.

Let us consider first of all the extreme long-
wave limit. In this limit we need only discuss the
time dependence of the uniform magnetization den-
sity m(Q, f) appropriate to a set of particles with
velocity vg moving at an angle 0 on the Fermi sur-
face. The Landau kinetic equations reduce in this
limit' to

where g~ are circular unit vectors:

g 1=(1/R2)(g ~ig ), g =g (2. 3)

Then for Q, = PHo along the z axis one sees from
(2. 1) that provided m+ (Q) is not strongly dependent
on Q, dna/dt = 0, so that we can take mz -=m0 as an
external parameter. It is convenient to express
this in terms of the equilibrium Pauli value for
the noninteracting system

, q=--,'pn,

by setting
eq

Plo = &SZo

(2. 4)

(2. 5)

Using

g(Q, Q') = (1/p) g$ Zf Pf (case(Q, Q')),

the equation (2. 1) for m~(Q, f), linearized in m+,
then reads

(2. 6)

dm /dt +iQ0(1+-', nZ0)m (Q)

+ —,'inpQ0 f (dr'/4v)r(Q, Q')yg (Q') = W . (2. I)

Equation (2. 1) is now completely diagonalized by
resolving m+(Q) into I egendre polynomials in
6(Q) where the polar angles 8, p are measured
with respect to the z axis

m (Q)= 5 m P&(cos8(Q)) (2. 8)

and using the spherical-harmonic addition theorem.
The eigenfrequencies at q = 0 then come out, cor-
recting Silin's result by the factor e, to

Q&(0) = Q0[l + ', n Z0 —nZ&
—/2(2l + 1)]+ i/1 &, (2. 9)

What we need for the discussion of echoes are the
solutions for q 40. Writing

m (r}=Q e q m (q),
q

(2. 11)

where we have assumed that the harmonic compo-
nents of the collision integral may be written in
terms of an appropriate spin-flip collision rate

(2l+1)fW (Q)PI(Q)dQ/4m=+(i/7'l)m . (2. 10)

mxQ, f g(«, Q')m(Q)~m(Q') =W,

(2. 1)

the effect of q 4 0 is to add a term

dQ'
ivQ ~ qtm(Q)+4P f 4 g(Q, Q')m(Q')] (2. 12)

m= Q mg,
X= —1

(2. 2)

where W is an appropriate collision term. The
third term represents the molecular field resulting
from the Landau form of the interactions between
particles. -We can now resolve m into circular
components

to Eq. (2. 1). The first term in (2. 12) results
from the straightforward motion of the particles
at the Fermi surface, and the second term is a
sort of backflow resulting from the interaction.
Because of the angular dependence (we assume q
is along the z axis as this is the only case we need
for discussion of echoes}
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vQ ~ q = vF qP (cose(Q)) .
1

(2. 1s)

(llKll') = iv q(l I P Il') [1+Zl&/4(21'+ 1)] . (2. 14)

Then to lowest order in q the eigenfrequencies
and eigenfunctions of the liquid are given by"

) (ll Kl l') (l'I Kl l)
Al(q)=Al(0) + 'A(0) Q, (0)l' = l 1 l l'

(2. 15)

and

I (q, A) =(2i. 1)'~,(A)

Equation (2. 12) leads to a mixing between solu-
tions m~ (q = 0) with different l, which is propor-
tional to q. For longish waves this mixing can
be very easily calculated by using nondegenerate
perturbation theory. '~'

We write Eq. (2. 12) as Km where K is an op-
erator in 0 space whose matrix elements between
normalized Lengendre polynomials

(2l+ 1)'I'P (cosH(A))l

What happens in the usual spin- echo experiment
is that an initial spatially uniform, polarizing
pulse (which may be 90' or some other angle) ro-
tates the equilibrium polarization mz to produce a
component m+(r) which is independent of Fermi-
surface angle. This is allowed to preeess in a
very slightly nonuniform field Hz(r) =Ho+ Gz. The
effect of spin diffusion is then to lead to an irre-
versible decay of m+ which is separated from the
reversible dephasing produced by Hz(r) by use of
a later 180' pulse to produce an echo. The way
we study the effect of spin diffusion here is to re-
solve m+(r, t) into its Fourier components

~m

m+(r, t) =Z e'q '
m+(q, t). (s. 1)

In the absence of the small nonuniformity, the re-
sulting time dependence in the linear regime
would be totally determined by resolving the initial
m+(q, 0) into its eigencomponents, or

m+(q, 0) =pl m (q, l)gl(q, Q), (3.2)

so that if an 0-independent magnetization is set up
by an external field, this automatically has to be
a mixture of l =0 and higher modes. For small q,
mainly l =1 will be mixed in.

III. SPIN ECHOES: LONG-WAVE LIMIT

) (l'IKI l) (21'+1)'i'Pll(A) (2. 16) where the tj, l(q, A) are the eigenvectors as given
in (2. 18) and (2. 20), leading to a resulting time
dependence

For l = 0 this ~ives to order q

—,
' vF'q'(1+ Zo /4)(1+ Zi /12)

A, (q) = A,+,(2. i7)
n A, (Z,/2 —Z, /6) + i/r„

~~
m+(r, t) =pe'q '

Ql m (q, l)

(~ Q)
$Q1 (q)t

xPl q, (3.3)

q vF(1+ Zo/4)
p, (q) = 1 — &,(A)

A, (o) A, (o)

and for l=1

A, (9) = Ao(1+ n Zo/2 —n Z, /6)

—,
' vF'q'(1+ Zo/4)(1+ Z i/12)

n A, (Z,/2 —Z, /6) + i/7,

(2. ia)
e PG(&m (q, t)/&q ) (3.4)

to the equations of motion (2. 7) and (2. 12).
In the q -0 limit the admixture of higher modes

to the l = 0 mode tends to zero, so we only need
consider the l = 0 mode eigenfrequency:

m, '(r t)=Z e'q' m+(q l=o)e' 'q
q

(s. 5)

The effect of the nonuniform field is to add a term

2q~(1 + Z 1/12) (1+Z2/20)+,(2. 19)
n Q,(Z, /6 —Z, /10) + i(1/r, —1/&, )

qvF (1+Zo/4)
p„(q) = Hs&, (A)—

The effect of (3.4) on (3. 5) is to introduce an
additional t dependence into the equation of mo-
tion since BQ0(q)/Bq 0 0 which results from the
mixing of modes q and q+5q.

We now show that for small field gradients G,
this additional time dependence is taken care of
by replacing exp[iQO(q)t] by a factor exp[if, (q, t)],
so that Eq. (3. 5) becomes

qv (1+Z, /12) W5~2(Q)

A, (o) A, (o)
(2. 2o)

~~
m+(r, t) =Z e q '

m+(q, l = 0, t)e ~' q' , (3.6)

where

q, (q, t) = Q,(q)t ——,'Q, '(q)gQ, t '
The important thing to notice is that for q 0 0, even
the l= 0 mode mixes in some cose(A) dependence, +jA "(q)g2Q, 't~, (3.7)
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with g = PG/Q, a nd Qo(")(q) = (S"/Sqg )Qo(q). Sub-
stituting (3. 7) into the equation of motion (2. 7)
with (2. 12) and (3.4) added in, and using the fact
that Qo(q) is the eigenfrequency for (2. 7) and
(2. 12) without (3.4), one then finds up to second
order in the gradient of the applied field

+gOp — — m q t =0, (s. 8)
Bq

so that m+(q, f) is completely determined in terms
of the initial form m(q) = m+(q, f = 0) by

m (q, t) =m(q, (q +gn, t)). (s. 9}

x exp(i [y(q, t„o)—y (q, t )]} (3. 11)

so that in the long-wave (q-0) limit, the echo is
attenuated by the factor

exp[- i(Q,"—n "*)g'n 'f ']

Substituting from (2. 17) we therefore find

(3. 12)

The important limit which has been taken in
(3.7) is to expand A(q) about the particular q of
interest in a Taylor series in q. In the long-wave
limit Q'(q) ~q, so that this term in the exponent
does not contribute in the limit of a uniform mag-
netization for which m(q) = 6(q). In this limit the
next. effective term in the expansion beyond 0" is
smaller by the ratio

g A
'"

(q)(n, t) /A"(q), (s. lo)

where t is the time of observation. Now Q(i")/Q"
is a microscopic quantity of order of magnitude
py' times a dimensionless interaction strength.
Hence for small field gradients (typically 1 G/cm)
(g/pF)2 is of order 10-", and hence even if f is
10' Zeeman periods (Q, ') this correction will be
infinitesimally small, so that the last term in
(3.7) completely determines the decay of the mag-
netization.

Finally, on applying a uniform 180' pulse at
time t= tbsp m+ is converted to m- so that the
magnetization "winds back" following the equation
of motion for m-, and at the echo time we have

m(r, 2f„,) =Q e'~ m(q)
q

For a pulse at angle P, as pointed out by Leggett
and Rice, n =cos&/(1+Z, /4) and Eq. (3.14) may
be rewritten as

= Im —v ' I. + '
l 2QO cosQ

i
I,1+Z /12 1+Zo/4

(3. 17)

This is in agreement with the formula for the
linearized effective diffusion coefficient derived
by Leggett and Rice" which may now be seen to
be none other than the imaginary part of the co-
efficient of q' in the low-q expansion of the l = 0
eigenfrequency for the Fermi liquid.

IV. ECHOES PRODUCED BY A NONUNIFORM
SPIN DISTRIBUTION

m, +(q, t=O) =A, (q)m, +(q, t=O),
where to order q

(4. 1)

The theory of spin echo used in Sec. III also
allows us to discuss the time development of a
nonuniform magnetization. Again we limit dis-
cussion to the linearized approximation. Vfe dis-
cuss here a highly idealized case in which the
initial polarizing 90' rf has a phase in the x-y
plane which is strongly spatially nonuniform along
the z axis then the resulting initial magnetization
m+(r, t = 0 will contain non- negligible Fourier com-
ponents for qW0. We now consider the situation
where this strongly nonuniform initial magnetiza-
tion is allowed to precess in the very weakly non-
uniform applied field (3.4). This means we are
restricted to the case of an initial 90' pulse, since
any other polarizing angle would lead to a residual
nonuniform molecular field which would tend to
lead to rapid q mixing and decay of the echoes.
In the idealized case that G is kept small, however,
the time dependence of m+ will still be of the t'
type found in (3.7). The presence of q WO will now
introduce the possibility of observing the coupling
to the higher I 40 spin-wave modes given in (3.2).
For q not too large we consider just l =0 and l = 1
modes. Then the ratio of l = 1 to l = 0 initial ampli-
tudes is determined by the conditions that the ini-
tial distribution is not 0 dependent. Using Eqs.
(2. 18) and (2. 20) this gives

»I m(2f, 80)/m(0)
I

= lD „g2 Qo'&180'

where

(3.13) qv 1+Z /4
A, (q) =

~s n, (o) —n, (o)
(4. 2)

D ff
=-,'v '~ (1+Zo/4),eff ' I' (3. 15)

t/-,'v (1+zo/4)(1+z, /12)}
D =Iml ~. (3. 14)

( nn, (Z,/2-Z, /6)+i/r, )
For an initial 90' pulse, all the magnetization is
rotated out of the z axis so that a =0 and the dif-
fusion coefficient Deff is given by the usual formula

Next it may be seen that the general solution of
the Landau equations in the presence of the weakly
nonuniform applied field is given by

m+(r, f) =Z-e ~ Z m&'(q +gnOf)
l=0, 1

where 7D = (1+Zl /12)vl. (3.16) xe'&I'q t
g (q +gn f, A) (4. 3)
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where gf (q, t) is as given in (3.7) with Q, (q) re-
placed by &f(q).

Finally after a uniform 180' pulse at t,«(pre-
sumably applied by a different coil from the non-
uniform polarizing coil), an echo will be produced
whose magnitude does not depend on 0, so the
average over 0 of the value is predicted by Eq.
(4. 3), denoted by (m+(x, 2t», )) . This is given by

OW

(m+(r, 2tl80)) = Q-e+ m +(q)

(3. 7) will start to become appreciable if (q/g)Got„,
is of order unity, i.e. , it will depend on the effec-
tive field uniformity achieved and the ratio of echo
time t,8o to rf period 0-'.

Unfortunately, l is pretty small even in the
millidegree range. The most favorable case
appears to be a 5' solution of He' in He' for which
l is of order 0. 5 mm at 1 mdeg. Thus polarizing
fields with a phase nonuniformity of about this or-
der (i.e. , a large phase change in a mm or so)
would be required to see the /= 1 mode mixing ef-
fect. For pure He3 the mean free path is about
100 times shorter at this temperature.
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The use of standard-type perturbation formulas for
a non-Hermitian matrix of the present type can easily
be checked by writing out the appropriate (3 & 3) matrix
and diagonalizing explicitly. For the simplest case
l =0 this reduces to

=0

with solutions

co = —,'(n, + n, ) + [-,'(n, —a,)'+X]"',

where

X= -,' 9'v '(1+Z,/4) (1+Z,/12).

Using (2.4), (2.5), and the formula for a, Leggett
and Rice's 0& reduces to 200 cosfI).


