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The singular behaviour of the neutron transport equation, in the limit of zero neutron veloc-
ity, comes into play in an essential manner when one wants to study the nature of its asymp-
totic solutions. From the physical point of view, the consistency of such a study can be
checked only if one knows explicitly the behaviour of the quantum correction terms which are
usually neglected. These terms are derived and explicitly exhibited using techniques of the
statistical mechanics of irreversible processes. Neglecting terms of order greater than the
second in the interaction potential between neutron and scattering centers and in the "short
memory" approximation it is shown that the quantum correction terms can be expressed by
means of Van Hove's scattering function S(~, co). Some models for the dynamics of the scat-
tering centers (moderators) are discussed, and it is found that the correction terms are
critically dependent on the detailed balance condition being satisfied.

I. INTRODUCTION

The mathematical study of the neutron transport
equation, developed particularly in connection
with problems relevant to reactor theory and,
more recently, to pulsed neutron experiments,
has brought out a peculiar difficulty. Namely, to
quote Nelkin, ' "the singular behaviour of the
transport equation, in a limit where the transport
equation does not describe the physical situation,
has been used to infer the nature of its asymptotic
solutions".

Precisely the spectrum of the neutron transport
operator' 4 is in general constituted by a discrete
part and by a continuous part. The whole spec-

trum becomes purely discrete if one assumes
that the neutron-energy distribution is bounded
from below.

Clearly in the very low-energy limit, one ex-
pects quantum corrections to be important. In
this paper, we derive these corrections explicitly
and begin the study of their importance in some
physical situations. To this end, we develop a
general formalism along the lines of Zwanzig's
projection technique' which we present in Sec. II.
In Sec. III, we introduce our basic approximations
which are the following:

(i) "Born approximation": we neglect the terms
of order greater than the second in the interaction
potential between neutron and scattering centers;
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(ii) "Short memory": we assume that the time
during which the motion of the scattering centers
is correlated and the time during which the neu-
tron distribution varies appreciably, are well sep-
arated;

(iii) translational invariance of the Hamiltonian
describing the scattering centers.

Within the limits of these approximations we de-
rive, by means of the Wigner transformation, a
kinetic equation for the neutron distribution, which
turns out to be nonlocal. These nonlocal effects
extend over a distance of the order of that traveled
by a neutron having a momentum roughly equal to
the inverse of the correlation distance of the scat-
tering centers during a correlation time. Ex-
pansion of the neutron distribution in terms of
this nonlocality parameter gives at the order zero
the usual phenomenological neutron transport
equation and, at the higher orders, the quantum
corrections we are looking for. A study of these
in some models for the dynamics of the scattering
centers is given in Sec. IV. The difficulties en-
countered in finding a suitable model and the as-
pects of the problem still to be investigated are
discussed in the last section.

II. GENERAL FORMALISM

Since the neutron density is always much smaller
than that of the scattering centers, we may neglect
neutron-neutron interactions. Therefore we can
limit ourselves to the consideration of only one
neutron interacting. with N scattering centers via
an interaction potential of the following type

tern. To obtain a kinetic equation for the neutron
one has, so to speak, to eliminate the degrees of
freedom of the scattering centers. The situation,
which one usually considers, is that of a sample
in thermodynamical equilibrium at a given tem-
perature T. Obviously the density matrix of the
whole system cannot be described during the time
evolution by the simple product of the canonical
density matrix for the scattering centers and the
density matrix of the neutron (because in this
case no interaction could take place), but it is in-
deed possible to consider the "projection" of the
complete time-dependent density matrix onto the
"subspace" of the density matrices having such a
factorized form. This can be achieved by means
of Zwanzig's technique' if one uses the following
explicit form for the "projection" operator

(p = p (S)Tr
eq

where pen(S) denotes the canonical density matrix
of the system (8) of the scattering centers, and
Try the trace over the degrees of freedom of 8.
If we now put

p(t)= 6'p(t)+(I —&)p(t) (II.6)

and assume'

(II.6 )

we obtain the following equation for p„(t)= TrSp (t)

p„(t)
= -—' [~ + Tr u p (S)]p (t)~t h n 8 eq n

V= Z v(IR —r. l), (Ir. l )
1=1

where R is the position vector of the neutron and

rz is the position vector of the ith scattering cen-
ter.

The time evolution of the density matrix p(t) of
the system (neutron plus scattering centers) is
given by the quantum-mechanical Liouville equa-
tion

where

——,J' » [ue(~)vp (S)]p (t —~)d~
t

52 S eq n

+~& f »S[ue(~)p (S)
t

0 eq

xTr up (S)]p (t —v)dw,

tr p = [a, p(t)] -=3, p(t)
& (t)

8$
(II.2) %l(r) = exp(- (t/5)[X +x + (I —6» ok] (U 6)

with H=H +H +V,
n s

where H„and Hs are the Hamiltonians of the neu-
tron and of the scattering centers, respectively.

In Eq. (II.2) the script symbol R denotes as usu-
al' an operator in the operator space of the sys-

and 3C„, 3Cs, 'U are defined in analogy with 3C. Use
has been made also of the relations 6'3C- Q and
6'3Cn =3C„6'. The second and fourth term ig. the
right-hand side of Eq. (II. 7) vanish as a conse-
quence of the translational invariance of the sys-
tem of scattering centers.

III. BASIC APPROXIMATIONS AN@ DERIVATION OF THE KINETIC EQUATION

To derive a kinetic equation for the neutron, we have to go over from a purely quantum-mechanical
description to one which allows the introduction, at least in some approximate sense, of a distribution
function in phase space. A method to perform such a transition is afforded by the signer transforma-
tion. In spite of its shortcomings, we have found this to be the most suitable way to obtain results in a
reasonably straightforward and formally simple manner. " We apply this transformation in the following
form:

E(R, P; t) = (I/0 w)' fd'r (R r I p (t) I R+ r—) e (III. 1)
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and from Eq. (II. 7) we obtain

(8/at)F(R, P; t)+ (P/m) ~ gradRE(R, P; t)

= —(1/h')(1/hzz)'f dz' fd'z (R —rlTrS[U&(7)'0 p (S)]p (t 7')—l R+ r) e (III. 2)

where R, P, and m are the position, the momentum, and the mass of the neutron, respectively.
Making the approximation of neglecting in the right-hand side of this equation terms of order greater

than the second in the interaction potential, that is, putting

'u(z') =exp[- (i/h)(X +X )&],

and recalling the explicit expression of the operators g and%, , we obtain

(ill. 3)

(III.4)

N

f d&fdzz d'z'd'z""d'hdzh'(v(l R —r —x. l)v[IR —r' —x. (- r)I])
g~j=1

Tr [m(~)Vp (S)]p (t ~)-

[
—(i/h)(Hn+He)7'

( ) ( )
(i/h)(Hn+H$)7 —(i/Ii)(Hn+Hs)&

( ) ( )S Vp Sp t —Ye n —Ve p Sp t- V

(i/I )(Hn+Hs)z' —(i/h)(Hn+Hs)'r
( ) ( )

{i/@)(Hn+Hs)r& —(i/h )(Hn+Hs)"
Vp Sp t-~ e

( ) ( )
(i/h)(H„+He)

)peq pn

It is now a matter of simple algebra to work out the explicit expressions of the matrix elements of the
four similar operators in (III. 4). Let us consider for example in some detail the first one

x(R —r'l p (t w)lR+r") exp[-zk ~ (r' —r)+ ik' (r"—r)+ (2i/ft)P ~ r+ (i/h)(E, —E )v], (ill. 5)

where x.(- &) =e s x. e s and ( ~ ~ ) = Tr [ ~ p (S)].
—(z h. )H z (z h. )H ~

j T S eq

Introducing the Fourier transform of the interaction potential, defined thus

v(r) = (2zz) ' fd h v(k) e

and making use once more of the translational invariance of the system of scattering centers (which gives

( zk ' xz zk xj( 7)) ( Ik i zk xj ( r)) 6(k kp)(2 )s/g (III. 6)

where 0 is the normalization volume), expression (III. 5) becomes

f «fd hpv
~ h-k y ——k, —7' e P h P R —

l k+ —IP;t v. (111.7)-1 1 t 3 2 P P - (i/h)(E —E )& h& P

(ill. 6)

The function y (k, w) is defined as follows

( )
1 g (

—ik ~ xz ik xj (&))
N i j=l

and p =N/A. This definition makes, as usual, "y(k, &) independent of X and is therefore suitable for the
passage to the limit X- ~, A-~, and X/A = const, which will be understood in the following. The expres-
sion analogous to (III. 7) for the remaining three terms in (II.4) is as follows

1 1 dg dsP' 2 P' P P' P (i/h )(Ep EP&)v hv -P P'
~5(2 Ph {2vP, I'3 pv ———g ———T e

h e h F' R—2-SS—+—P't- v

(m. 9)

1. 1
S~ (2w)3

—(z/tz)(E —E ~)~ - n
d7 pv I

———
i X ————v P P E R- ——

i
P'th'

~ h h h h' 2m Iz hf'
(III.10)
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1 1 t 3 2 P P k 'A Ek FPTEB AT k+P Pt
(-

'd kpU
) g k )X

0
(Ill. ii)

Collecting the terms in (II. 7, III. 9, III. 10, III. 11) and making use of the property"

x(k, —i) =x*(k, ~), (III.12)

where the star denotes the complex conjugate, we arrive at the following equation for the neutron distribu-
tion function

8 P (-
2 P

Bt ' ' m R ' ' 5' 2)T)
—F(R P t) —grad F(R, P;t), „dPf drpv

l( g
—a)

—(i/@)(&IP' &P-)~
& R @~ /P P'

P . f (III.IS)x x
~~

~~

~

~ ~~

~

I
e'aF'

From this equation, one can see exp ici y e rl' tl the role played by the assumption mentioned in the introduction
r la-on the separation o e wo imes: e if th t t': the time during which the motion of the scattering centers is corre a-

ted, which is the relaxation time of the intermediate scattering function X(k, t), and the time urmg w ic
the neutron distribution function E(R, P, t) varies appreciably. The general problem of justifying and, p s-
sibly, taking into systematic account the successive approximations to equation (II . ) in an approxima-
tion scheme, the zeroth order of which is a Markoffian equation, has received much attention in the litera-
ture (Lanz et aE., Resi ois, rigogine( . " 'b ' ' P ' ' ") It is generally believed that non-Markoffian corrections are

~ ~ ~ ~

not very significant because ei er ere is'th th 's a clear-cut separation between the two characteristic times
entering the problem, in w ic case e arh' h th M koffian approximation is sufficient, or there are other parame-
ers in the roblem, like external fields and then the non-Markoffian corrections are irrelevant. e e-

1' th t 'n our case such non-Markoffian corrections could become important, at least for some scat-
tering systems. In this paper we are interested in presenting and examining the quantum corre

d t tt t d t il d analysis of this point; but limit ourselves to the Markoffian approxi-
mation, that is to say, to the consideration of scattering systems for which one is allowe o ex en e

E . (III. 13) to infinity a.nd to approximate the time evolution of the neutron
distribution during the time interval f &to f by th-e free evolution. Equation (III. ) ecomes en

/P-tF(RP;—t)+—~, gradRF(R, P;t)rg, (gr), jd'a drpv'
( gtt-a

3

II, A

('/5)(E&' Ep) j' R —@&xl ———,&e
2 F h/' (III.14)

This is the kinetic equation for the neutron distribution we were looking for.

IV. DISCUSSION OF QUANTUM CORRECTIONS

If we now expand the distribution function F around the local value R,

E(R+5&F/2m, P; t) = 5 —&(tc gradR) E(R, P; t),AT "1 -.2' PZ tn=O
(rv. 1)

and insert this expansion in Eq. (III. 14) we obtain

—F(R P t)+—grad E(R P f)+ 2 dt [F] = 5 8 [F],

where
DQ Pg

d4 [E] = d K dv pv ()Pet)[X(77, v—) e +c.c. ](Pc ~ grad ) E(R, P; f)tn h'(2m)R 2m nl
0

(rv. 2)
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@Pc= P —fiI(, Sco =E&- E&,

QQ )Z

8 [P] =g, (g~fd rr 'dv
g

—rpv (lie'l)[g(Yir', e)e ec c. ](ir' ~ grad ) F(R, P grr';r),

5I(."= P'- P, IZ~'=E, -Epg p o

(rv. 2)

At this point, recalling the relation

(+ 2( d kl) (kg k )
—(c/h)(Eh& —Eh)& 87['h 'h'

J
'fI/Z

(IV. 4)

we see that, to the zeroth order, Eq. (III. 14) reduces to the usual neutron transport equation.
For the evaluation of the correction terms, we have to compute the following quantities:

f dr 7 [y(]c, 7') e
'" +c.c. ] .

0
(IV. 5)

All these quantities can be obtained, at least in principle, from the knowledge of the scattering function

S()c, (d) =(2v) 'f d&[y(Y]c, &)e +c.c. ] .
0

In fact we have
n

(i)
2

—f d« "[X()c,&) e + c.c. ] = S(Y]c, &u), n even,
7T 0 n

(rv. s)

(IV. 7)

(ii)
2 f dr & [y([c, T) e + c.c. ] = (- 1)' I([c, (d), n odd,

8co

(rv. s)

where S(]c, &u)+ii(]c, v) =v 'f d&)((K r)e
0

and i(7)c, ~) is in turn related to S(]c, ~) by the following dispersion relation

I(~, ~) = (I/v) f'„[S(~,~')/(~'- ~)] d~' .

(rv. 9)

(IV. 1O)

Let us now discuss specific physical models by considering explicit expressions for the intermediate
scattering function y((c, 7). As for the interaction potential v(R- ri), we use the Fermi pseudopotential"
which gives

v'(l]cl ) =4]['a'8' /m', (IV. 11)

where a is the scattering length.

1. Free Gas

This is the only case in which a tractable exact expression for }(([c,r) is available, namely,

y(]c, &) = exp[- ( ']c2/M)(&' T—i@7')], (IV. 12)

where T is the absolute temperature in energy units and M is the mass of the particles of the gas. The
resulting expressions for S([c, &u) and I(]c, (d) are"

S(K, c()) = (M/2][T]c')'" exp[- M((d —h /x2 )'M/2 T]]c (rv. 13)

I(KP (d) = —i (M/2vT[c')'I' exp[- M(u) —Ic'/2M)2/2T]c'] erf[—i (2M/TK')'~'(ac'/2M —c())] (IV. 14)

(IV. 15)

The fi.rst-order correction to the total cross section turns out to be zero. The corresponding second-
order correction A,[E], if we take the z axis along the direction of P, has only three nonvanishing terms,
those containing the second derivatives of E(R, P, f) with respect to x, y, and e. For symmetry reasons,
the coefficients of the x and y derivatives are equal, and their common value is given by

vm p(a h /m P )((Mn/p, ) e —(I/p)[(2n/g +1)erf(p, /2v n)]],
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where n = T/2M, P = 1/M+ I/m, p, =P/m .
The corresponding expression for the z derivative is

Mvp(a h /m P )[(2vn/p )e —(4n/p, )erf(p/2&o. )]. (IV. 16)

The first-order correction to the energy-transfer cross section B,[E] is given by"

p(a'5 /2'')(M/7) fd'K'/v" C (1;—', ; —M(SK' /2M &o'—) /2Ttc") Pc' ' grad E(R, P+ Nx'; f ) (IV. 17)

2. Diffusive Model

(IV. 18)

where yc(v, r) is understood to be some sort of classical limit. Several expressions for this classical
limit have been proposed; the simplest one is the following:

A model which is often considered to describe slow neutron scattering by liquids is the diffusive model.
For definiteness let us consider the scattering function corresponding to this model as given in Ref. 18

K4)/2T(
)
—I (+~'AVT (m )J oo C

y (~, ~) =exp(—D~'I7'I). (IV. 19)

For our purposes this is not satisfactory, since its Fourier transform, when multiplied by the factor
e@~/2T to obtain a scattering function S(e, &u) which satisfies the detailed balance condition, .leads to a
divergent expression for I(z, &u).

Other forms of y (Tp, v) wh'ich do not have this unpleasant feature can be devised, "such as for instance

(K (d) = exp[- ~'y(&)] y(7') =D[(&'+M D'/T')'~' —MD/T ] . (IV. 20)

This reproduces the correct behavior for small v, which should be like z'v'(T/2M), and for large 7'(™Dv).
Unfortunately it leads to an expression for I(z, e) which is not possible to handle analytically if one wants
to perform the x integration and obtain the final expression for the correction term.

Instead, if one uses expression (IV. 2) directly in Eq. (IV. 6), one can perform analytically the desired
integration, and one finds thai the first- and second-order corrections have a dependence on the neutx'on
velocity which is clearly unreasonable. Namely, the first-order correction turns out to be independent
of p, and the second-order correction inversely proportional to p..

3. Critical Scattering

A physical situation in which quantum corrections might conceivably be relevant is neutron scattering in
a gas at the critical point. The expression for y(z, v) that one can use in this case suffers from the same
drawbacks as (IV. 19). The calculation of the corresponding first-order correction A,[F] performed using
Van Hove's model" leads to the following type of velocity dependence:

(I/p, ')(ln[(aP+ g)'+ P'X'] /P'(c. '+X') —(2o/X) arctanXg/[op, + P(n'+X')]), (IV. 21)

where p =P/m, X =h/2m, and n and P are constants related to A, and d'or, of Ref. 11, respectively.

V. CONCLUDING REMARKS

As we have seen, the evaluations and the quan-
titative estimates of our correction terms are
severely limited by the inadequacy of the avail-
able physical models for the dynamics of the
scattering centers. In particular, as the example
of the naive diffusive model has shown, our formu-
las are critically dependent on the fact that the de-
tailed balance condition be satisfied. In fact, a
priori one could have expected sensible results
from a model in which the long-time behavior of
the intermediate scattering function is represented
fairly well, since we were interested in small

neutron energy transfers.
The situation is even worse from the point of

view of performing analytical evaluations in the
case of solids. It would, of course, be possible
to compute numerically the quantities of interest,
but this, in our opinion, is justified only if one
has already decided that in a specific problem
quantum corrections are important. In conclu-
sion, we believe that we have performed the first
step towards an understanding of this particularly
interesting problem, other aspects of which, such
as the relevance of the initial condition and the
role played by the non-Markoffian corrections,
are worthwhile investigating.
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A general theory of linearized spin echoes in an interacting Fermi liquid is developed by ex-
pressing the results of the usual type of echo experiment directly in terms of the spin-wave
normal modes of the liquid as derived from the Landau theory. The possibility of obtaining
further information by observing the echoes produced by a spatially nonuniform magnetization
is briefly discussed.

I. DISCUSSION

A characteristic property of interactions between
particles in a neutral Fermi liquid is that they lead
to a whole spectrum of spin-wave-like excitations
in the presence of a uniform magnetic field. ' (In
metals these also mix with cyclotron modes of the
system. )

For some time spin echoes have been used as a
tool to investigate spin excitations in liquid He
and dilute He'-He' solutions. ' Recently Leggett
and Rice' have shown that a variation of the usual
spin-echo experiment should yield further infor-
mation about the Fermi liquid parameters.

The question therefore arises as to the explicit
relationship between spin- echo experiments and
the natural spin-wave-like modes of the Fermi
liquid.

In this paper we give a general derivation of
this relationship valid for long waves (low field
gradient) under conditions where a linear approxi-
mation in the echo magnetization may be applied.

't)Itt'e also show how it can be further generalized
to deal with a rather idealized echo experiment in

which a nonuniform polarizing pulse ("90'"pulse)
could be used to study diffusion of shorter wave-
length modes of the system.

The gist of the derivation is as follows: The
linearized Landau kinetic equation derived by Silin'
for a Fermi liquid in a uniform magnetic field may
be solved for long and medium long waves in terms
of a set of eigenmodes with frequencies Qi(q) of
different wave numbers q and different spherical
harmonic character / measuring the phase rela-
tions between precessing spins on different parts
of the Fermi surface. In the spin-echo experi-
ment a magnetic field with a small gradient along
the field direction (z axis) is applied to the liquid.
The effect of this field, H (z) =H0+Gz, is to mix
up modes of different wave number q, since the
Gz term may be rewritten as iG S/Sqz. The effect
of the mixing is to modify the time dependence of
the mode q, I, from exp[inf(q)t] to a more com-
plicated time dependence containing a factor
exp[((q, I, t)]. In the long-wave limit g(q, I, t) is
given directly in terms of O'Qt(q)/dq', and in fact
only depends on the I=0 mode in this limit. For
an interacting system d'0/dq' is, in general, com-


