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The Brueckner-Goldstone many-body perturbation theory has been applied to calculate the
hyperfine constant a of atomic nitrogen in its ground state S3~2. The exchange core-polariza-
tion diagrams lead to contributions of -49.710 72 and 55.418 82 Mc/sec from the 1s and

2s states, respectively, adding to a total of 5.708 10 Mc/sec. Higher-order diagrams
characterizing mainly correlation effects produce an additional contribution of 4. 780 22

Mc/sec. The total theoretical result 10.49 +0. 15 Mc/sec is in excellent agreement with the
experimental value of 10.45 + 0.000 07 Mc/sec. The major correlation effect arises from the
interaction between thevalence electrons and core s electrons, the effect of the 2s being the
dominant one. It is found that a knowledge of the wave function up to second order is ade-
quate for a sufficiently accurate evaluation of the hfs constant. The trends in the contribu-
tion from various physical effects observed by an analysis of pertinent diagrams are ex-
pected to be helpful in simplifying the analysis of more complex atoms.

I. INTRODUCTION

The Brueckner-Goldstone (BG) linked-cluster
perturbation approach' to many-body theory has
been applied successfully by Kelly2~' to the atomic
systems beryllium and oxygen. The method was
shown to yield excellent results for correlation

energy, polarizabilities, and shielding factor.
The BG theory was also used recently for calcu-
lation of the ground-state properties of atomic
lithium by Chang, Pu, and Das. 4~' In particular,
Chang et al. 4 utilized this approach for the first
time in a calculation of the hyperfine structure
(hf s) constant of lithium atom 'S and obtained good
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agreement with experiment. The same method
was subsequently used in hfs calculations of lith-
ium 'P state and helium 'S state, 7 again yielding
good results in both cases. From the applications
to these simpler atomic systems, much experience
and physical insight have been gained, and it is of
interest to test the applicability of the many-body
approach for hfs of more complex atoms. In this
paper we report the results of our investigation on
the BG perturbation approach to a hfs calculation
for the ground state 'S„,of atomic nitrogen.

The BG theory, which gives both the energy and
the wave function of a many-fermion system,
embodies certain features which are especially
desirable in the hfs calculation for complex atoms.
%e enumerate them here briefly. These features
will be discussed further in Sec. V where our re-
sult will be compared with those from other meth-
ods.

First, in the BG perturbation method, the wave
function of the system, to each order, is an eigen-
function'~' of f', as demanded by the commutation
properties of the atomic Hamiltonian. This is in
contrast to the unrestricted Hartree-Fock (UHF)
method, '-"where the wave function in general is
not an eigenfunction of S'.

Secondly, in the BG theory, once the basis wave
functions are determined by the choice of the one-
particle potential V, one has a complete set of
states. In comparison, one of the most used vari-
ational methods for calculating many-body atomic
'wave functions is the configuration interaction
(CI) approach "&"which involves a linear combi-
nation of determinanta& functions, each repre-
senting a particular configuration of the electrons
in the atom. Although, unlike the UHF method,
the wave function in a CI approach is also an eigen-
function of f', it suffers from the difficulty that
in practice one can only deal with a finite number
of configurations, and thus an incomplete basis set.
Also @e choice of the trial wave function is rather
arbitrary. These difficulties can become really
severe~in heavy atoms if one is to obtain a mean-
ingful result.

Thirdly, in hfs calculation, one is interested in
the difference between spin-up and spin-down
electron densities at the nucleus. In both the UHF
and CI approaches, one actually calculates the
density for spin-up and spin-down electrons indi-
vidually first and then subtracts. Since in general
this density difference comes out to be 1 to 0. 1%
or even less of the individual spin densities, the
hfs calculation in these methods involves the
difference of large numbers, hence there is a
problem of numerical accuracy. The problem
becomes all the more acute in the case of heavier
atoms since the hfs contributions from different
s shells often have opposite signs and the net hfs
value is again the small difference of these values.
This is the case in our present nitrogen calculation
and can be even more drastic in other situations. ' ~"

On the other hand, in the BG perturbation theory
one may make formal cancellations prior to calcu-
lation. '-' Thus one deals directly with terms corre-
sponding to the spin-density difference in common
with other perturbation methods such as the ex-
change perturbation" (EP) or th~ moment pertur-

bation" (MP) methods. In fact, the EP or MP
method corresponds to the first-order contribution
in the BG method.

Each term in the BG perturbation expansion can
be represented by a Feynman-type diagram. In
addition to facilitating the enumeration of terms,
the diagrammatic approach enables one to identify
the contributing terms with certain physical pro-
cesses. This is perhaps the most attractive fea-
ture of the BG method since it enables consider-
able physical insight and an assessment of the
relative importance of various contributions to
the hfs from different physical processes, such
as the exchange core-polarization, inter- and
intra-shell correlations, self-consistency, and
mutual polarization of orbitals. This information
enables one to better appreciate the physical
significance of various other methods, '~ "~"-"
that have been used for calculating hfs.

In Sec. II, a short review of the important points
of BG theory will be presented. Section III will
deal with some relevant details of procedure such
as the choice of the single-particle potential V,
the calculation of bound and excited-state wave
functions, and the relation between the hyperfine
constant a and hyperfine matrix elements. Section
IV will enumerate the various hyperfine diagrams
and their contributions to a. Section V will dis-
cuss the significance of the values of various
diagrams and finally a comparison of our final
result with experiment" and other theoretical
values'~ "&"~"~ ' of a.

II. REVIEW OF BRUECKNER-GOLDSTONE
THEORY

Since the features of BG theory pertinent to
atomic problems have been reviewed in several
places earlier, '-' we shall not enter into a de-
tailed description here. However, a brief resume
of the most important points will be presented both
for the sake of completeness and for a better under-
standing of the succeeding sections.

The exact nonrelativistic Hamiltonian for a
neutral atom of N electrons is given by

where Tz is the sum of the kinetic energy and the
nuclear Coulomb potential operators for the
ith electron

(2)

For convenience, atomic units are utilized in
Eqs. (1) and (2) and throughout the rest of the
paper. Equation (1) may be split into two parts,
the unperturbed Hamiltonian

K0
——Q. T +Z. V. .

which is the sum of the operator Tz and a one-body
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potential operator V;, and the perturbation

(4)

(7+ U) q7. =E. p. ~ (5)

The single-particle potential p is chosen to be
Hermitian and it generates a complete orthonormal
set of single-particle states, which are solutions
of

the sum of the diagrams in Fig. l. The minus sign
in front of the diagram (la) indicates the negative
sign of V in the K'; i, j are hole states and k, k'
denote particle states.

As we shall see later, from the definition of the
single-particle potential V we use, a great deal of
cancellation can be made among the diagrams
(1a), (1b), and (1c). For our hfs calculation,
another great reduction of diagrams occurs be-
cause of spin-up and spin-down cancellation, leav-
ing only the net diagrams that represent the true
spin difference to be calculated. The diagram
(ld) describes the true two-body correlation cor-
rect&on and represents the term

The true ground-state wave function 4, satisfies
the eigenvalue equation

Ã40 =EGO,

qrkyk, (i (1)j (2) I 1/x12 I k(1)k'(2) )
E'. + 6'. —6~ —6~)'E

(10)

and the "unperturbed" ground state of the atom
satisfies

The wave function 4, is a determinant formed out
of the N solutions of (5) which are lowest in en-
ergy. The single-particle states occupied in 4,
are called unexcited states. The remaining single-
particle states of the orthonormal set are called
excited states. An occupied excited state is called
a particle, and an unoccupied unexcited state a
hole.

From the BG linked-cluster perturbation theory,
the true ground-state wave function 4, is given by

Figure (1d) can be divided into two cases, viz. ,
intershell correlation and intra-shell correlations,
depending on whether hole states i and j are occu-
pied with electrons belonging to same or different
shell. It may be emphasized that whereas Diagrams
(1a), (1b), and (1c) can be made to cancel by a
suitable choice of U, Diagram (ld) will always
survive; it expresses in diagrammatic form the
Brillouin theorem" for closed-shell systems.

Higher-order diagrams representing higher-
order perturbation wave functions are built from
these particle and hole lines linked by interaction
vertices of 1/x~& type or the single-particle po-
tential V type. We illustrate a few important
second-order diagrams in Fig. 2, which will enter
into our hfs calculations.

= IO)+ Il)+ l2)+ + In)+ ~

and the true ground-state energy by

E =Zo+(CoIK'I4'0),

(8)

I',a,| QJ

where I. means that only "linked" terms are to be
included, and In) represents the nth order pertur-
bation expansion of the wave function. In the pres-
ence of an external field as in polarizability calcu-
lations, '»' one can include in BC' the perturbation
Hamiltonian due to the external field. Each term
of the expansion in (8) is represented by a number
of Feynman-like diagrams, drawn according to
certain definite rules. ' In this diagrammatic
representation of perturbation terms, the pertur-
bation interactions 1/rz& and the single-particle
potential V are represented by ---- and ---- &,
respectively. Particles and holes are drawn as
solid lines directed, respectively, upward and
downward, the time axis being considered directed
upward. The first-order wave function I1) is then

(c,'I

FIG. 1. First-order corrections to the unperturbed
wave function 40. (a) Interaction with the single-particle
potential V. (b) Direct interaction with passive unexcited
state j. (c) Exchange interaction with j. (d) Two-body
correlation correction.
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{bj (c)
FIG. 2. Some second-order corrections to the

unperturbed wave function Co.

III. DESCRIPTION OF PROCEDURE

A. Single-Particle Potential

The choice of the single-particle potential V ls at our disposal. It ls to be chosen with a view towards
making the BG series as easy and quickly convergent as possible. It has been found earlier' ' that it is
desirable to use a potential such that the basis set generated resembles closely the bound and excited one
electron states of the &-electron system. We have chosen to work with what is designated by Kelly' as
the Vf) 1 type potential. In this potential, the states are calculated in the field of (N 1) electro-ns.
Since we are concerned with the hfs of an open-shell system, it is important to specify that we shall utilize
the restricted Hartree-Fock approximation (RHF) for V& —1. At large distances, the V potential goesN-1
as 1/r and therefore the eigenspectrum has an infinite number of bound and continuum excited states.
Owing to the orthogonality property of angular-momentum wave functions, one may choose different V for
different partial waves. Our choice is thus: all s states are generated in the field of neutral nitrogen
minus one of the 2s electrons, and similarly, all p, d,f, .. . states are calculated in the field of neutral
nitrogen minus one 2p electron.

For our basis functions, we shall utilize the standard notation

(r)=[P(nl;r)/r]Y, (e, y)q (m, ).

The radial function P(ns; r) for the s states is given by the solution of the equation

, + ———I;(Is', Is';s) ——I' (2s', 2s', s) ——I(22 22', Y) )
'„P(n's, ; s)

+ —Y (ls', ns; r) P(ls'; r)+ —Yi(2p', ns; r) P(2p'; r) =e P(ns; r) (12)

w here, in accordance with the usual Hartree notation,

Y (nl n'l'r) =r (r /r )P(nl;r') P(n'l';r')dr'.( (»)
0

Correspondingly, the radial functions P (np; r) and P (nd; r) are obtained from the solution of the equations

+ ————I' (Is', Is;s)-—Y„(2s, 2s'; s) ——Y (2P', 22'; n)+—Y (26 22; s)) P(nd; s)',
d~'

+ —Y'1(ls', np; r) P(is'; r)+ 3 Yi(2s', np; r) P(2s'; r)+25 Y2(2p', np; r) P(2p'; r) =e P(np; r)3f" 3'v

(
d 2N 6 Y (Is Is .s) Y (2s 2s;s) ——Y (22, 22;s) I' (22, 22; s)) P(nd; s)
dx

=e P(nd;r) .
nd

—Y (is' nd r)P(»', r)+—Y (2s' nd;r)P(2s'r)+ Y2( p'I "ddr)+

(15)
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Here ls' 2s' , and 2P are Hartree-Fock wave functions which0 nc 'o i weiroe taken from Clementi. " Fo the
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l
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matrix elements of V+ 1 b t t
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FIG. 3. Di. Diagrammatic representation of the single-
particle potential V. (a) Potential for l = 0 states. (b)
Potential for l = 1 states.

FIG. 4.. s-wave part of the first-order wave function.
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B. Expectation Value of the hfs Operator

We can utilize either of two alternate approaches to hfs calculations. One way is to view the hfs inter-
action as an additional small perturbation 3Chfs on the atomic Hamiltonian (1)

(17)

where S= —,
' is the total spin of the nitrogen atom. Introducing the notation

f = Z. 6(r. )s . (16)

for the spin-density operator, and expanding 4', in various orders, Eq. (17) may be re-expressed as

( N I N 3(I ~ r. )(s. ~ r. ) )
(16)

1=1 1=1 2 2=1

where p is the Bohr magneton, pN the nuclear moment, and I and s are the nuclear and electron-spin
oPerators. This additional Perturbation, 36hfs' can be added to K' in (4) and the sum substituted in Eq. (6)
to produce additional perturbation of the wave function. Use of this total wave function in Eq. (9) yields
the linked-cluster expression for the total energy of the atom in the presence of Xhfs'. However, since
the hyperfine constant involves energyterms linear in p~, one has to retain only those terms in the per-
turbation expansion of (9) which contain a single order in the hfs perturbation. This procedure can be
termed the energy expansion approach. An alternate procedure, is to calculate the expectation value of

Khfs over the true ground-state wave function (8) and relate this to the hyperfine constant. This expec-
tation-value vertex will be represented by~~in hfs diagrams in conformity with earlier convention. 4

Both approaches of course lead to identical results and it is only as a matter of choice that we adopt the
second procedure.

Since the ground state ( S»~) of nitrogen atom is spherically symmetric, (zero total orbital angular
momentum) the dipole-dipole term in (16) gives zero contribution and the hfs constant a is given by

N
~=/~(PuN/I S)(+0 I

~ ~(r;)8; i+0)/(+0 l+0)
2=1

16 N (0 ff (0) + (0 ff ( I) +(I ff [0) + ( I / f f1 ) + (0 (f /2) + (2 ff /0) + ~ + (m (f fn) + ~ ~ ~

3 IS (0 (0) +(1 ll) + ~ ~ ~ +(m jn)+. ..
where (m (f [n) =(n (f [m) will be referred to simply as (m, n) diagrams.

C. Calculation of Basis Set and Normalization

The bound-state energies and wave functions
were obtained by solving the radial equations (12),
(14), and (16) using a program developed by Froese-
Fischer. "This program utilized lnr as the inde-
pendent variable which is particularly suitable for
hyperfine properties since it effectively expands
the region near the nucleus.

The continuum wave functions were obtained by
solving the requisite differential equations and
were normalized by fitting to the asymptotic solu-
tion

P(k, l;x) = (2/R)'~' sin[km+ 6 +In(2kr)/k —,' lm] (20)—
at large values of r = R. This normalization pro-
cedure was carried out conveniently using a pro-
cedure based on WKB method. " In carrying out
summations over excited states, the relation'

Zk = (2/m) J dk (21)

was employed. The integration over k was carried
out using Gauss- Laguerre" quadrature procedure
using 15 points, which was sufficiently accurate for
our purpose. This procedure is particularly eco-
nomical where double and triple integrations in k
space are required in summing over intermediate

states. For the radial space integration involved
in matrix element calculations, we have used 1161
points in two meshes of appropriate size over the
range x=0 to 50 a, .

IV. DIAGRAMS AND RESULTS

In this section we present the results of our
calculation. %e have included all hfs diagrams
with up to two interacting vertices of X'. That
is, all (0, 1), (1,0), (1, 1), (0, 2), and (2, 0) type
diagrams have been considered. The (0, 0) dia-
grams give zero contribution to the hfs constant
a, Eq. (19), since the unpaired p valence elec-
trons have zero density at the nucleus and the
spin-up and spin-down s electrons give equal and
opposite contributions in the RHF approximation.
The hfs in nitrogen atom owes its origin to the
unsymmetric interaction between the three valence
2p+ electrons with the spin-up and spin-down core
s electrons. This unsymmetric interaction is con-
stituted partly of the exchange core-polarization
effect'~' "and partly the correlation with the core
electrons and associated effects. In addition, the
unsymmetric phase space available for the excited
states, since the 2p- states are empty, leads to
further contributions to the hfs constant. The con-
sequences of these observations in diagrammatic
language manifest themselves in that the diagrams
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contributing to hfs have at least one 2p+ hole line
or one 2p- particle line. The latter type of dia-
grams are called residue diagrams and their mag-
nitudes are usually relatively small.

It is interesting to note that correlation among
the 2p+ electrons cannot contribute to the hfs.
The reason for this is that the excited configura-
tions (2p+ns+ms+), which could make such con-
tribution, have nonzero total angular momentum
and therefore cannot mix with the 2p'(~$31, ) state.
It can be shown (see the Appendix) that t~his inef-
fectiveness of the intrashell correlation among
valence electrons in contributing to the hfs follows
from a natural cancellation of diagrams and, in
fact, this is true for all open-shell atoms.

(0,1) Diagrams

Because of the one-particle nature of the hfs
operator, the only (0, 1) contribution comes from
the "exchange core-polarization" diagrams in
Fig. 5. The negative sign in front of the spin-
down part of the exchange-polarized core wave
function is multiplied by a —1 factor from the s~
part of the hfs operator, so that the net effect is
to add the spin-up and spin-down contributions.
The algebraic expression for this (0, 1) diagram,
pertaining to the first-order contribution from s
core electrons to hfs is given by

(i If Ik ) (k 2P I I/rl2 I2P i)
i =1s or 2s,

k i ks
S

form to be discussed next, is comparable in prin-
ciple to the perturbation energy one evaluates in
the EP or MP methods

In the derivation of the linked-cluster result of
the BG theory, there will arise certain exclusion
principle violating (EPV) diagrams which repre-
sent important physical effects. ' 4 The first class
of EPV diagrams are the hole-hole (h-h) type
which arises from the factorization of the unlinked
clusters. With our definition of V+ 1, the h-h
type EPV diagrams will occur for ls hole states
but not for 2s hole states. The EPV h-h diagrams
are illustrated in Figs. 6aand6b. Physically,
these EPV diagrams occur because in our calcu-
lation the 1s state is generated by a potential that
has, besides interactions with 2p electrons, direct
interactions with two 1s electrons, one 2s(2s )
electron, and exchange interaction with one 1s'.
The actual 1s electron, however, while interact-
ing similarly with the 2p electrons, should see
direct interactions with one 1s and two 2s, and
one exchange with 2s electron. The h-h diagrams
(6a) and (6b) correct for the difference between
these potentials. The effect of the slight difference
between 1s and 1s' wave functions will be omitted
in this calculation.

Figures (6c) and (Gd) refer to the hole-particle
(h-p) ladder diagrams. Each of the diagrams
(6c) and (6d) represents in a compact form two
distinct series of diagrams, namely, one with 1s
exchange or coulomb ladders, and the other in-

where the summation over k~ includes both bound
particle states and integration over the continuum
states. The difference of spin-up and spin-down
core wave functions comes from their unsymme-
tric exchange interaction with the valence 2P+
electrons. This (0, 1) diagram, or its modified

2SQ
l&

25+
)S

IS'

jS + IS

lS2$

tS gS

FIG. 5. Exchange core-polarization diagram, referred
to as (0, 1) diagram in the text. i denotes hole states
and k~ denote excited s states. The wiggly line at the
top vertex represents hyperfine contact operator.

FIG. 6. Hole-hole and hole-particle ladder corrections
to Fig. 5. Correction to 1s potential is represented by
(a) and (b), whereas (e) and (d) represent corrections to
excited state potential.
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volving 2s ladders. These diagrams arise from
an incomplete cancellation between the single-
particle vertices associated with V+ 1 potential
and passive unexcited states. Physically, the
origin of Diagrams (6c) and (6d) can be explained
by the fact that when the k~ state is excited from
the 1s state, it should "see" one ls and two 2s
orbital electrons, which is not the way k& was
generated from our choice of V& 1 potential.
Some of these diagrams, for example the (6c) dia-
gram with 1s ladder attached to the 1s hole dia-
gram, can be loosely referred to as EPV diagrams
although its origin is different.

These h-h and h-p ladder corrections can be
summed to all orders as a geometric series, re-
sulting in a shifted energy denominator'~' of the
(0, 1) diagram. One then gets the following correc-
tion factors to the 1s state core-polarization dia-
grams (Fig. 5):

cited states were also found for the higher-order
diagrams, (1,1) and (0,2). In this respect the situ-
ation is similar to the lithium-atom ground-state
result.

(1,1) Diagrams

A first inspection of the (1, 1) diagrams indicates
that their number is rather large. However, after
carrying out systematic cancellations along the
lines indicated in Sec. III, the surviving hfs dia-
grams are not too many and are shown in Fig. 7.
The corresponding numerical results from these
diagrams are given in Table II. Diagram (7a)
comes from the correlation interaction of 2P+
electron with the s-core states, (7b) being the
exchange analog of (7a). Diagram (7c) is the

(h-h) E&V 1 k(6a)+(6b) =
1

+ E1 ~k
(22) CPP

where
=(Is2s [ ils2s) —(Is2sl l2sls),:1

+12

E

(6c) (6d) =

1s
where

(k Is( [k Is)+(k 2s(—Ik 2s)1

+(k ls [
—— ilsk ) —(k 2s ( i2sk ) .1 1

S t 12 S S 'F12 S
(c)

The h-h correction factor comes out as 4%%u~ while
the h-p correction is 1.38%. The results for the
exchange core-polarization diagrams (with and
without ladder for the Is state) are tabulated in
Table I. The major contribution to both the 1s
and 2s diagrams (92 and 97/q, respectively) arose
from the continuum excited states. Similar rela-
tive contributions from bound and continuum ex-

TABLE I. Core-polarization contributions of Fig. 5.

Hole state

z= 2s

Total

Contribution
(Mc/sec)

—47. 823 85
—49.740 10b

50 42955c

+ 56. 22019

+ 5.79064

~ ~2/ K&"~28
lS' '

2S%

tS

v
+

2

a
Contributions from the bound states n& 8 were esti-

mated by the n rule and amounted to less than 0. 02/~.
[See Ref. 2 and H. A. Bethe and E. E. Salpeter, Quan-
tum Mechanics of One- and Two-Electron Systems
(Academic Press Inc. , New York, 1957) p. 18. ]

After including hole-hole ladder corrections accord-
ing to Figs. 6(a) and (b).

After inclusion of hole-hole and hole-particle ladders,
the latter being shown in Figs. 6(c) and (d).

g V

gp
I2P K

FIG. 7. (1, 1) hfs diagrams.
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Diagram

(7a)

(7b)

(7c)

(7d)

(7e)

(7g)

(7h)

Participating hole states

2= ls
2= 2s

+
2= ls

+2= 2s

2= 1s
2= 2s

2 = 1s, $=2s
i=2s, j-1s

i= ls, j= 2P, j'= 2s

i = ls, j= 2s
+

2 =1s
+2= 2S

Contribution
(Mc/sec)

0. 286 95
l. 413 51

0. 170 97
1.79934

—0. 98479
2. 802 24

—0. 058 59
0. 13160

—0. 11169

0. 07776

0. 13251
-0.382 65

0. 09103

—0. 227 20

(73) i=2P
2 2P

+
g= ls+' j' =ls

=- 2S
0. 19134

—0. 314 23

(7k) 2= 1s
2= 2S

+= ls
=2S

0. 144 91
0. 08967

TABLE II. Contributions from (1, 1) diagrams. much more numerous before cancellation. The
systematic reduction gives the net diagrams in
Fig. 8, their respective values being given in
Table III. Diagram (Ba) represents a residue dia-
gram associated with the instantaneous polariza-
tion of s electrons with other electrons (both s and
P). Since the s electrons in nitrogen atom are in
completely filled core states, the net contribution
from this polarization effect would cancel over the
two spin states except for the unsymmetric phase
space available to particle p states. Thus the net
effect in (Ba) represents the fact that s electrons
can be excited into 2p state while s+ electrons
cannot. Diagram (Bb) is similar in nature to (Sa)
except that the second X' vertex is now attached
to a hole line on the left instead of a particle line.
However, only a part of this diagram is residue
like in nature, namely the one involving 1s or 2s
hole states on the right. Diagrams (Bc) and (Sd)
are exchange counterparts of (Ba) and (Bb), the
exchange being allowed only for spin-up electrons.
Diagrams (Se) and (Bf) represent an interplay be-
tween exchange core-polarization and correlation
and consistency effects. Diagrams (Bh) really
represent two distinct types of physical effects.
For (i = 1s, j = 2s), the diagram describes an in-
direct exchange core-polarization process. Thus
the exchange interaction with 2p electrons makes

Total 5. 252 69

result of a combination of intrashell correlation
and exchange core-polarization. The "exchange"-
type diagram in (7d) represents a cross interac-
tion between the intershell correlation between
the 1s and 2s electrons and exchange-polarized
cores. The barrel-shaped diagram (7e) is the
net second-order term arising from the exchange-
polarized wave function. Diagram (Vf) arises
from a combination of the exchange-polarized 1s
core (Fig. 4) and the "correction" term (Fig. 4)
for the 1s core. Diagram (Vg) comes from the
interaction of 2p+ —1s+ correlation and the extra
potential term (Fig. 8) mentioned in Sec. III.

Diagrams (Vh) through (7k) are somewhat dis-
tinct from the rest in that the hfs vertex is attached
to hole lines. Diagrams (Vh) and (7i) are similar
to Diagrams (7a) and (7b), where the hfs vertex is
attached to particle lines. The unlinked diagrams
(Vj) and (7k) arise naturally from the (1 ~f [ 1) term
in Eq. (8) using the linked-cluster expansion for
the wave function [I). If one had made binomial
expansion of the normalization factor in the de-
nominator in Ejl. (19) it could provide the corre-
sponding unlinked terms of the opposite sign. The
net result then agrees with the linked-cluster en-
ergy expansion method.

Ks

(c)

(e)

(0,2) Diagrams

There is a greater similarity between (0, 2) and
(0, 1) diagrams with respect to spin cancellations
than was the case for (1,1). This is because for
both (0, 1) and (0, 2) diagrams, the hfs vertex in-
volves one-hole line and one-particle line. The
greater cancellation relative to (1,1) diagrams is
a great advantage because the (0, 2) diagrams are

(h)

FIG. 8. (0, 2) hfs diagrams.
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TABLE III. Contribution from (0, 2) diagrams.

Diagram Participating hole states
Contribution

(Mc/sec)

(8a) 2=
2=
2=
2=
2=
2=

IS
IS
Is
2s
2S
2S

j= Is+
j=2s+
j=2p+
j= Is
g= 2s
j=2p'

0.430 90
—0. 003 76

0. 887 122
—0. 910 15
-0.522 61
—I.645 34

(8b) 2= 2S
2= 2S
2= IS
2= 1S

J =2S
J =IS
j = Is
g =2S

—0. 600 66
—0. 771 18

0.485 54
—0. 08040

(8c)

(8d)

2=

2=
2=

Is+, j= 2s+,
Is, J= 2P

2=2P ~

2s, g= Is+,

2= IS
2= 2S

j'=2p
=2S
=Is

j'= 2p'

-0.348 30
—0. 785 83
—0. 295 03
—0. 200 10

—0. 803 58
—0. 395 96

2PQtkp 2p

(8e)

(8f)

(8g)

(8h)

Total

2= IS
2= 2S

2= 1S
2= 2S

2= 1$
2= 2S

2= Isp
2= 2S~
2= Is~
2= 2S,

j= ls
j= 2S

j= Is
J= 2S

J= 2S
j= Is
J=2S
g= IS
j= 2p
j=2p

—0.610 142
1.973 35

—1.59135
4. 775 59

—0. 003 75
0. 013 46

1.08070
—0.60070

2. 403 15
—2. 812 22

—0. 93131

(c)
FIG. 9. (0, 2) EPV diagrams. The notation —= indicates

the equivalence of the two alternate diagrams.

the wave function of 2s~ states different, which in
turn produce a core polarization of the 1s~ states.
A similar interpretation applies for (i = 2s, j= 1s).
The two diagrams (Sh) with (i=1s or 2s, j=2p) are
somewhat closer in physical meaning to Diagrams
(Sf). They describe how the core-polarization
diagrams in Fig. 5 are influenced by the consis-
tency effects arising from exchange between the
2p electrons.

In addition to these (0, 2) diagrams, one also
has the diagrams in Fig. 9, which are EPV dia-
grams [analogous to the second class of EPV dia-
grams for the (0, 1) case] associated with the in-
complete cancellation of U&- 1 vertex and pas-
sive unexcited vertices. The results of these
EPV diagrams are listed in Table IV.

It is appropriate to remember here that the
values of diagrams of (m, n) type, with m en,
have to be multiplied by a factor of two to take
account of the equal contribution from the (n, m)
type, otherwise referred to as time-reversal
symmetry. This factor of two has been included
in the results tabulated for all of the (0, 1) and
(0, 2) diagrams and for some of the (1, 1) diagrams
wherever necessary. Secondly, in the entries for
various (1, 1) and (0, 2) diagrams in Tables II, III,
and TV, we have included h-h ladder corrections
following the procedure outlined for (0, 1) diagrams.
The effect of h-p ladders has not been included

TABLE IV. Contributions from (0, 2) EPV diagrams.

Diagram Participating hole states
Contribution
(Mc/sec)

(9a)

(9b)

(9c) 2=
2=

2= IS
2= 2S

2= IS
2= 2S

Is+, j= ls+
2s

q
$=2S

—2. 722 27
—0. 01782

0.45973
2. 923 43

0. 485 54
—0 ~ 600 66

0. 527 95

since their calculation is an order-of-magnitude
more difficult. However, it was already seen in
the (0, 1) that the (h-p) ladder corrections was only
a third as important as h-h ladders. Since the
values of the individual unmodified (1,1) and (0, 2)
diagrams are an order-of-magnitude smaller than
in the (0, 1) case, the effect of neglect of h-p lad-
der corrections for the former diagrams is not
expected to be very important.

The total contributions from the (0, 1), (1, 1), and
(0, 2) diagrams and their sum are listed in Table
V and compared with experiment. The entries in
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TABLE V. Net contributions from (0, 1), (1, 1) and

(0, 2) diagrams.

Contribution (Mc/sec}
Class of diagram unnormalized normalized

(0, 1)
(1, 1)
(0, 2)
Total
Experiment

5.790 643
5.252 69

—0.403 36

5.708 10
5.177 82

—0.397 60
10.488 32

10.45 + 0.000 07

Table V for the (0, 1), (1,1), and (0, 2) diagrams
are a little different from the corresponding sums
listed in Tables I-IV. The reason is that the
numbers in Table V are normalized by including
the normalization factor in the denominator of
Eq. (19). Up to second order, only the (1, 1)
normalization diagrams in Pig. 10 survive. The
sum of the contributions from these diagrams
lead to a normalization constant of 1.01446 for
the denominator in Eoi. (19).

V. DISCUSSlON

~ I

(b) (c)

FIG. 10. Normalization diagrams.

In this section, we shall first try to draw some
inferences from the individual contributions in
Tables I-V concerning the importance of various
physical effects that can contribute to the hfs.
Subsequently, we shall carry out a comparison
between our results for the hfs constant and ear-
lier theoretical values'~" """ as well as experi-
ment.

The largest effect, as expected, comes from
exchange core-polarization (ECP), the (0,1) dia-
grams. However, from Table I, the 1s and 2s
cores are seen to give contributions that are near-
ly equal but opposite in sign. The net contribu-
tion is therefore only about 10/o of those from the
individual states. This trend of opposite sign for
the hfs from 1s and 2s orbitals seems to persist
in our higher-order calculations. The (0, 1) re-
sults, as mentioned before, should be equivalent
to those by the EP and MP methods. "~" However,
in carrying out calculations with the EP or MP
methods, one often employs a localized approxi-
mation' for the potential. Such an approximation
tends to overestimate the exchange effect and
could lead to slightly larger ECP results. ~~' This
point is borne out in the present case by a com-
parison of results in Table I with MP contribu-
tions" from 1s and 2s states of —50. 8 and 60. 7,
respectively. While the individual state results
by both procedures agree reasonably well with
each other, the net hfs constant, being the dif-

ferenee of nearly equal numbers, shows a much
greater variation (nearly a factor of 2) from one
procedure to the other.

An inspection of the (1, 1) diagrams in Fig. 7
and their values in Table II reveals that there are
broadly two classes of diagrams that make impor-
tant contributions to hfs. The first class of dia-
grams is symbolized in (Va) and (7b) in which the
hyperfine vertex is attached to a particle s line
arising out of correlation effects in which the P-
hole states take part. Physically, these diagrams
represent the effects of acquisition of s character
by the unpaired p electrons as a result of their
correlation interaction with s-hole states. Since
these electrons are in spin-up states, we expect
a positive contribution to hfs from this process.
This fact is borne out by the results listed in
Table II. In addition, one notices that the dia-
grams in which 2P correlates with 2s dominate
over those in which 1s is involved. This is to be
expected since the 2p density overlaps the 2s
density more strongly than it does to the 1s.

The second major class of (1, 1) diagrams, rep-
resented by (Vc) and (Vd), are characterized by
an intermixing between correlation and ECP ef-
fects. In these diagrams, the hfs vertex is at-
tached to a segment that involves a hole s state.
As is the case of the (0, 1) ECP diagrams, the Is
contribution is negative and opposite in sign to
that for 2s. The diagrams involving 2s are again
larger in magnitude than those associated with 1s,
the ratio being, however, smaller than the case of
(7a) and (7b).

In addition to these two major classes of (1, 1)
diagrams, we also have the two other classes
which encompass (Ve) through (Vk). Of these, (7e),
(7f), and (Vg) owe their origin to our specific
choice of V&- 1 potential. Diagrams (Ve) and
(7f) represent an interplay between ECP effects
and interaction with passive, unexcited states,
and are numerically much less significant than
diagrams considered previously. The diagram
(7g) is the only survivor of a set of diagrams that
result from a combination of correlation and the
special---- 8 vertex in Fig. 3, after spin and po-
tential cancellation has been made. Its contribu-
tion, while more important than (Ve) or (Vf), is
much smaller than the leading diagrams of the
(1, 1) set. The diagrams (7h) through (Vk) are
found to be individually small but significant. How-
ever, owing to mutual cancellation among them-
selves, the net contribution is seen to be rather
small,

Among the (0, 2) diagrams, (Ba) and (Bb) can be
characterized physically as representing the mu-
tual polarization of 1s and 2s states by each other.
These diagrams are, however, only residue dia-
grams and would vanish, were it not for the un-
equal p-particle phase space available to up and
down spin states. Diagrams (Bc) and (Bd) are
exchange counterparts of (Ba) and (Bb). From
Table III, we find that these diagrams are in-
dividually comparable to leading (1, 1) diagrams.
Diagram (Be) represents an interplay between
ECP and correlation effects while the diagram
(Bf) represents similar interaction between ECP
and consistency effects. Physically these two



44 DUTTA, MATSUBARA, PU, AND DAS

diagrams may be described as follows. One of
the s states of a core shell get exchange polar-
ized and then interacts with other core electrons
in the same shell via correlation or consistency-
type effects. Like (7c) and (7d), the diagrams
(Se) and (8f) involve a core-polarization limb and
would be expected to have opposite contributions
from 1s and 2s hole states as indeed found in
Table III. Another interesting result is that the
diagrams (8e) and (8f) combine and give a sub-
stantial positive contribution, which nearly neut-
ralizes the total sum of (8a) through (Sd) which is
negative. This accounts for the small net con-
tribution of (0, 2) diagrams in Table V. It is
worthwhile to remark here that the diagrams
(7c) and (8e) may be shown by algebraic manipu-
lation to add up to (8f). From Tables II and III,
the numerical values of these diagrams obtained
separately do, in fact, satisfy this equality, thus
acting as a check on our numerical procedure.

Finally, the net (0, 2) EPV diagrams (9a), (9b),
and (Qc), originating from incomplete cancella-
tion effects associated with the V& 1 potential,
are also seen from Table IV to be of substantial
size individually but add up to a small contribu-
tion which does not substantially alter the total
(0, 2) result. It is interesting that in contrast to
some other diagrams where 1s and 2s hole states
were involved, in the diagram (9a) the ls contri-
bution is much larger than 2s.

We shall next turn to a comparison between our
results for the hfs constant with those of earlier
workers and experiments which are listed in
Table VI. Our final result is in excellent agree-
ment with experiment and is taken from Table V
with an estimate of probable error added. This
error estimate is arrived at from a consideration
of various sources that could be important. The
first source is the neglect of nonladder higher-
order diagrams beyond (0, 2). We have examined
two typical higher-order diagrams shown in Figs.
11; (1la) being a (0, 3) diagram and (lib) a (1,2).
Including both 1s and 2s state contributions,

4
RS 2P

2P
g&~Ij

FIG. 11. Some third-order diagrams.

the diagram (lla) gives 0. 002172 Mc/sec. This
diagram may be compared with the lower-order
diagram of this family as characterized by Fig.
(8a), whose total contribution from Table III is
seen to be —1.763 84 Mc/sec. This is three
orders of magnitude larger than (lla). Similarly
the (1,2) diagram in (lib) can be compared with
the (1, 1) diagram in (7a). From (lib), including
ls and 2s contributions, we get 0. 002 11 Mc/sec
which is again three orders of magnitude smaller
than the result for the (1, 1) Diagram (7a) in Table
II. We do not anticipate that any other higher-
order diagr ams will be of larger order of magni-
tude than the two typical ones (lla) and (lib) that
we have calculated. Further, although the number
of higher-order diagrams is more numerous than
lower-order ones, we also expect more cancella-
tions of the type that occurred for (0, 2). From
these considerations, we feel that a conservative
estimate of the error in the hfs constant due to
higher-order diagrams is + 0. 05 Mc/sec. A
second source of error is our neglect of (h-p) and
(p-p) ladders beyond the (0, 1) diagram. For the
(0, 1) diagram, the (h-p) ladder changed the result
by about 1.3% which was substantial in effect in
that case since the individual (0, 1) diagrams were
large. On the other hand, the (1, 1) and (0, 2)
diagrams all have contributions an order of mag-
nitude or more smaller than (0, 1), thus the ne-
glect of the (p-p) and (h-p) ladders is not expected
to be as serious.

TABLE VI. Comparison of present results with earlier work and experiment.

Method

CI

Bethe-Goldstone
Present calculation
Experiment

UHF (numerical)
(analytic)
MP
Cross-variational
CI six basis
(perturb-
ation approach) seven basis

six basis
seven basis

ls
contribution

Mc/sec

—79.8
-75
—50.8
—36.4
—46

-49
-45
—47

Result
2g

contribution
Mc/sec

100
108
60.7
43.7
54

54
58
58

Total
Mc/sec

20.2
33
9.9
7.3
8

5
13
11
10.87

10.49+ 0.15
10.45 + 0.000 07

Ref.

8

28
19
12

12
12
12
18

R. K. Nesbet and R. E. Watson quoted in Ref. 12.
bAnderson, Pipkin, and Baird. Ref. 20.



HYPERFINE INTERACTION IN N

A conservative estimate of the error due to this
source is about 1% of the total contribution from
all the (1,1) and (0, 2) diagrams, that is, s 0. 05
Mc/sec. Among other possible sources of error
are the neglect of relativistic effects, which are
not expected to be very important for a light atom
like nitrogen. A conservative estimate may again
be arrived at by comparing with lithium and so-
dium atoms, for which the relativistic corrections
to hfs are 0. 3 and 1% respectively. Thus a + 0. 5%
error, equivalent to + 0. 05 Mc/sec. seems to be
appropriate for relativistic effects.

The total estimated error in Table VI is arrived
at from a combination of these three sources. It
should be noted that in contrast to earlier calcula-
tions, ' ' the use of limited k integration is no
longer an important source of error because of
our use of Gauss-Laguerre integration technique.

A general feature of all the earlier results
listed in Table VI, is that 1s contributions are
all negative, while 2s ones are all positive, in
keeping with the results of (0, 1) diagrams in BG
theory. The first row in Table VI gives the UHF
results obtained by Goodings' who solved the self-
consistent UHF equations numerically. The UHF
result is almost twice our total result and more
specifically, the individual 1s and 2s UHF con-
tributions are substantially larger than the ECP
contributions we obtained in Table I. There is
some reason for not expecting one-to-one corre-
spondence between individual shell UHF results
and ECP contributions by our perturbation tech-
nique. The UHF approximation incorporates
self-consistency and an uncertain" amount of
correlation. These effects are included in BG
theory in the higher-order diagrams (1, 1) and
(0, 2). It seems to us, however, that the major
reason for discrepancy between the UHF results
and our ECP results is that differences of rather
large numbers from spin-uy and spin-down states
are involved in the UHF procedure, with conse-
quent loss of accuracy. The second row in Table
VI illustrates this point further. These are also
UHF results but they are obtained analytically
from a limited basis set. The difference between
numerical and analytic UHF calculations empha-
sizes the care that must be used in analytic varia-
tional calculations.

The MP results in the third row are much better
comparable with the BG (0, 1) results and this com-
parison has already been remarked earlier. The
cross-variational results in the fourth row are
not very conclusive since they involve extremiza-
tion of perturbation energy rather than minimiza-
tion, thus requiring an extensive test of conver-
gence which has not been carried out. Neverthe-
less it is interesting to note that in view of the
perturbation character of this calculation, the
individual state contributions are closer to the
corresponding BG results than UHF.

Although the fifth and sixth rows of Table VI
are termed CI (configuration interaction) results, "
they really correspond to a perturbation formula-
tion for a PUHF theory "~" The difference be-
tween RHF and PUHF wave functions is obtained
by a first-order admixture of singly excited con-
figurations. Again, being a perturbation approach,

their results for individual shells are closer to
our corresponding results in Table I. The sub-
stantial difference between the fifth- and sixth-
row results in changing from a basis set of six
functions to seven, again illustrates the caution
one has to use in analytic expansion approaches.
The seventh and eighth rows give the result of CI
calculation in which some doubly excited configura-
tions are included, in addition to singly excited
ones of the perturbation approach. These CI re-
sults thus incorporate some correlation, but no
definitive conclusions can be made from them in
view of the observed substantial variation in go-
ing from a six basis set to a seven basis one.

Finally, the Bethe-Goldstone technique as formu-
lated by Nesbet, "makes a neat separation into
single, double, triple, and larger number of
particle excitations in dealing with many-body
effects. The results of this procedure including
the effect of three-particle excitations is seen
(Table VI) to be in good agreement with experi-
ment and our results. The reamining discrepan-
cy between Nesbet's results and experiment can
perhaps be removed by the use of a more extended
basis set in the Bethe-Goldstone procedure.

VI. CONCLUSION

The BG theory for nitrogen atom has been shown
in this paper to yield excellent results a.s compared
to experiment. Its success for a more complicated
situation than in the earlier application to lithium
atom~y6 increases our confidence in its applica-
bility. In contrast to the lithium situation, corre-
lation and core-polarization results are here com-
parable in magnitude„The major contribution to
correlation effects seems to arise from the ad-
mixture of s character in the unpaired spin or-
bitals by virtue of correlation with the s-shell
electrons. Also the entire contribution to the
hfs constant appears to arise from diagrams of
first and second order alone. These observa-
tions lead us to expect that the application of BG
theory to more complex atoms is well within the
realm of possibility and would be very interesting
to pursue.
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APPENDIX

The possible p-p correlation diagrams that can
contribute to hfs of nitrogen atom are shown in
Figs. (12a-h). Each diagram includes, besides
the requisite radial integrals, the angular factors
corresponding to the upper and lower vertices,
some of which are indicated below the diagrams for
reference. Comparing, for example, Diagram
(12a) with Diagram (12b), it is easily seen that
these diagrams cancel each other, since the
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FIG. 13. Additional p-p correlation diagrams occuring

in the oxygen atom. k denotes either excited s or d states.

( cI)

l gP

angular factors and radial integrals of both dia-
grams are the same and the signs of the diagrams
are opposite. In the same fashion, it may be
shown that Diagrams (12c) and (12d), (12e) and
(12f),. (12g) and (12h) all cancel in pairs. These
cancellations explain the vanishing contribution
from p-p correlation effects to hfs.

A similar cancellation of correlation diagrams
for valence p electron to hfs can be demonstrated
in oxygen atom as well. For the oxygen atom,
(1s'2s'2P4 P, state) in addition to the diagrams
in Fig. 12, one can have the diagrams in Figs.
13a and 13b. However, because of the opposite
spins involved, the diagrams (13a) and (13b) can-
cel each other, leading again to a zero total con-
tribution. The same cancellation of p-p diagrams
can be easily demonstrated for other incomplete
p- shell atoms.

FIG. 12, Valence p -p correlation diagrams for hfs in
nitrogen atom.
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