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The spectral broadening associated with light propagating in self-trapped filaments through
liquids with large optical Kerr constants is studied. In particular, we treat the influence of
a nonzero orientational relaxation time and of linear dispersion upon the phase (and amplitude)
development of the light as it interacts with the optically nonlinear medium. Relaxation
introduces Stokes-anti-Stokes asymmetry, even in the absence of pulse steepening. The
spectrum is compressed, and the degree of interference in various portions of the spectrum
is altered. The effect of dispersion is apparently much less important, particularly in the
case where propagation distances are short compared with the shock distance. However,
dispersion combined with a finite relaxation time does introduce an exponential gain in the
forward direction. For a small nonlinearity, the peak gain is equal to the stimulated
Rayleigh gain in the backward direction; but it falls off with increasing nonlinearity, be-
cause of the Stokes-anti-Stokes interaction.

Spectra computed for a picosecond pulse and for a 100% sinusoidally modulated light beam
of infinite extent are compared. Because of its periodicity, the latter possesses a fine
structure and is influenced differently by the orientational relaxation.

Comparison of the experimental results with the theoretical calculations for the cases of
a zero and a nonzero relaxation time indicates that pulses of the order of 5-10 psec in ex-
tent could give rise to the observed spectra. Possible sources of such pulses (or a sequence
of such pulses) are discussed.

I. INTRODUCTION

The propagation of optical pulses and other com-
plex wave forms through media with an intensity-
dependent index of refraction results in both a
self-steepening of the envelope and a phase per-
turbation driven by the nonlinear dielectric change
(which can be called self-phase modulation). These
processes, particularly that of self-phase modu-
lation, produce sidebands' 3 which have been ob-
served3 —7 in the frequency spectra of small-scale
trapped filaments of laser light. '

The process of self-steepening and the develop-
ment of a shock in the envelope have been dis-
cussed theoretically for the dispersionless case
both for zero and finite relaxation times. In par-
ticular, it was found that the relaxation inhibits
but does not prevent self-steepening. Spectra
were also computed for the relaxationless case
(7 =0) assuming propagation distances of the order
of the shock distance.

The present paper consists of an extension of
this work. An attempt is made to relate the re-
sults to those found experimentally by Grieneisen
and Sacchi, and Brewer, ' as well as to those

found both experimentally and theoretically by
Schimizu, ' and by Cheung et al. Cheung, et al.
indicated that the down-shifted spectral envelope
could be produced by a sinusoidal modulation of
laser intensity induced by a process within the
liquid. We show that the spectra resulting from
single pulses 5-10 psec in extent exhibit a simi-
lar envelope without the discrete components pres-
ent in the sinusoidal case.

Spectra are computed for single pulses in the
presence of either a zero or nonzero relaxation
time, and for a modulated signal in the presence
of finite relaxation. The results indicate that re-
laxation without dispersion gives rise to a large
Stokes —anti-Stokes asymmetry and that disper-
sion serves to accent this asymmetry.

The characteristics of the light-pulse propaga-
tion are based upon a travelling wave equation
obtained from a Fourier analysis of the wave equa-
tion, using a generaL approach in which disper-
sion is easily included. We shall show that ne-
glecting the dispersion, the complex equation re-
duces to those of Ref. 9.

We also investigate the influence of dispersion
upon the propagation of two weak-waves, one up-
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shifted and one downshifted from a strong central
component at frequency ~p and wave-vector Ap
= +0[e(mo)] '~'/c. It is found that relaxation com-
bined with a positive second-order dispersion
(82ko/s&u02) 0) can provide exponential gain for
weak waves traveling in the same direction as
the strong wave. For self-trapped filaments in
CS» this gain is estimated to peak at about Q
=50/v, ~ being the orientational relaxation time.
No gain is present for a zero relaxation time.

S(Q, Q)=2, f dz f dfS(z, f)e

(4b)

The displacement field can be handled similarly.
The Fourier transform of its amplitude is com-
posed of two portions: the linear portion e(cu)h(Q, Q),
and the transform of 5&8 the nonlinear portion,
which will be denoted as [5eS]~.

The Fourier transform of the wave equation is,

II. LIGHT-PULSE EQUATION
—k'+ (—) e((u) $(Q, Q) = —(—) [5eS] (5)

We concern ourselves with materials which
have a dielectric coefficient dependent upon the
intensity of the electric field (e.g. , Kerr liquids).
We assume that the displacement D can be written
in the form

O(f)= f f(t-f')Z(t')dt'+5&(f)E(t),

where 6e(t) is the intensity-dependent part of the
dielectric coefficient and the Fourier transform
of f gives the frequency-dependent dielectric func-
tion e(~). The superposition integral implies a
medium with dispersion of the linear dielectric
constant. In writing the second term as a product,
the dispersive effects associated with the nonlin-
earity are neglected. If 5&(t) arises from the
alignment of anisotropic molecules along the elec-
tric field, the Boltzmann equation can be employed
to show that to first order in the field intensity

The evolution of modulated signals possessing
either a large number of discrete Fourier com-
ponents or a continuum of such components, all
coupled nonlinearly, cannot be treated easily in
the transform space. However, (5) provides a
way of deducing a travelling wave equation con-
taining higher-order time derivatives of the field.
These occur as a result of expanding (5) in powers
of Q to treat the effects of dispersion. The final
equation has also been deduced directly from the
wave equation; however, the procedure is much
more tedious and the general form is not as trans-
parent.

We begin by writing (&u/e)[e(w)] 'I' in terms of
the frequency deviation 0, obtaining

(&/e)[e(&)/e ]"'=(& +Q+&Q)/e,

in which e, = e(u&, ) and 2 is an infinite series in Q.
The first few terms are

T 95e/Bt = —(oe —e2E ) . (2) i=-,'a+(X/~, ) Q/2+(a/~;) Q'/8+. . . .
Since I/7 is much less than optical frequencies,
molecular orientation cannot respond to optical
variations in the torque resulting from the applied
electric field and the induced molecular dipole
moment. Consequently 5& effectively resyonds
only to the part of E' which does not vary at opti-
cal frequencies. For CS, the value of &, is about
4. 5 x ],0 "esu.

For a linearly polarized plane wave, the propa-
gation of the optical field is governed by the wave
equation

Bz' c' ~f2

where z is the direction of propagation. The effects
resulting from the above nonlinearity can be
treated conveniently by i9troducing Fourier trans-
forms of the complex amplitudes which describe
the spread about the optical frequency. Thus if
the electric field is specified by

E (z, f ) = —,
' [h (z, t) e + ' +c.c.],

kp and (dp being the carrier yroyagation vector and
frequency, the envelope can be written as

S(z, t)=2 f dQ f dQS(g, Q)e+

(4a)

where w=tuo+Q, k =ko+Q and the components
$(Q, Q) are given by

The coefficients a, g, and& are in turn deter-
mined by the frequency derivatives of z(~) at ~,.
They are

a =~,A=a+ —,b —4a2,(d 8& 1 1

Cp ~(d
) COp

(8a)

B = —,b + —,c ——,ab —4a + —,a'3 1 3 3 3 (8b)

with

&do 8 e
6p 840 (a) p 8(d

By factoring the left-hand side of Eq. (5) and
dividing through by k + (e/e)[e(~)] '~', and noting
that ko = +OR, /c, we obtain

[—Q+ Q e,"'/e] h (Q, Q ) + (e "'/c )ZQS (q, Q)

(&o + 2&doQ+ Q )
c'[2k, + Q+ (Vegc)(Q+ ZQ)] [ ] T

For the initial pulse, the frequency components
of the electric field amplitude, S(Q, Q), are as-.
sumed clustered about Q=O. Moreover, if dis-
persion is able to overcome the steeyening effect
before the envelope attains variations less than
or equal to a wavelength, then Q will always be
less than the optical frequency, ~p. One can ex-
pand the denominator occurring in the nonlinear
term of the above equation. Taking the inverse
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transform of the resultant equation, one obtains
the following complex propagation equation for the
electric field envelope

+ 2 2 . 8 90 $ (z z t ) = (do + 2 Q)0 i——
2coo ~ ~ Bt gt

and the gain is zero. Dispersion, however, in-
troduces a mismatch and hence a gain which we
examine briefly by linearizing in weak-fields
shifted from the strong central optical frequency.
We thus write the field, 8, in the form

g( t) g hz i[(k, -k, )z —Qt]

x —S(z, t) —2 —$(z, t).5e 8
Bt

(io)

i[(k, —k, )z+ nt]

i(~k/2+y)z
01

g g hz ~ i (4k/2 y)z

(i3a)

(13b)

(13c)
2 here is an operator obtained by setting n =is/Bt
in Eq. (7). Two directional derivatives have also
been defined; 0+ = (c/Ke, ) 9/Bz +8/Bt, a derivative
in the direction of propagation in the z —t plane
for the linear and dispersionless case, and 0
= (c/v'e, ) 8/sz —s/st, a derivative in a direction
perpendicular to this direction. The latter, if it
became of the order of the optical variation, would
lead to a significant reflection of the pulse from
the nonlinear variations in the medium. Although
the change in the refractive index is found experi-
mentally to be of the order of 0. 01 or larger in CS„
because of the finiteness of the pulse and the relax-
ation of the medium, this change is not abrupt and
thus such reflections are negligible. In this case,
only the lowest-order term in the operator series
is significant, so that the pulse equation simpli-
fies considerably becoming

0 8(z t)= ~ '+2&v i-+ Z 9
2' 0 0 Bt0

0 —2 —-2—
2$ Bt Bf

Here, ki=(~i/c)lqi with e; =e(u&i), for i =0, 1,2.
Also hk is the linear mismatch, 240 —0, —0,. The
constant amplitudes 8„,$02 are assumed to be
much less than the laser field amplitude $0 which
is itself assumed not to change. The Stokes gain
is then t2 Imy t, where y is found by substituting
Eq. (13) into (10a). If

(~k/k, )(~,/n)' && ~,S,S,+/~„
we obtain

2y =(hk)'~' Ak —co
(
' )+ (

'
) (

(l4)

in which D(n) =1+in', cbeing the orientational
relaxation time defined previously, and 5 is equal
to e, t S,t'/2~, .

To lowest order in the dispersion, Ak is equal
to —A(n/u&, )'k, , where A is given by (8a). For
most liquids at the ruby frequency, A is greater
than zero. There is then a single maximum in the
gain curve given by

x —Sz, t —2 —8 z, t . 10a
0

(n~), t
= {-,'+[-,'+5(~,~)'/ix t]'I'}' ' (15)

From Maxwell's equations we also find the mag-
netic field in terms of the electric field as follows

(z, )z=z1+ z. 0+ Z (. —)
g

—0 0

x e '~'$(z)t).

The relaxation equation for the nonlinearity writ-
ten in terms of the amplitude, 8, is

(12)

Equations (10)-(12), then, provide the basic ex-
pressions upon which a discussion of the evolution
of a quasi-monochromatic pulse will be based.
Neglecting dispersion in the lowest order of non-
linearity, these yield the pulse equations of Ref.
9 (see Appendix A).

III. GAIN ARISING FROM THE
EFFECTS OF DISPERSION

Without dispersion, Stokes-anti-Stokes linear
phase-matching occurs in the forward direction

In contrast to the disyersionless case, where
the phase-matching angle was zero, it is now
finite. The phase-matching dip increases in width
with increasing laser power, and eventually spreads
into the forward direction. The increase in fre-
quency shift with power, as given by (15), occurs
because the greater the phase-matching angle (due
to a, large frequency shift), the less the dip can
spread into the forward direction.

Thus, as illustrated in Table I and Fig. i, for
a very small nonlinearity, the gain is equal to the
stimulated-Rayleigh gain in the backward direc-
tion. With increasing nonlinearity, the Stokes-
anti-Stokes interaction suppresses the gain, so
that for usual small-scale filaments it is well be-
low the stimulated Rayleigh gain. It should be
pointed out that because of the finite angular spread
in k vectors in a trapped filament, the average
stimulated Rayleigh gain may be greater than that
found above for collinear propagation.

We will in Sec. V investigate whether the en-
hancement of the Stokes components, due to the
exponential gain as given by (14), is as important
as the phase development effects due only to re-
laxation of the nonlinearity.

Finally, we should point out that Ostrovskii"
has shown that for the case of negative second-
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ain per. unit length versus ].aser intensity I&
Here 0& is the nonlinear change in the dielectric constant,

max g the maximum value of the forward gain shown in the corresponding curves of Fig. 1, and gy the maximum
backward or large scattering-angle gain.

Curve in Fig. 1

(a)
(b)

(c)
(d)

(e)
not shown in Fig. 1
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18x10 4

18x10 '
18
18 x 10'
18 x 104

18 x 1p'

10-10

10 '
10
10-'
] 0~2

10

maxgf

5.6x10 6

5.0x]p 4

1.7 x 10-'
0.4
9.4
4.4 x 10
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5.6
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IV. PULSE PROPAGATION NEGLECTING
RELAXATION AND DISPERSION

The propagation of a pulse through the medium
is determined by Eqs. (11) and (12); and the yower
spectrum, by

S (Q, n) = (c/8m) Re[8(Q, g )K*(Q, n) j

=(c/»)&~, l &(Q, n) i'. (18)

There are basically three effects whose influence
upon the pulse propagation we wish to consider;
the nonlinearity, relaxation of the nonlinearity,
and the linear dispersion of the medium.

The primary effect is that of the nonlinearity.
It generates both self-phase modulation and self-
steepening (envelope distortion). Experimental

100

~~)cu

-)cv
X

10x

(e)

x
LI

I
50 100

FIG. 1. Forward Rayleigh gain per unit length in
CS2 versus frequency shift for values of the nonlinearity
given in Table I. The curve labels (a) -(e) correspond
to those of the Table. The second-order dispersion
coefficient A is equal to 0.056.

order dispersion, an instability is present in the
forward direction even when relaxation is absent.
This instability provides gain for finite frequency
shifts. In this case the phase-matching angle is
not real, giving rise to a phase mismatch in the
torward direction which is of such a sign as to
allow four-photon light-by-light scattering to occur.
This case is unimportant for all liquids studied
at ruby frequencies.

observations of these effects have so far been re-
stricted to the frequency spectrum. It will be
shown in Sec. V that relaxation effects can have
a marked influence particularly in the qualitative
behavior of the upshifted spectrum; thus only the
downshifted (Stokes) spectrum ii considered in
the present section.

The complex amplitude S(z, t) can be written as
g(z, t)e+ «lt'(z~ t), where 8',z, t) and 5$(z, t) are
real. For distances which are very short com-
pared to the shock distance, ' the self-steepening
of the envelope 8'(z, t) is not appreciable. In this
case, the spectral development is almost entirely
determined by 5$(z, t), which is described in the
dispersionless ease by

O'8y(z, t) = (~, /2&, )f,&(z, t),

where 8e is found from (2). If we assume that 8'
has a fixed shape for all z, and that 5Q (z = o, t) = 0,
then 5Q becomes

, ,-(t-t')/. (.. t, l'
&y(«)=~ ', l

'
~ dt'. (18)

We define the phase parameter o. to be k,ze2@0'/4zo,
in which 80' normalizes the initial intensity varia-
tion to unity. ~

The methods of stationary phase applied to Eq.
(4b) show that the frequency shift is approximately
given by (minus) the time derivative of 8P. Thus
the slope of the phase curve determines, to an im-
portant degree, the Fourier component associated
with that part of the pulse. There are generally
two points in the phase curve with the same slope
and, as Shimizu' has pointed out, the correspond-
ing contributions can interfere constructively or
destructively depending on whether they differ in
phase by an even or odd multiple of m. It can be
shown that the maximum number of interference
peaks is o./2z. While the phase development is
very significant, we also must consider the shape
of the envelope, since the degree of interference
will be determined in part by the amplitude ratio.
Furthermore, the rate of change of slope of the
phase will also influence the size of the contribu-
tions of each region.

The downshifted part of a filament spectrum is
shown in Fig. 2. Curve (a) of this figure shows
the theoretical self-modulation obtained by t heung
et al. ~ from Eq. (18), when 7 =0. The optical
wave envelope 8'(z, t) is assumed to possess a
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FIG. 2. Spectral broadening in CS&. (a) Theoretical
calculation of Cheung et al. 7 (b) Experimental spectrum
of Cheung et al. (c) Theoretical calculation assuming
an initially Gaussian intensity profile. The full (1/e)
width equals 7.4 psec and G. = 107.

weak modulation at a frequency &~ = 2. 5 cm '.
This envelope is independent of z, since self-steep-
ening was ignored. In comparison, curve (c) in-
dicates the self-modulation obtained when 7. = 0,
assuming a Gaussian envelope 82(z, t) of full width
7. 4 psec. Pulse distortion is taken into account
but has little effect on the spectrum in this case,
since the distance is about 1j100 of the shock dis-
tance. The curves of both Figs. 2(a) and 2(c) fit
the experimental spectrum [curve (b)] of Cheung
et al. 7 for CS,.

It is evident that there is little difference be-
tween the overall spectral development for a single
pulse and that for a sinusoidal modulation whose
period is of the order of twice the width of the
pulse. The spectrum for the sinusoid, however,
does posses s a discr ete under lying structure whose
components are separated by co~, in contrast to the
continuous spectrum for the pulse. A libration ef-
fect arising from an oscillation of the molecules
about the electric field has been suggested' as a
model giving rise to a sinusoidal modulation. Ex-
yerimentally there are a few cases which show fine
structure, possibly due to sinusoidal modulation. '
There is apparently no fine structure associated
with the largest frequency shifts contrary to what
is expected for yure sinusoidal modulation. Varia-
tion in modulation frequency might blur out the
discrete spectra in the region of large frequency
shifts. The finite filament lifetime, if it is only
a fem modulation cycles, can also lead to ablur-
ring of the fine structure.

If the spectra arise from pulses" of the order
of 7 psec, their origin is still uncertain. Spectra
with the above characteristics have been observed
in experiments using laser pulses at least as long

as 100 psec. We therefore infer that pulses of a
few psec, if present, are formed in the liquid.
Nevertheless, the initial time structure of the
laser is important, since it plays a role in the
nonlinear processes, including self-focusing.

The self-focusing process and stimulated scat-
tering might give rise to trapped filaments whose
temporal extent is of the order of 7 psec. Mar-
burger and Wagner" have pointed out that a pulse
will become shortened in time as it travels from
the cell entrance to the shortest self-focusing
point in the beam. This process of chopping the
wings of the pulse should continue until its width
is the order of the relaxation time for orientation.
This process can also turn a smoothly modulated
signal into a series of short yulses, which would
have a spectrum exhibiting fine structure at the
modulation frequency.

Stimulated scattering processes, for example
Brillouin scattering" in the backward (opposite
to the laser beam) direction, could lead to a
shortening of the self-trapped light pulse in a
filament. This shortening would continue until
the gain dropped to a low enough value to cut off
the loss due to stimulated scattering. The Bril-
louin gain in this region will take on transient
character. "~" The transient gain exponent can be
given by

G = (2g,v, /i')"' i
Here g, is the steady-state gain per unit length,
7 is the phonon relaxation time, vp is the velocity
of light, and ~~ the pulse length in time. Note
that g, ~ v. '; therefore G does not depend on 7. '.
In small scale filaments g, =10 cm ', z '=10 '
sec, and assuming 6 (20 for the instability to be
ineffective, we find z~ (25 psec.

V. INFLUENCE OF RELAXATION
AND DISPERSION

In the present section, we wish to consider the
influence of relaxation upon the spectra and to
discuss the role which dispersion should play. We
will also include pulse distortion; however, the
effect of this distortion on the major features of
the spectra is insignificant for the cases treated
here. This is in contrast to the results given in a
previous paper, ' in which the spectra mere found
during strong shock development.

Pulse envelopes, whose widths are of the order
of the relaxation time or less in extent, may re-
sult from the self-focusing process or from stimu-
lated scattering processes occurring in the back-
ward direction. In such cases the lagging edge of
the phase 6$(z, t) will possess an exponential tail
with a decay time equal to the relaxation time z.
Since this portion of the phase curve determines
the upshifted Fourier components, we can im-
mediately conclude that these components will be
most affected by the relaxation. Figure 3(a) shows
a computer calculation of the pulse development at
tmo distances including the effects of relaxation,
while Fig. 3(b) shows the phase development at
the same distance (the initial phase was assumed
to be zero). The relaxation time is taken to be 2
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FIG. 4. Spectrum of the pulse of Fig. 3 at e& with
0

p at the ruby frequency {2~c/~p= 6943 A) . vp is 5

psec, and 7 = 2 psec is the orientational relaxation time
for CS2. The intensity is plotted in arbitrary units.
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psec corresponding to CS,."
The frequency spectrum corresponding to a

propagation distance z, (Fig. 3) is shown in Fig. 4,
and illustrates the influence of relaxation, which
is particularly noticeable on the anti-Stokes side.
Of the two contributions from the envelope @(z,t )
to any upshifted Fourier component, the one near-
est the envelope peak dominates more than in the
relaxationless case, since the other contribution
will be out in the exponential tail of the phase
curve where the envelope is smaller. Thus, the
interference pattern shows less contrast for the
upshifted part of the spectrum. However, as in
the relaxationless case, this interference effect
increases with increasing upshift, since the ratio
of the two envelope amplitudes determining each
frequency component tends to one.

In contrast, the entire Stokes spectrum exhibits
a pronounced interference effect similar to that

FIG. 3. Influence of relaxation upon the pulse develop-
ment. The initial intensity is assumed Gaussian with
full 1/e width, v~, given by ~p7 =1.4 && 10 radians. The
ratio of the relaxation to the pnPse width, v/vf„ is 0.38.
(a) Intensity profiles normalized to the initial maximum
intensity of the Gaussian plotted for two values of the
phase parameter, n~ ——117 and 0.'2 ——2396. At the shock
distance a~ (not shown) o.' is equal to &~=2635. (b)

Corresponding phase curves, normalized with respect
to e, assuming the initial phase to be zero.

observed in the relaxationless case. We also
notice that there is a compression of the frequency
spectrum, since the height of the phase curve is
decreased due to the effects of relaxation. Fre-
quency compression, however, is even greater on
the anti-Stokes side due to the exponential tail.

We also see that the total intensity of the anti-
Stokes components is less than that of the Stokes
side due to the phase delay and the exponential tail.

The relative importance of the above effects de-
yends upon the detailed shape of the pulse and its
length with respect to the relaxation time. How-
ever, many self-modulated filaments display the
type of Stokes-anti-Stokes asymmetry illustrated

Fjg. 4 8) 14 ~21

Variation in observed spectra could be due to
variation in pulse shape. " A significant fraction
of the filaments observed by various authors show
weak upshifted wings which are more extensive
than the intense downshifts. Such spectra might
arise from pulses whose tails drop sharply. Stim-
ulated scattering in the backward direction as well
as self-steepening would produce a sharp tail.

For the spectrum of Fig. 4, dispersive effects
have been neglected since the propagation distance
is small compared to the steepening distance, as
well as the distance for exponential gain to be
significant. We also have obtained the spectrum
for the same conditions as in Fig. 4, but with dis-
persion included. Because of the change in group
velocity the spectral spread was about 4% smaller,
while the asymmetry was about 3% greater. Since
without dispersion and assuming no pulse distor-
tion, the less the spread the smaller the asymme-
try, this result may, therefore, indicate the onset
of exponential gain effects discussed in Sec. III.
Noncollinear gain effects, not included in the pres-
ent plane-wave calculation, will also have an ef-
fect on asymmetry. It has been shown that re-
laxation inhibits but does not prevent the steepen-
ing of the envelope and the buildup of the phase.
If lifetimes and propagation distances associated
with the filaments are great enough, dispersion
will ultimately become important, provided other
spreading mechanisms are negligible.

In Fig. 5, a spectrum is shown for a case of
sinusoidal modulation, where the modulation fre-
quency is chosen to give the same number of Stokes
peaks and the same total Stokes shift as in the
Gaussian case (Fig. 4). A modulation depth of
100% was chosen; less modulation would give
correspondingly less asymmetry. Note that for
the periodic case, the extent of the anti-Stokes is
comparable to the Stokes spectrum.

Figure 6(a) shows an experimental spectrum
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FIG. 5. Spectrum of a light beam, whose intensity
was 100% sinusoidally modulated, plotted in arbitrary
intensity units. The period is 10.2 psec, and the relax-
ation time is 2 psec. The phase parameter m is equal
to 1.46.

6960 6980

WAVELENGTHS (A)

7000

taken with a mixture of two thirds CS, and one
third benzene by volume. The spacing of the

aks close to the laser was about 3.5 cm '. A
similar spectrum was obtained theoretical y ~ g.
6(b)] using a Gaussian pulse of width 5. 4 psec and

1 ation time of 9 psec. Perhaps the CS,
theorientational relaxation time is altered by e

presence of the benzene. Deviation from Gaussian
pulse shape might modify somewhat the parame-
ters used.

FIG. 6. (a) Experimental spectrum and (b) theoretical
fit using a Gaussian pulse of width 5.4 psec, a relaxation
time of 9 psec, and o. =265.

Multiplying this by 8* and adding the result to 8
times the complex conjugate of Eq. (A. 1) gives

VI. CONCLUSION

Frequency broadening in small-scale trapped
filaments can be attributed to either an initial mod-
ulation of the light within the filament or to the
propaga ion ot' of ultrashort pulses within filaments.

ce ofIn the former case, or in the case of a sequence o
lses one expects a discrete underlying struc-

ture to accompany the envelope of the spectrum.
Experimentally, it is not yet clear how often and
under what conditions such a structure is to be
foun .d

ulatedShort pulses might be generated by stimu a e
dscattering or in the focusing process. If it is foun

experimentally that a single filament produces a
continuous spectrum, then the individual pulse
length in the filaments can be of the order of 5 to
10 psec in CS,.
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APPENDIX A

The Nondispersive Energy and Phase Equations

We wish to show that Eqs. (10a) and (11), in the
absence of dispersion and to lowest order in the

l' rit reduce to the energy and phase equa-
f self-stee-tions employed previously in a study of se -s eep-

ening. Therefore, dropping dispersion, we write
(10a) as

. A14 p 22 gp 2 ~t gp

= ———(5eS*S)—
2 Bt

By taking the two terms on the right-hand side
to the left-hand side and then adding and subtract-
ing —,0+[(5e/e, )g*h] to the latter, this becomes

8 8 P Bg 15 0+P =0 (A. 3)

with p equal to e8*$/Bm, and v equal to c/e'~' for
e equal to ep+5e, assuming cpW)~c.

It follows from Eq. (11) (neglecting terms aris-
ing from j = 1 and higher) and (A. 1) that

X =—Ka, (1+2 8=Ee8. —
2fp

(A. 4)

a at
(A. 5)

which, when only zero- and first-order terms in
5e are kept, becomes Eq. (10) of Ref. 9.

Therefore p is identical with the energy density
p of Ref. 9 and (A. 3) describes the propagation of

ergy in the nonlinear medium. Finally, this
equation can be reduced to Eq. (6) of Ref. y
dropping the term 5e 0+(p/4e ), which is of order
(5e )'.

r8To obtain the phase equation we note that for
equal to 8 e+t~~, the imaginary part of (A. 1) gives
the propagation equation for 5$:
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M. Schick and T. M. Wut
Condensed State Center, Case Western Resene University, Cleveland, Ohio

(Received 1 July 1968)

Green-function techniques are applied to the charged Bose gas at the absolute zero of tem-
perature. The procedure permits some general remarks to be made concerning the expan-
sions of the ground-state energy and depletion parameter in terms of xs, the ratio of the
interparticle spacing to the Bohr radius. It is found that these series contain not only all
integer powers of ~s as had been conjectured, but additional functions of rs as well. The
first-two terms in the expansion of the ground-state energy are calculated exactly as are
the first-four terms in the expansion of the depletion parameter. The former expansion
agrees with the results of Lee and Feenberg. The latter, containing a noninteger power of

, is new. It is shown that the ground-state energy diagrams which must be summed(in
the Bose gas are characterized by equal numbers of variables of integration. It is emphasized
that these are not the most divergent diagrams as in the electron-gas calculation of Gell-Mann
and Brueckner. This difference leads us to reformulate the diagrammatic procedure so as
to emphasize its self-consistency. The underlying similarity of the charged Fermi and

Bose-gas calculations is then made apparent.

I. INTRODUCTION

The charged Bose gas is a particularly interest-

ing many-body system owing to the fact that the
result of a conventional perturbation calculation of
its ground-state energy is divergent. Moreover,




