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Formulas which express the triple-dipole contribution to the pressure, internal energy, ef-
fective pair potential, and density expansion of the radial distribution function appropriate to
classical nonpolar fluids are evaluated. A rational approximation to tabulated theoretical
values of the radial distribution function for argon based on the Lennard-Jones (12, 6) model
is used to facilitate the numerical evaluation of the two- and three-fold integrals involved. The
nonadditive contribution to the pressure and internal energy of argon is several percent over
the temperature-density range considered which includes the critical region. It is found that
the triple-dipole energy cannot account for the observed variation with density of the effective
pair potential for argon reported by Mikolaj and Pings.

I. INTRODUCTION

Sinanoglu~ and Kestner' have shown that three-
body forces play an important role in determining
the effective London dispersion force between
two molecules in a nonpolar medium. Recently
Rushbrooke and Silbert, 3 Pings, ~ and Rowlinson'
have incorporated triplet potentials into the classi-
cal theory of nonpolar fluids based on the radial
distribution function as determined from an in-
tegral equation. In particular, formulas which
express the triple-dipole contribution to the
pressure, internal energy, and effective pair-po-
tential have been developed. '~'~'

Numerical estimates of the nonadditive internal
energy in argon as a function of temperature and
density have already been made based on the low-
density limit of the radial distribution function. '
Subsequently Barker, Henderson, and Smith' have
made more accurate assessments of the non-
additive internal energy and pressure of dense
gaseous argon using a new perturbation theory'
of the liquid state together with an accurately
determined pair-potential function. ' Calculated
pressures, internal energies, and critical con-
stants for argon are found to be in reasonable
agreement with experiment provided that the
triple-dipole contributions are included.

The effective pair potential accounts for the
many-body effects in a fluid in addition to the
isolated or bare two-body potential. By inverting
the Percus- Yevick equation and using the experi-
mental structure factor measured by x-ray scat-
tering experiments on argon, Mikolaj and Pings"
have deduced an effective pair interaction in the
vicinity of the critical point. Their results in-
dicate that the effective potential-well depth de-
creases almost linearly with increasing density.
Thus, by zero density extrapolation of the effec-
tive pair potential they are able to compute a po-
tential which is in good agreement with currently
accepted values for the pair potential of argon.
Since it has been shown that the Percus- Yevick
equation is sufficiently valid at those densities, "
perhaps the observed change of depth of the po-
tential can be attributed to many-body forces.

Levesque and Verlet" have recently taken issue
with this viewpoint. They compute the structure
factor for both a realistic pair potential (Kihara)
and an effective pair potential (Lennard-Zones)
applicable to the density range measured by
Mikolaj and Pings. The effect arising from the
difference between these two potentials is claimed
to simulate within an order of magnitude that due
to many-body forces. The computed effect is an
order of magnitude smaller than the difference
between the theoretical and experimental structure
factor. Hence, Levesque and Verlet conclude that
the x-ray scattering data are not sufficiently accu-
rate to extract quantitative information concerning
the interaction energy.

In this paper we evaluate the triple-dipole con-
tributions to the pressure, internal energy, and
effective pair potential for argon over a tempera-
ture-density range which includes the critical
region. To avoid the low-density approximation
made in our previous work' and to facilitate the
numerical evaluation of the two- and three-fold
integrals involved, a rational approximation to
tabulated theoretical values'3 of the radial distri-
bution function for argon based on the Lennard-
Jones (12, 6) model is used. Although no new
formulas are derived, we show that the triple-
dipole contribution to the pressure and internal
energy are simply related and need not be com-
puted separately as done elsewhere. ' Our evalu-
ation of the effective pair potential leads to a
direct determination of its variation in well-depth
with density as produced by the triple-dipole po-
tential. In addition to these calculations based on
tabulated values of the radial distribution function,
the triple-dipole contribution to the density ex-
pansion of the radial distribution function is evalu-
ated in first-order for suitable ranges of tempera-
ture and interatomic distance.

II. FORMULAS

The interaction energy of three identical atoms
is taken to be
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3 12' 23' 31 ~. i' 12' 23' 3l'j
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where zu is the nonadditive energy appended to the
sum of the three pair potentials, and the xzj are
the three interatomic distances. The expressions
relating the radial distribution function g to the
pressure P and internal energy E of a fluid are
then given by

pp/p = 1 —(pp/6) fg(r)r(du/dr)dr

—(p P2/16) Og(r„, r„,r„)

that

g, (r„)=fexp[ -p[u(r„)+u(r„)])(NA)

x [ exp(- pw) —1]d ~, . (6)

III. CALCULATIONS

To be explicit we select for the pair potential
the Lennard-Jones (12, 6) model, viz. ,

In the next section we evaluate the above terms
which contain m.

x Q r .. d72d~3,BK
zj ef'. .

z&j zj
(2) u(r) = 4&[(o/r)" —(v/r)'], (9)

p E/N = —,
' + (p p/2) fu(r)g(r)d T

(pp'/6) ff (,.. .„.„)
»!»P r31)d 2d~s P (3) w =3nev'(r», r», r»)-'I'(8„8„8,) (10)

where —e is the potential minimum and 0 is the
slow-collision diameter. At nonoverlap distances
the appropriate expression for zU is the Axilrod-
Teller-Muto" or triple-dipole potential

where p is the density, N is the number of atoms,
and P ' =AT, the product of the Boltzmann con-
stant and the absolute temperature.

Although the low-density limit of g(r», r», r»)
is known, '~e current theories do not provide a
prescription for calculating it. In order to pro-
ceed further the Kirkwood'4 or superposition
approximation is made:

g(r„,r„,r„)=g(r„)g(r„)g(r„), (4)

u (r„)= u(r „)+ (p/3) fu (r„,r„,r„)

xg(r»)g(r„) d 7,

This effective pair potential represents a merger
of the second and third terms in Eq. (3).

Next we write the density expansion of the radial
distribution function in the form:

g(r, p, T)exp[Pu(r)] = Q g. (r)p'
z=0

=g.(r)+ [g (r)+g (r)] p+ ~ .(A) (NA)

w eye g, (r) has been split into an additive part
g, & and a nonadditive term g, (NA). It is weil
known that go=1, and

g, (r„)= ff (r„)f(r„)d~„(A)
(7

where g(r) is the radial distribution function calcu-
lated on the basis that se = O. This assumption en-
ables us to evaluate the formulas to first-order in
w in a perturbative sense. '

Sinanoglu' considers an effective pair potential
obtained from the relation

pp/p = (pp/p) + (pp/p)

PE/N= (PE/N) + (PE/N)

(2')

(3')

where the terms with superscript (NA) represent
the nonadditive parts. Applying Euler's theorem
we see that

= —9w ~

~K

z&j zj
zj

for w given by Eq. (10). Hence,

(PP/p) =3(PE/N) (12)

We introduce the following dimensionless
quantities:

T* =kT/e, n* =pa', n* =n/a',

u = u/e~ g(x) =g(r)/v

r»/ t y r23/ 0 z r31/+ ' (i3)

Then we can write

(NA)

i N T* o o Ix-yl

where I'=(1+3cos8,cos8, cos8, ), 8f are the interior
angles of the three-atom triangle, and z is the
polarizability of the atom.

Let us write Eqs. (2) and (3) in the abbreviated
forms

where f (r) = exp[ —Pu(r)] —1. Pings~ has shown x rg(x)g(y)g(z)(xyz)-', (14)
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TABLE I. Values of (PE/A) with n~= 0.04.(eA)

x rg(y)g(~)(yz) ' .

Throop and Bearman" have calculated g(y) from
the Percus- Yevick equation using the Lennard-
Jones (12, 6) model. We have adequately fitted
their tabulated values of g(r, p, 7') to an expres-
sion of the form:

g(x, n*, 7' * ) = exp[ —u* (x)/7' * ]

0.10
0.25
0.30
0.40
0.45
0.55
0.60

T*=1.2
0.0095

0.1696
0.2044

T+ = 1.3
0.0075

0.1548
0.1868

T*=1.4
0.0063
0.0345

0.0759
0.0946
0.1420
0.1729

T*=1.5
0.0055
0.0301
0.0413
0.0701
0.0875
0.1317
0.1607

xi 0+ a. v, T x
s=l ' (16)

where the az are a set of m coefficients selected
for each pair of n* and T*values. In Fig. 1 a
comparison of our rational approximation to tabu-
lated values of g(x) is made for T = 1.2, n*
=0. 60, and m =12. The solid curve represents
the rational approximation to the tabulated values
indicated by the points. The dashed curve, which
is to be used in a later discussion, is a plot of
exp[ —u*(x)/T*] versus x for T* =1.2. The
theoretical critical constants for the Lennard-
Jones (12, 6) model should lie within the range"
Tc*=i.32, nc =0. 32 to c~=l. 36, ac~= 36
Using this rational approximation for g(x), we
have evaluated the triple integrals in Eq. (14)
numerically. In Table I the results, with o* (ar-
gon) = 0.04, are displayed. These results are
discussed later. Values of (pp/p)(A) and
(pE/N)(A) are given in Table Ilb and Table IIc of
Ref. 13.

The density dependence of the effective pair po-
tential as given by Eq. (15) is of particular in-
terest in view of the aforementioned variance
between the work of Mikolaj and Pings and that
of Levesque and Verlet. For reasons to be
discussed later we find that the values of the

double integrals in Eq. (15) are relatively in-
sensitive to variations in e* for fixed values of
T*. Hence, the density dependence of the ratio
of the effective well depth and e is primarily
determined by the linear factor preceding the
integrals. If we set x=2'~' and T*=1.2 in Eq.
(15), we obtain for argon the results"

e /e =1 —0. 072p, for n*= 0. 10
eff

(17a)

e /e =1 —0. 051p, for n*=0. 60
eff

(1Vb)

with p in g/cm'. From their measurements
made at temperatures in the vicinity of T*=l. 2
and densities encompassed by the range given
above, Mikolaj and Pings find this ratio to be
(1 —0. 394p). Thus we see that the "measured"
coefficient is an order of magnitude larger than
that predicated by the triple-dipole effect. We
conclude from this comparison that the observed
variation with density of the effective pair po-
tential cannot be attributed to the triple-dipole
effect.

We turn now to the assessment of the lowest-
order triple-dipole effect on the pair radial distri-
bution function. For small values of ~*,'T*, we
may replace the factor [exp(- pm) —1] in Eq. (8)
by (- Pzv). " Then in terms of reduced quantities
we have

n' =0.60
T"' = 1.20

g, (x) = —(3a*/7'*) I (x, 7'*),(NA)

where

(18)

I

1

I

t

t

FIG. 1. The reduced radial distribution function
g(x) versus the reduced interatomic distance.

I (x, T*)=2'-' f dy J dzIx-y1

xrexp[ —[u*(y)+u*(z)]/T*)(y~) '. (19)

A few computed values of I (x, T*) are presented in
Table IJ. Henderson' has computed g, (A) (x)
for the Lennard- Jones 12-6 model. Figure 2
illustrates the significance of g, (NA) (x) in re-
lation tog, (A) (x) for T*=l.4 and a*=0.04. A
comparison of the two curves in Fig. 2 indicates
that the triple-dipole interaction has little effect
on the fluid structure beyond about two atomic
diameters. Inside this region the triple-dipole
effect is to expand the local structure because this
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TABLE II. Values of I(x, T*).

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

T*=1.0
6.5551
4.8576
3.6693
2.8083
2.1662
1.6756
1.2927
0.9883
0.7424
0.5410
0.3740
0.2360

T+= 1.2
5.2704
3.9346
2.9921
2.3037
1.7871
1.3902
1.0787
0.8301
0.6285
0.4627
0.3248
0.2114

T*=1.4
4.5408
3.4084
2.6050
2.0143
1.5689
1.2254
0.9545
0.7378
0.5614
0.4160
0.2949
0.1959

T*=1.5
4.2860
3.2243
2.4694
1.9127
1.4921
1.1672
0.9105
0.7050
0.5374
0.3992
0.2839
0.1901

T*=1.6

4.0787
3.0743
2.3590
1.8298
1.4294
1.1197
0.8745
0.6781
0.5177
0.3853
0.2748
0.1852

T*=2.0

3.5362
2.6810
2.0697
1.6123
1.2644
0.9944
0.7790
0.6065
0.4649
0.3478
0.2498
0.1716

nonadditive energy is positive for most triangular
configurations. " The small magnitude of this
contribution justifies using a perturbation pro-
cedure in calculating the triple-dipole effects on
fluid properties.

We would like to point out that additional low-
density values of (PZ/N)(NA) and u«f can be ob-
tained from other computations. If we use the
low-density limit for g(r), i. e. ,

g(r) = exp[- pu(r)],

then, as previously pointed out, ' Eq. (14) becomes

u (x) =u (x)+o.*n*l (x, T'),jeff
(22)

p. 2

0. 1

gn P

-0.4

FIG. 2. Calculated values of g&(x) for T*=1.4 and
n*= 0.04.

where AC is the nonadditive third virial coefficient.
Kihara, Koba and Kaneka, and Sherwood and
Prausnitz have evaluated bC using Eqs. (9) and
(10)." Using the low-density limit for the radial
distribution function appearing in Eq. (5) leads
to'

where I(x, T~) is given by Eq. (19).

IV. DISCUSSION

Any quantitative conclusion drawn from the
foregoing calculations rests primarily upon the
reliability of Eq. (10) particularly in the vicinity
of the pair-potential minimum. Presently no
simple expression for the three-body overlap en-
ergy is available. " However, since each formula
considered has a factor which rapidly reduces its
integrand toward zero for any xz&

& 0, the dominant
three-body contribution in fluids should be the
triple-dipole ene rgy.»

The coefficient v of the triple-dipole term'3 is
accurately approximated by the relation" v = 4

n p. , where p. is the coefficient of the London
dispersion energy —p/r' For t.he Lennard-
Jones model v =3+so', which is the coefficient
used in Eq. (10). If the theoretical value of p is
used instead of the experimental value as done
here, all (linear) terms in w should be multiplied
by p, th/p, ex. For argon this ratio is about one-
half. Thus, the numerical results presented here
could be overestimations of the triple-dipole
effects by a factor of two. It would be preferable
to use a pair-potential model which has a long-
range interaction coefficient that agrees with
the theoretical value. ' Moreover, the Lennard-
Jones 12-6 model simulates an effective pair
potential for dense argon, already taking account
of the nonadditive interactions. '2, " For these
reasons no comparison of calculated values of P
and E with experimental data is made. In making
exploratory calculations at this level, we are
primarily concerned with the order-of-magnitude
contribution of the triple-dipole energy to fluid
properties. Although the quantitative results
presented in Table I may be in doubt by a factor
of two, it is evident that the triple-dipole contri-
bution to the internal energy and pressure is
significant and continues to increase with in-
creasing density below the coexistence curve.

The density dependence of the integrand in Eq.
(15) enters through the radial distribution function
only. Since the triple-dipole energy varies in-
versely with the ninth power of interatomic dis-
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tances, its effects are relatively short-ranged
(as indicated in Fig. 2). Hence the bulk of the
double integral's value in Eq. (15) is obtained
for distances between one and two atomic diame-
ters. A comparison of the solid curve and dashed
curve in Fig. 1 shows that within this range the
low-density limit of g(x) is slightly larger .han
the radial distribution function itself for a common

value of the temperature. This explains why the
density coefficient in Eq. (17a) slightly exceeds
the one in Eq. (17b) —a result which might have
been unexpected at first glance. Moreover,
since the two curves in Fig. 1 differ by very little,
particularly in the vicinity of their peaks, it is
clear that the density dependence of the effective
pair potential is almost linear.
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It is demonstrated that the energy of a vortex in He II should be increased when it is very
near a boundary. This assumption is used to derive expressions for the critical velocity and
supercritical flow in the bulk liquid and the film. The creation and annihilation of vortices is
also discussed.

A. INTRODUCTION

It is now well established that vortices exist in
superfluid He II with quantized circulation'

K = fv ~ dl = n(k/M) =n x 10 ' cm'/sec.

Conventional treatments of the properties of helium
use the classical vortex theory with quantization
and appropriate images to produce the correct
boundary conditions. Refinements have been made
with quantum mechanical analysis, 4~' but these
result in little substantial change. In general these


