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Examples of inverse solutions for the effective additive pair potential from guessed equilib~
rium pair distribution are given for the Percus-Yevick, hypernetted-chain, and Stillinger-
Buff (with an inexact mean-density closure relation) equations. The found potentials depend
on density and temperature and the potential for a given guessed distribution predicted by the
Percus-Yevick theory is always smaller than that from the hypernetted chain equation. The
exact inverse problem of determining the potential from the nonuniform pair distribution is
formulated via the Stillinger-Buff equation and the difficulties in solving this problem are
indicated. In a related inverse problem we characterize the possible equations of state
consistent with the assumption that the potential of mean force of the fluid is directly pro-

portional to the, possibly density dependent, pair potential.

1. INTRODUCTION

If the direct problem of statistical mechanics
consists in finding the macroscopic properties of
matter given the molecular interaction, an in-
verse problem may be formulated: given the
macroscopic properties and relations connecting
these to the molecular interaction, what inter-
actions are consistent with the given information.
For example, Frisch and Helfand! and Keller and
Zumino? showed that, restricting the class of po-
tentials to monotone increasing or decreasing,
pairwise additive and central, the second virial
coefficient, in the virial expansion of the pressure,
given as a function of temperature, T, (0 <7 < )
uniquely determines the intermolecular potential
function.

In this paper we shall be concerned also with a
different inverse problem: It consists of picking
a molecular distribution function for a pair (or
triplet) of molecules and determining the pair
intermolecular potential which could give rise to
this molecular distribution function. Functional
derivative techniques applied to the grand canon-
ical-coordinate distributions provide several con-
necting relationships, approximate and exact, for
potential and molecular distribution function.
Among these the inexact Percus-Yevick (PY) and
convolution hypernetted-chain (CHNC) equations
employing a guessed pair distribution function and
the exact Stillinger-Buff equations (employing a
guessed triplet distribution function) allow easy

separability of the pair intermolecular potential.
Once a corresponding solution pair, pair poten-
tial-pair distribution function, has been obtained
by this procedure the equations of state can be
found either by the virial or compressibility re-
lation.

Before we turn to the inverse solution of the
PY and CHNC equations which are discussed in
Sec. 2 we would like to point out that, in general,
an inverse solution for a pair potential from a
hypothetical, guessed molecular distribution func-
tion may yield a pair intermolecular potential
which will be a function not only of the intermolec-
ular distances but also of the uniform density
and temperature of the fluid. It is not astonishing
to find that this is so even if the guessed molecular
distribution function is exact and the exact
Stillinger-Buff relations are employed. It will
thus be necessary to comment shortly on the va~-
lidity of the fundamental relations employed, e.g.,
the PY equation, etc., for the case that the inter-
molecular potential is a function of the uniform
density, p, and temperature, 7. When an effec-
tive pair-wise additive potential ¢ is determined
for a real fluid from experimental x-ray scatter-
ing functions (structure functions), one finds a p,
T dependence in ®, arising from at least three
causes, which should be sharply differentiated:
(1) A spurious p, T dependence due to the use of
an inexact equation relating the scattering func-
tion (i.e., essentially the Fourier transform of
the pair distribution function minus one) and the
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sought-after pair potential, e.g., the use of the
PY equation. (2) A second spurious p, T depen-
dence of ® which arises from a small experi-
mental error in the measured scattering function.
In Sec. 2 of this paper we will give an estimate
of this effect. (3) Since all real molecules are
polarizable there will always be a possibly small
but real p, T dependence of ¢ due to the nonpair-
wise electrical forces between them. Further-
more in systems containing charged particles,
ions or electrons, there will be an appreciable p,
T dependence due to screened long-ranged elec-
trostatic interactions. Because of this, we in-
vestigate in Sec. 2 in some detail the inverse
solution of the inexact PY (or CHNC) equation for
a model system which reduces asymptotically for
large distances to the Debye-Hiickel screened
Coulomb potential of a set of identical charged
particles in a neutralizing background. By a
small modification of this model one is able to
mimic the behavior of the oscillating long-range

part of the effective interatomic potential in a
liquid metal.

In Sec. 3 we turn to the exact Stillinger-Buff
equation, The exact inverse problem is difficult -
to obtain an exact pair potential the guessed triplet
distribution function must satisfy certain neces-
sary and sufficient conditions to insure that it
arises from some many-particle phase-space
density. The technique may still be useful though
for obtaining approximate solutions to many-body
problems (an example is worked out), by re-
quiring some limited consistency between the
chosen triplet and the lower-order molecular dis-
tribution functions. )

In the last section we turn to a different problem
which is also an inverse problem. Given that we
can prescribe the functional dependence of the pair
distribution on ®, what equation of state is con~
sistent with this prescription? We examine a par-
ticularly simple case of this problem.

2. PY AND CHNC EQUATIONS

One can derive the PY and CHNC approximate integral equations for the pair distribution function by

methods of functional differentiation3:
g@) - 1=c@®+p [cE- X&) - 1]ax’,
c@=[1-"F@ ey,
c®)=g&)-1-Ing(®) - p2E) (CHNC),

(2.1)

(2.2)
(2.3)

where c(X) is the direct correlation function, g(X) the pair distribution, and %) the pair potential. Equa-
tion (2.1) relating ¢ and g as reciprocal kernels is exact while (2.2) and (2.3) are approximations. Even
if the potential depends on the uniform density p and “temperature” 8=1/kT, Eqgs. (2.1)-(2.3) hold with p
and g regarded then as parameters throughout the derivation. The compressibility relation for the ther-
modynamics, which is also derivable by functional differentiation, 4 is not changed when the potential de-
pends on density and temperature, but the virial equation must be modified as we see later.

It is easy to express ® as a functional of g (or g~ 1=7, the “indirect correlation function”) by taking
Fourier transforms:

B<I>(§)=1n<1— 11 /ei‘-i E(E_)* dﬁ) ®Y) (2.4)
1+h(X) (278 1+ ph(k)
and  p®=—1n[1+h@E@)]+hE) -—— / JK £_0® g (cune) (2.5)
(2m)3 1+ ph(k)

with Z®)=[e” ik . *n(X)dX, and the integral term appearing in (2.4) and (2.5) being just the direct (pair)
correlation function.

From (2.4) and (2.5) we see that the difference in pair potential A(82)= (82)py - (B®)cHNC is simply
expressible as a function of 2(X) - ¢(X),

A [B2(X, p, B)]=1n[1+r(X) - c(X)] - [2(Z) - c)]. (2.6)

The right-hand side of (2.6) is convex downward in the % - ¢ difference and achieves its minimum value of
zero for the ideal gas or, in general, when |X|=7-o, Thus A(8®) <0. It also follows that once an in-
verse solution of either (2.4) or (2.5) is obtained, the solution of the remaining equation can be obtained
without further quadratures, using (2.6). One can also obtain A(8®) directly from a measured scattering
function, S(k), s

S(&) =1+ ph(k), (2.7

the desired formula being

A[B‘F(i,P,B)]=—ln(1— ! f e’f"?_{“ﬁ)‘l]zdﬁ) - /ei‘?"?—_—[sﬁ)‘ﬂzdﬁ. (2.8)
(2m)p S() (2m)%p s(k)
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We now turn to the estimate of the error made in obtaining 8® by employing say the PY Eq. (2.4) and
the measured S(k) ¢ subject to a small experimental error €6S(k). Let the accurate value of S be S, 5 (&) to
which corresponds %,(X) via (2.7) and a 8®,(X, p, 8) via (2.4), we then set

S[)=5,(8) + €6S®), hE) =ho@)+ €On(F), PEE)= po,F)+ €pod (). (2.9)

Substituting (2.9) into (2.4) and solving for the error in 8%, B6®, neglecting terms second order or
higher in €, we obtain

Bw&):e—ﬂ‘i’o&) 1 ([1_eﬁ«ﬁo(;)]/ezﬁ-iés(ﬁ)dk—_/eﬂ?-ias(ﬁ) dl;)

1+7,(X) (2m)3% S2(K)
- B‘I)(-’) S > - . ."- - g -

e T L([heﬁq’(’a]/e’k’xas(k)dk— PN ESﬂ})dk)m(e). (2.10)
1+2EF) (273 $2(k)

A similar formula can be obtained for the CHNC equation. These formulas would allow one to remove
the errors of type (2) mentioned in the introduction.
We now turn to some examples of inverse solutions of (2.4) and (2.5). Choosing,

1@D=[AGp, B)/r] e~ BO B, (2.11)

where B is taken as positive and A is positive or negative such that B2>4n]|Alp. Substituting (2.11) in
(2.4) and (2.5) yields

-1
B2(X, p, B):ln[l - (1 +i:—e —Br> ée - (Bz+4NAp)1/27;' PY) (2.12)

- —_ 2 1/2
4, By-ée B2+ 41AP) 27 (e (2.13)

and B2(%,p, B):ln(l +ée_B1’>+V

with 2,0, f)=~ Inf1+ [A(0, g)/r]e ~ B0 AN} (2.14)

at zero density for both, Consider now a set of charged particles, charge e, in a neutralizing background
of dielectric constant €. We can identify (2.11) with the familiar Debye-Hiickel result if we choose
B2=4me?p/e. Asymptotically, for large 7, (2.12) and (2.13) reduce to a shielded Coulomb potential. In
particular, the shielding can be made to vanish if B2= - 4ndp, A <0, but then f® becomes imaginary as
7 -0,

Alternatively, one can interpret (2.11) as the PY or CHNC correlation function of neutral molecules
satisfying the p, T dependent pair potentials (2.12) or (2.13), respectively. The compressibility relation,
with X=8p, p the pressure, has the same form as when ¢ is p, 7T independent,

ap/0X=1+p [[gR&) - 11dx=[1~-p [ c(XK)dX]~* (2.15)
and can be expressed in terms of the functions A and B appearing in (2.11), namely

8p/8X = B2/(B?+ 4nAp). (2.16)

This compressibility equation of state will differ” in general from that obtained from the virial equation of
state, which for p, T dependent potentials has the form

X=p-4p? [r[0(B2)/0r]g(X)ax +4p? [[8(8®)/07]g(X)dX . (2.17)
An oscillatory factor can be included in (2.11):
1 =Alp, B expl- B(o, Birlsin[Clo, B)F] /7, (2.18)

resulting in

Ae-—B'V -1
Be (%, p, B):ln[l {1+ =—=—— sinCr)

x1 ABC = lkplv Iﬁl sin(1%,17)+ cos(1%,17)) | (PY) (2.19)
3 REe, 7 .

and
- By - Br

Be(%,p, B) =~ ln(l + ‘ie—y—— sinC*r) + 14—81;__— sinC»
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-kl 7
_%kfgljiz € (1,:-2- sin([klir)+cos(|kll1’)> (CHNC) (2.20)
1 2 1
2 1/2 1/2
with k,=+{3[(C* - B?) +4B2C%+81ApCB] - 3(C?- B2)}

1/2
and k,=+(C2B%+21ApCB) /k,.

For large distances 8% has the same form as %(X), apart from scale and phase changes. The direct cor-
relation functions [compare (2.1)] in these examples are identical for both approximate theories. Our in-
terest in (2.18)-(2.20) arises from the fact that the large » asymptotic forms of (2.19) and (2.20) resemble
the oscillating long-range part of the effective pair potential in a simple liquid metal (see, e.g., Ref. 5,
Chap. 4), except that our asymptotic B® must be divided by 72.

3. THE STILLINGER-BUFF EQUATION
The exact Stillinger-Buff equation® relates the pair potential to two-and three-particle distributions,
-> __ -> p 19> - - - > . _ -
(3<I>(x01)— 1ng(x01)+ fo fap dxz[g(xoz,p)cn(xl, X1 X3P ) c(xlz,p')] . (3.1)

The nonuniform direct pair correlation between Molecules 1 and 2 given that there is a fixed molecule of
the same kind at X,, ¢, (X1,Xq!Xg;p), is a solution of the nonuniform version of (2.1)

gn(xl,lexo; p)-1= cn(xl,x2 |x0; )+ pfcn(xl, Xg I Xos p)g(x03) [gn(x3, lexo,‘p) - l]dx3 , (3.2)

with the nonuniform pair function g,(¥1, ¥3/%o; p) defined in terms of the uniform triplet distribution
ga(xu Xy Xos p) as follows:

8, &, Ko1K 5 p) =25, X0, X5 0/2(% ) 2 E,) - (3.3)

Equation (3.1) can be derived by functional differentiation and remains true for density and temperature

dependent potentials. In principle, if one can guess a c,(X], X3/X(; p) which can be derived from a posi-
tive, symmetric N-particle phase-space density, then substitution of this ¢, in (3.1) assigns an exact g%
which could give rise to this ¢;. One necessary condition on ¢, being that

limcn(xl,x2|x0;p)=c(x12;p), 1% =, X,,%, fixed, (3.4)

with c(X,,; p) the uniform direct correlation function, from which g(X,,) can be obtained through the Fourier
transform of (2.1)

hi(K)=2(®)/[1 - pE(E)]. (3.5)

Unfortunately, a useful characterization of the class of ¢, which arise from a many-particle phase-
space density is not at hand. One can still attempt to find an approximate B® using (3.1), by substituting
in (3.1) an inexact, physically reasonable, guessed ¢, satisfying (3.4). Such a ¢,, satisfying (3.4) will not,
in general, satisfy all the marginal consistency conditions relating it to the lower, uniform two- and one-
particle densities. Stillinger and Buff® have suggested that c;, acts like a uniform direct correlation func-
tion between molecules at X, and X,, evaluated at an effective density, pg(r,,,p) with 7, = 1%5— %(3{’1 +Xo)l,
namely,

Cn(xl’ Xy 1% 5 0)= c[xlz;Pg(rm, o), (3.8)

which satisfies (3.4). It would be of interest to carry through analytically an example of an approximate
inverse solution of (3.1), subject to a closure relation such as the ansatz (3.6), for 8® for the case where
h is given by (2.11), for which the inverse PY and CHNC g% is easily obtained [compare (2.12) and (2.13)].
For this guessed form of %, the direct correlation is

- blp, B

c(r, p)=Alp, Ble /v, v=1%,l, (3.7

with b2(p, B)= B2(p, B)+ 471A(p, B)p.

To proceed requires further mathematical simplification. We expand, compare (3.6) and (3.7), the
functions A and b in (3.7),

Alpg(r,), B)=Alp+ph(r, ), B)=Alp, B)+ (8A/8p)ph(r, )+ -+,
. (3.8)
b(pg(r, ), B)=0(p, B)+ (8b/0p)ph(r, )+ - -,

and replace i(7;;,) in (3.8) by an effective correlation given by a step function %g6(ry,, R) with
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9(7m,R)= 0, 7,>R; orl, » <R, (3.9)
where the range R can be made to correspond to that of % as given by (2.11), R=B-! and %, can be chosen
by the normalization requirement that [compare (2.16)]

8p/8X =B?/(B%+ 4nAp)=1+-4mph,R®. (3.10)

Thus we replace the “midpoint-density” ansatz (3.6) by the further simplified version, incorporating
(3.71)-(3.10),

¢, &, Xy1%0;0)=[Alp, B)+ alp, B6(r, , R)]exp{~[blp, B)+¥(p, BO(r, ,R)r) o}/7,,, (3.11)

with 7= 1%, - %1, a=(84/8p)ph,, v=(8b/8p)ph,.

Equation (3.11) also satisfies (3.4). With (3.11) the integrals on the right-hand side of (3.1) can be re-
duced to a double quadrature which is susceptible to evaluation by conventional numerical machine com-
putation. We find

_ P ’
B¢(701)=1n(A—(7’20’TB—)e B1’°1+ 1>+ fopdp’l (roup,p')—tlﬂj; %%Z—,zﬂg)—dp’ (3.12)

with (case B=1>2v,,)

Iy, 0,0")= [ d%,)[ gy, p)e, (X, Ky 1 %o50")]

R-7,
- g 7 (1, AWp) ,~B)r) Alp")+alp’)
’“fo @ <1 y ¢ >T(FTWT

x(exp{~ [b(p")+ ¥(p)]174, = 71}~ exp{= [b(p") +¥(p"))(r, + )}

R+’Vol ’

¥ A(p) -Bl)r\ A+ alp)

+2ﬂ4 . d1’701<1+76 b +y(")
~ o1

x (exp{-[b(p)+2(0)] (272 + 21’012 - R?)M* }— exp{- b0+ 7)) (r+ 1/01)})

_ A" fexpl b(p')(21’2 N 27012 -R?) 1/2 ]~ exp[- b(p" )7 - 7’01)]}

+ 27 dr;f—;l— <1+A—1(f))—e —B(p)r>~_2;)_4(l(?p,9€— b(p")r sinh[b(p)?’m].

R +7,

Asympiotically for large 7,, (3.12) reduces to the same result as the PY (2.12) and CHNC (2.13). Unlike
the PY or CHNC solutions for p® the effective additive pair potential given by (3.12) is not simply scaled
by B(p) and b(p) the ranges of the indirect and direct correlation fu..ctions but the effective scales vary
with changing p. In the absence of an exact analytical or numerically computed B® for a three-dimensional
system whose % is given by (2.11) it is hard to estimate the relative precision of our three approximate
inverse solutions, (3.12), (2.12), and (2.13).

4. EQUATIONS OF STATE g(r)=exp[- A% (r, p, B)], (4.1)

In this Section we turn to the consideration of
another inverse problem: Suppose the functional
dependence of g on ®is given, what equations of
state are consistent with this assumed form of g?
We illustrate this inverse problem by the following
example. Suppose the potential of mean force is
identified with a scaled pair potential even at non-
zero density

with A a dimensionless density-independent scal-
ing factor. Such a g may not be derivable from a
many-particle phase-space density. Thus, e.g.,
the requirement that in the limit as p vanishes
g(7) = exp(— B®) restricts X to unity. Still, we can
ask what are the equations of state which are con-
sistent with the hypothesis (4.1) with a=1.

To obtain an answer to this question we will
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eliminate g between the compressibility relation
and the virial equation of state. The compress-
ibility relation (2.15) is

ap/aX=1+4ﬂpf0°°1’2(g—1)dr, (4.2)

while the virial equation of state (2.16) can be
rewritten

X=p+(27/3) p? jomr?'(a/ar)(g— 1)dr
- 2mp3 jo'ooafz(a/ap)(g~ 1)dr. (4.3)

Integrating (4.3) by parts and eliminating [ 72
X (g-1)dr from (4. 1) gives successively

X=p - 2mp? jomafz(g— 1)dr
- 2mp3(8/8p) _Lwrz(g— 1)dr
=3p-1p(8/0p)p(op/oX). (4.4)

Alternatively we can express (4.4) as a second-
order nonlinear differential equation for X=X(p),
(X’=dx/dp),

pX"+ (3—2Xp-1)X'2—X'=0 , (4‘5)

which is satisfied, in particular, by the ideal gas,
X=p. The origin X, p=0 is a singular point of
this equation. The transformation ¥'= (X )
+1-2Xp™1, n=(X')"1-1 reduces (4. 5) to first-
order Abel equation, Y'=dY/dn,

(Y=-n)Y'(n)=2n(1+n)", (4.6)

and does not correspond to a case which can be
integrated using a standard, listed, further
substitution.

A phase-plane investigation of (4.5) about the
origin p, X=0 reveals that the only solution of
(4.5) which passes through the origin is the ideal
gas. Sufficiently near the origin there exists a
two-parameter family of solutions of (4.5) whose
power-series expansion about X =0 takes the form

p=py+ aX+(a/2§0)(3 -a)X?
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FIG. 1. Equations of state corresponding to solutions
of (4.5) for a=0.1.

+(a/6py?) (T—12a+3a2)X3+ -+, p,#0, (4.7)

where X vanishes at p=p, and a is the value of the
slope (8p/8X) at p=p,. Figure 1 shows the result
of numerical integration of (4.5) (Runge-Kutta
method). If p=p, is to be a point of mechanical
stability, a>0. For p,>0 the system vanishes
at a finite density; while for p,<0, the system
pressure may remain finite at vanishing density.
Only very long-ranged (or very singular) poten-
tials will give rise to such equations of state.
From (3. 1) we note that a necessary condition
for (4.1) is that the integral on the right-hand
side of (3.1) vanishes identically.
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